Homework 4

Problem 1 (10 points)

Consider a certain corporation that has three fields of operation; it mines coal, produces gasoline, and generates electricity. Each of these activities makes use of varying amounts of three products. Suppose that in order to produce one unit of coal, the corporation consumes
\[
\begin{bmatrix}
0 \\ 1 \\ 1
\end{bmatrix}
\]
to produce one unit of gasoline, the corporation consumes
\[
\begin{bmatrix}
0 \\ \frac{1}{5} \\ \frac{2}{5}
\end{bmatrix}
\]
and to produce one unit of electricity,
\[
\begin{bmatrix}
\frac{1}{5} \\ \frac{2}{5} \\ \frac{1}{5}
\end{bmatrix}
\]

Let
\[\mathbf{x} = \begin{bmatrix} x_1 = \text{number of units of coal produced} \\ x_2 = \text{number of units of gasoline produced} \\ x_3 = \text{number of units of electricity produced} \end{bmatrix}.\]

This is called a production vector. Suppose the corporation needs to produce 100 units of each product to sell above and beyond its internal requirements. Derive and solve a linear system for the amount of each material the corporation has to produce to meet this demand. (Hint: don’t forget to take the corporation’s own use into account!)

Problem 2 (10 points)

We’ll derive a matrix equation for the PageRank linear system. For this problem, intuitive but logical arguments suffice and you need not formally prove these statements. Although, proofs are the most logical arguments possible and are accepted and encouraged!
Consider the adjacency matrix of a graph A. Let D be a diagonal matrix with the number of out-links from each node on the diagonal. (Assume that each node has at least one out-link.)

The matrix D^{-1} is also a diagonal matrix where we replace each diagonal entry with its reciprocal. (Note, if this isn’t a familiar fact, take a moment to derive it. The property that $DD^{-1} = I$ is handy to use.)

1. (5 points) Argue or prove that if x is a vector giving the probability that the surfer is on each page, then $y = A^TD^{-1}x$ is a vector giving the probability that the surfer is on each page after following one link from the graph.

2. (5 points) Now let x be the probability that the surfer is on each page after browsing for a really long time. Recall the argument from class, and argue or prove why:

$$x = \alpha A^TD^{-1}x + (1-\alpha)e/n$$

where e is the vector of all ones and n is the number of nodes in the graph.

3. (0 points) Rewrite this into the linear system:

$$(I - \alpha AD^{-1})x = (1-\alpha)e/n.$$

This gives us an easy way to compute PageRank scores on a computer without simulating the Markov chain!

Problem 3 (5 points)

Consider the LU factorization from the quiz.

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{bmatrix} \begin{bmatrix}
1.9410 & -0.3510 & 0.7352 & 0.4583 \\
-0.1639 & -1.7494 & 0.0623 & -0.6425 \\
0.1269 & 1.8231 & -0.6234 & -2.1405 \\
-1.1361 & 0.2914 & -1.4423 & 0.2333
\end{bmatrix} = \begin{bmatrix}
1.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0654 & 1.0000 & 0.0000 & 0.0000 \\
0.5853 & 0.0465 & 1.0000 & 0.0000 \\
-0.0844 & -1.9637 & 0.5331 & 1.0000
\end{bmatrix} \begin{bmatrix}
1.9410 & -0.3510 & 0.7352 & 0.4583 \\
0.0000 & 1.8460 & -0.6715 & -2.1705 \\
0.0000 & 0.0000 & -0.9807 & 0.6026 \\
0.0000 & 0.0000 & 0.0000 & -3.0168
\end{bmatrix}$$

Report the errors in L and U.

Problem 4 (The least squares cluster! 25 points)

1. Chapter 7, problem 14a; but you may not use Julia’s “backslash” operation for this part as mentioned in the book. Instead, you must write your own least squares solver using the Julia function qr. (See page 170 in the text for the algorithm.)

2. Chapter 7, problem 14b.

3. Chapter 7, problem 14, comment on the differences you see.

5. Chapter 7, problem 16; this is the teams problem from class. Solve this least-squares problem where Purdue (T1) gets score $r_1 = 100$. And you must derive a least-squares problem where r_1 is not a variable. (Hint: it should be a 5-by-3 matrix for the least-squares problem.)
Problem 5 (Accuracy and conditioning, 10 points)

1. Chapter 6, problem 2

2. **Removed, you do not have to complete this problem.** Show than an orthogonal matrix has condition number 1. (Hint: the submultipliative property is very helpful here.)

Problem 6 (Iterative methods, 15 points)

This problem asks you to report on and explain the results of the following Julia script! Your explanations should be simple. Don’t think too much about this and write the first thing that comes to mind.

1. (1 points) Start by downloading two images.

   ```julia
   download("http://academics.davidson.edu/math/chartier/Numerical/code/dyoung.jpg","dyoung.jpg");
   download("http://academics.davidson.edu/math/chartier/Numerical/code/jacobi.jpg","jacobi.jpg");
   ```

2. (1 points) Show and explain the following output.

   ```julia
   using Images
   im1 = load("jacobi.jpg")
   im2 = load("dyoung.jpg")
   N = max(size(im1)...)  # You don't have to explain what this function is doing
   # You just have to describe the result of using it
   # From http://math.mit.edu/~stevenj/18.303/fall13/lecture-10.html
   diff1(M) = [ [1.0 zeros(1,M-1)]; diagm(ones(M-1),1) - eye(M) ]
   sdiff1(M) = sparse(diff1(M))
   # make the discrete -Laplacian in 2d, with Dirichlet boundaries
   function Laplacian(Nx, Ny)
     Dx = sdiff1(Nx)
     Dy = sdiff1(Ny)
     Ax = Dx' * Dx
     Ay = Dy' * Dy
     return kron(speye(Ny), Ax) + kron(Ay, speye(Nx))
   end
   # Normalize A to have 1 on the diagonal
   # (This simplifies many thing that would
   # otherwise cause us to divide everything
   # by 4.)
   A = Laplacian(size(im1,1),size(im2,2))
   A = A/4
   ## Show a piece of the matrix A
   % A is a sparse matrix, so what does this show?
   A[1:10,1:10]
   ```

3. (1 points) Show and explain the following output.

   ```julia
   using Plots
   ```
function myspy(A::SparseMatrixCSC;ms=5.0)
 xn,yn = size(A)
 ai,aj,av = findnz(A)
 scatter(ai,aj,zcolor=av,ms=ms,legend=false,
 yflip=true, aspect_ratio=:equal,
 m=(auto,1.0,stroke(0)),
 c=:viridis,
 grid=false,
 xlim=(0.5, xn+0.5), ylim=(0.5, yn+0.5),)
end

You only have to explain this one!
myspy(A)

And this one
myspy(A;ms=1)
plot!(xlim=(1,512),ylim=(1,512))

4. (1 points) Show and explain the following output.

 # What does multiplication by A do?
 X = convert(Array{Float64,2},data(im1))
 x0 = reshape(X,N*N)
 x = A*x0;
 grayim(reshape(4*x,N,N)) # scaling by 4 makes the picture nicer

5. (1 points) Show and explain the following output.

 ## Create b such that image2 is answer to Ax = b
 b = A*reshape(convert(Array{Float64,2},data(im2))', N*N)
 x0 = reshape(convert(Array{Float64,2},data(im1))', N*N)
 ## Show the initial vector
 grayim(reshape(x0,N,N))
 ## Show the right-hand-side vector
 grayim(reshape(4*b,N,N))

6. (5 points) Explain what the linear system \(Ax = b \) for this problem solves.
 (Hint: you may want to look at the next two problems first, which actually solve it!)

7. (1 points) Run the Richardson method on this problem.

 # Run the Richardson method
 # This is incredibly slow in Julia
 omega = 1;
 x = x0;
 niter = 20;
 @gif for i=1:niter
 r = b-A*x;
 x = x + omega*r;
 @show i
 heatmap(-reshape(x,N,N);c=:grays,yflip=true,colorbar=false)
 end

8. (4 points) Modify the above code to answer the following questions. (These are simple modifications) What does the solution look like after 20 iterations?
How many iterations does it take before you think the solution “looks right”? Hint, it may be useful to use the following code.

```matlab
function richardson(A,b,x0,omega,niter)
    x = x0
    for i=1:niter
        r = b-A*x;
        x = x + omega*r;
    end
    return x
end
omega = 1.0
# This almost works!
x = richardson(A,b,x0,omega,niter)
grayim(reshape(x,N,N))
```

And play it to get the information you need.

Problem ✴ (Not graded, but good practice for the midterm)

1. Chapter 7, problem 6

2. Let \(A \) be non-singular and let \(\lambda, v \) be an eigenvalue, eigenvector pair of \(A \). Show that \(1/\lambda, v \) are an eigenvalue, eigenvector pair of \(A^{-1} \).

3. (Show than an orthogonal matrix has condition number 1. (Hint: the submultipliative property is very helpful here.)