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1 what are eigenvalues

Ax = λx
det(A− λI) = 0

2 why do we care about them?

Take good notes here! You’ll be surprised when you need this information!

3 the old way

A = [
1 −10
−5 −4 ]

We’ll soon see a much better way to compute these eigenvalues and vectors
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4 properties of eigenvalues and vectors

Real-valued matrices can have If A is symmetric

5 the power method 6 the power method in practice

y ≈

x = rand

for i=1 to ...

y =

x =
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7 small examples

A = 1/3 [2.8 0.6
0.6 1.2]

Ak
=

λ =

x =

A = [
1 −10
−5 −4 ]

λ =

x =

8 convergence of the power method

Assumption 1 A is diagonalizable.

Assumption 2 �ere is one eigenvalue λ1 with a
magnitude larger than every other eigenvalue. Let v1
be the eigenvector.

Assumption 3 If we write the starting vector x in terms
of eigenvectors of A, then the component associated
with v1 is non-zero.

Assumption 3 implies:

Assumption 1 implies:

Assumption 2 implies:

�e rate of convergence for the power method is
determined by the second largest magnitude eigen-
value of A.
∣λ1∣ > ∣λ2∣ ≥ ∣λ3∣ ≥ . . . ≥ ∣λn ∣
�en if ∣λ2∣/∣λ1∣ is nearly 1, it’ll converge slowly.
And if ∣λ2∣/∣λ1∣ is≪ 1, it’ll converge quickly.

3



beyond a single vector

How do we get multiple eigenvectors?

Property 1�e eigenvectors of a symmetric matrix are orthogonal.

Idea 1 If we �nd x1, λ1, then we can project on the orthogonal subspace.
“we can get-rid-of x1 in running the power method”

�is gives rise to a process called de�ation!

Instead, let’s just do them all at once.

Let X be a block of orthogonal vectors

Multiply Y = AX

Normalize
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