There are two common ways for a numerical computation to go wrong.

CONDITIONING

The problem is sensitive to small changes.

STABILITY

The algorithm introduces large errors.

Definition

Let \(y = f(x) \). The relative condition number of \(f \) tells us how much \(y \) changes if we change \(x \) by a tiny bit. Let \(\hat{y} = f(\hat{x}) \), where \(\hat{x} \approx x \). Then the relative condition number is

\[
\kappa(x) = \left| \frac{xf'(x)}{f(x)} \right|.
\]

Why is this right? We want

\[
\left| \frac{\hat{y} - y}{y} \right| \approx \kappa(x) \left| \frac{\hat{x} - x}{x} \right|,
\]

and if \(\hat{x} \) and \(x \) are close:

Example \(f(x) = 2x \)

Example \(f(x) = \sin(2^{60}x) \).

Definition

forward error analysis

How much error do I have in solving problem \(f(x) \) using algorithm \(\text{alg} \)?

\[
\frac{|\text{alg}(x) - f(x)|}{f(x)}
\]

backward error analysis

Does my algorithm solve a nearby problem exactly?

\[
\text{alg}(x) = f(x + \delta x)
\]
Backwards Stable Algorithms

1. inner products
2. solving $Ax = b$
3. computing QR

Matrix Norms

$|\alpha| = \max |\alpha x|$ where $|x| = 1$

how much it scales a unit quantity

$\|A\|_2 = \text{how much it scales a unit vector}$

$= \max \|Ax\|_2$ where $\|x\| = 1.$

$= \sqrt{\text{largest eigenvalues of } A^T A}.$

Conditioning of Linear Systems

$Ax = b \quad b \approx \hat{b} \quad \hat{A}x = \hat{b}$

$$\frac{|x - \hat{x}|}{\|x\|} =$$

in Julia: cond(A)