COMPUTING EIGENVALUES AND EIGENVECTORS ON A COMPUTER

David F. Gleich · CS 314 · Purdue University October 16, 2016

1 WHAT ARE EIGENVALUES

$$A\mathbf{x} = \lambda \mathbf{x}$$
$$det(A - \lambda I) = 0$$

2 WHY DO WE CARE ABOUT THEM?

Take good notes here! You'll be surprised when you need this information!

3 THE OLD WAY

$$\boldsymbol{A} = \begin{bmatrix} 1 & -10 \\ -5 & -4 \end{bmatrix}$$

We'll soon see a much better way to compute these eigenvalues and vectors

4 PROPERTIES OF EIGENVALUES AND VECTORS

Real-valued matrices can have

If *A* is symmetric

5 THE POWER METHOD

6 THE POWER METHOD IN PRACTICE

 $\mathbf{y} \approx$

x = rand
for i=1 to ...
y =
x =

r

$$A = 1/3 \begin{bmatrix} 2.8 & 0.6 \\ 0.6 & 1.2 \end{bmatrix} \qquad \qquad A = \begin{bmatrix} 1 & -10 \\ -5 & -4 \end{bmatrix}$$

$$A^{k} = \lambda = \lambda = \lambda = \mathbf{x} = \mathbf$$

8 CONVERGENCE OF THE POWER METHOD

Assumption 1 A is diagonalizable.

Assumption 2 There is one eigenvalue λ_1 with a magnitude larger than every other eigenvalue. Let \mathbf{v}_1 be the eigenvector.

Assumption 3 If we write the starting vector \mathbf{x} in terms of eigenvectors of A, then the component associated with \mathbf{v}_1 is non-zero.

Assumption 3 implies:

Assumption 1 implies:

Assumption 2 implies:

The rate of convergence for the power method is determined by the second largest magnitude eigenvalue of A.

 $|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \ldots \ge |\lambda_n|$

Then if $|\lambda_2|/|\lambda_1|$ is nearly 1, it'll converge slowly. And if $|\lambda_2|/|\lambda_1|$ is \ll 1, it'll converge quickly.

BEYOND A SINGLE VECTOR

How do we get multiple eigenvectors?

Property 1 The eigenvectors of a symmetric matrix are orthogonal.

Idea 1 If we find \mathbf{x}_1 , λ_1 , then we can *project* on the orthogonal subspace. *"we can get-rid-of* \mathbf{x}_1 *in running the power method"*

This gives rise to a process called deflation!

Instead, let's just do them all at once.

Let **X** be a *block of orthogonal vectors*

Multiply Y = AX

Normalize