
purdue university · cs 31400
numerical methods

HOMEWORK
David F. Gleich
October 6, 2016

Please answer the following questions in complete sentences in submit the solution
on Blackboard September 16, 2016.

Update 1, Thursday, September 15 Corrected comment in the
sample_vertex_small and sample_vertex_large commands. Also fixed
a typo with the name of the Julia package.

Homework 2

Problem 1: Warm up problems (15 points)

Please complete the following warm up problems.

1. G&C Chapter 3 Problem 1

2. G&C Chapter 5 Problem 1

3. G&C Chapter 5 Problem 4

Problem 2: Floating point mathematics (20 points)

1. G&C Chapter 5 Problem 9c (10 points)

2. G&C Chapter 5 Problem 12 (10 points)

Problem 3: Fibonacci, Floating point, and the Quadratic
equation (15 points)

We’ll study a common floating point problem, finding the roots of a quadratic
equation. Recall that if we wish to find x such that:

ax2 + bx + c = 0

then, almost every high-school student knows:

x = −b±
√

b2 − 4ac

2a
.

Suppose that we wish to solve this equation using coefficients from the Fibonacci
series:

Fnx2 − 2Fn−1x + Fn−2 = 0,

where we use the Fibonacci series:

F1 = 1, F2 = 1, Fn+1 = Fn + Fn−1.

1. (5 points) Show that b2 − 4ac = (−1)n4. (Hint, first work out the case for
n = 3 and n = 4, and then tackle the general problem.)

1

2. (5 points) The first step is important because once it’s done we can write a
nice formula for the roots:

x1 =
Fn−1 +

√
(−1)n

Fn
, x2 =

Fn−1 −
√

(−1)n

Fn
.

Write a Julia code to evaluate these roots using this expression when n is
even (Hint: this is really easy!) What’s the largest n such that we have
distinct roots, i.e. such that x1 = x2 in floating point. Here’s a section of
my code to solve this problem. You don’t have to do it this way if you’d
like to write your own, but getting the Matlab loop write isn’t the point of
this question so I thought having some code would make it easier.

COMPLETE and play around with N
N =
fib = zeros(N)
roots1 = zeros(Complex{Float64}, N)
roots2 = zeros(Complex{Float64}, N)
fib[1] = 1; roots1[1] = 1 # avoid reporting these equal
fib[2] = 1; roots1[2] = 1 # because we don't compute them
for i=3:N

fib[i] = fib[i-2] + fib[i-1]
COMPLETE this section to fill in

end
bign = findfirst(roots1.==roots2) # finds the first zero

The idea is that once n gets sufficiently large, we lose the precision to
represent the difference in the roots when computed exactly and so although,
mathematically, there are distinct roots, numerically, there are not.

3. (5 points) Now, let’s see how well our high-school formula does! Write a
function myroots(c) with the following template:

"""
`myroots`
=========

Solve a quadratic equation given as a vector of its coefficients

Functions

* `r = myroots(c)` returns the values of x that solves

the quadratic equation \$c[1] x^2 + c[2] x + c[3] = 0\$
based on formula
\$r[1] =(-b + \sqrt{b^2 - 4ac})/2a\$
\$r[2] =(-b - \sqrt{b^2 - 4ac})/2a\$

Example

~~~~
@show myroots([1. 0. 1.])
@show myroots([-1. 0. 1.])
~~~~
"""
function myroots(c)
end

Now find the smallest value of N such that these numerically computed
roots are the same. (Again, you don’t have to use the following code, but
it’s a quick way to check!)

2

COMPLETE this line
N =
fib = zeros(N)
roots1 = zeros(Complex{Float64}, N)
roots2 = zeros(Complex{Float64}, N)
fib[1] = 1; roots1[1] = 1 # avoid reporting these equal
fib[2] = 1; roots1[2] = 1 # because we don't compute them
for i=3:N

fib[i] = fib[i-2] + fib[i-1]
r = myroots([fib[i]; -2*fib[i-1]; fib[i-2]])
roots1[i] = r[1]
roots2[i] = r[2]

end
bign = findfirst(roots1.==roots2) # finds the first zero

Your number should be different than your other one.

4. The problem with this computation is that evaluating b2 − 4 ∗ a ∗ c results
in losing all of the precision of the coefficients far earlier than necessary.
Correctly evaluating the value b2 − 4 ∗ a ∗ c is possible, but much more
complicated than I’d like you to look at. (Please see Kahan’s On the cost of
floating point computation without extra-precise arithmetic for more detail
on the nearly 200 line Matlab code to correctly evaluate this function.) Even
Julia itself gets this problem wrong in their roots function to determine the
roots of a polynomial. (Hey, you are done! There isn’t actually a question
here!)

Here’s a fun personal story. My own discovery of the importance of this problem
was when I was working as an intern at Microsoft on an image deforming task.
When I evaluated the solution of the quadratic in double precision, the image
looked correct; but when I evaluated the solution of the quadratic in single-
precision (which was faster!) the image “looked” wrong. I tracked the issue down
to a cancellation in the solution of the quadratic I could avoid by refactoring the
code. So these problems do crop up!

In case you do want to see what Julia’s polynomials package does, here is the
code for that

using Polynomials
N = 100
fib = zeros(N)
roots1 = zeros(Complex{Float64}, N)
roots2 = zeros(Complex{Float64}, N)
fib[1] = 1; roots1[1] = 1 # avoid reporting these equal
fib[2] = 1; roots1[2] = 1 # because we don't compute them
for i=3:N

fib[i] = fib[i-2] + fib[i-1]
r = roots(Poly([fib[i]; -2*fib[i-1]; fib[i-2]]))
roots1[i] = r[1]
roots2[i] = r[2]

end
bign = findfirst(roots1.==roots2) # finds the first zero

Problem 4: Fun with floating point (10 points)

Do one of the following two problems.

1. G&C Chapter 5 Problem 13 (10 points)

3

http://www.cs.berkeley.edu/~wkahan/Qdrtcs.pdf
http://www.cs.berkeley.edu/~wkahan/Qdrtcs.pdf

or

2. G&C Chapter 5 Problem 14 (10 points)

Problem 5: A big integral (10 points)

G&C Chapter 3 Problem 12

1. Part a. (3 points)

2. Parb b. (4 points) You cannot use the bad single-pass standard deviation
function we discussed in class and you must use the alternative instead.
Recall that the correct online variance computation is available in pseudo-
code from Wikipedia

def online_variance(data):
n = 0
mean = 0
M2 = 0

for x in data:
n = n + 1
delta = x - mean
mean = mean + delta/n
M2 = M2 + delta*(x - mean)

variance = M2/(n - 1)
return variance

3. Part c. (3 points)

Problem 6: Resolving the birthday paradox (15 points)

This problem is based on G&C Chapter 3, Problem 7, but it goes far beyond the
textbook.

A famous question in probability is the following: > How many people do you
need in a room before there is a 50% > chance of finding two people with the
same birthday? If we assume that there are 365 days in a year and people are
born on a day picked uniformly at random, then we’ll compute:

Prob(n people, one same birthday) = 1− Prob(n people, all distinct birthdays)

This second probability is straightforward to determine:

Prob(n people, all distinct birthdays) =
number of ways to have n distinct birthdays

number of ways to have n birthdays .
.

The bottom number is just 365n because we pick birthdays totally at random.
The top number is just 365 ·364 ·363 · · · (365−n+1), in which case the probability
is:

Prob(n people, one same birthday) = 365 · 364 · 363 · · · (365− n + 1)
365n

.

There’s more about this problem on the Wikipedia page for the Birthday problem
When n is 23, the probability is 50.7%. (Also, with 98.8% confidence I believe
there are two people in our class with the same birthday because there are 56
people registered.)

4

http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
http://en.wikipedia.org/wiki/Birthday_problem

1. (5 points) The problem with this mathematical model is that people are
not born on uniformly distributed days throughout the year. I once found
a distribution of people born at a hospital in New York City from 1978.
It’s far from uniform I’ve used this distribution to write a function to
generate birthdays with probabilities similar to how they occurred that year.
Download the function get_birthdays.m (In Julia, you can run

download("https://www.cs.purdue.edu/homes/dgleich/cs314-2016/julia/get_birthdays.jl",
"get_birthdays.jl")

to download it to the current directory.) Then run

using Plots # load the plotting package
include("get_birthdays.jl") # load the data
d = get_birthdays(10000); # generate 10000 birthdays
histogram(d,bins=12)

You should see a spike in birthdays between days 200 and 275. (This is July
through August). Show your figure.

2. (10 points) Now, as in the book problem (G&C Chapter 3, Problem 7),
empirically evaluate the probability that a group of m people will have at
least one birthday in common using the get_birthdays function. (Hint:
you can test if a set of birthdays has a duplicate through

length(unique(d)) < length(d)

As in the book, use 10,000 samples and vary m until the probability exceeds
0.5. Report the probability for each value of m you tried.

Problem 7: Inverting the birthday paradox (15 points)

It turns out that a good rule of thumb for the birthday paradox is that if we have
n items and m possible slots (or n people and m = 365 birthdays in the previous
problems), then the probability finding two items in the same slot is

p(n) ≈ n2

2m
.

If we plug in n = 22 and m = 365, then we get a probability of 72%, which is
too large, but “close”. It turns out that the birthday paradox is tremendously
useful for trying to estimate the number of unique items in a database. But, we
use it in reverse. Suppose that we take a random sample of n items and see k
duplicates. We wish to use this to estimate how many slots there are. We’ll see
how you can use this to estimate the number of nodes in a large graph without
looking at the graph itself.

The mathematics of deriving the following estimate get a bit involved, but the
estimate is simple to use. Suppose we have an undirected graph. We can generate
a random vertex in that graph by performing a random walk. It turns out that
this vertex is not generated uniformly at random (that is, there is a strong bias
in which vertex you see), but the following estimate corrects for that fact.

Suppose we have a sample of vertices X1, . . . , Xn from a random walk in a graph.
Let C be the total number of collisions in this sample where we have 1 collision if
we see a vertex twice, 3 collisions if we see a vertex three times, 6 collisions if we
see it four times, and in general k(k − 1)/2 collisions if we see a vertex k times.
We also need the degrees of each vertex that we sample, so let d1, . . . , dn be the
degrees. Then an estimate of the number of nodes of the graph is:

num nodes ≈
(
∑n

i=1 di) (
∑n

i=1 1/di)
2C

.

5

https://web.archive.org/web/20090511154503/http://www.stanford.edu/~dgleich/notebook/2009/04/birthday_distribution.html
https://www.cs.purdue.edu/homes/dgleich/cs314-2016/julia/get_birthdays.jl

1. (1 point) Suppose we saw the sequence of vertices and degrees[
vertex 1 2 3 4 5 6 7 8 2 9 10 7 2 11 12
degree 5 9 2 3 2 8 8 3 9 4 3 8 9 2 3

]
What does the previous estimator report as the size of this graph? (Hint,
the answer I got is 311.35/8.)

2. (1 point) I wrote two commands to get links from a graph that I have
attempted to anomymize. To make these work, you’ll need a Julia package
(ick!).

Run this command once in julia.

Pkg.add("Requests")

Then download

download("https://www.cs.purdue.edu/homes/dgleich/cs314-2016/julia/get_links.jl",
"get_links.jl")

include("get_links.jl")
@show get_links_big(0)
@show get_links_small(0)

(When I tested this, it worked from off-campus as well as from on-campus.)

3. (6 points) Implement the following two Julia functions

"""
`sample_vertex_small`
=====================

Return a near-random vertex from the small graph
along with it's degree.

`x,d = sample_vertex_small(k)` takes k steps of a random walk starting
from vertex 0 and returns x, the identifier of the last vertex we
visited, along with the degree of the vertex x. To get the neighbors
of the vertex, this function calls `get_links_small`

Example

~~~~
@show x,d = sample_vertex_small(1)
@show x,d = sample_vertex_small(2)
~~~~
"""
function sample_vertex_small(k)
end

"""
`sample_vertex_big`
=====================

Return a near-random vertex from the big graph
along with it's degree.

`x,d = sample_vertex_big(k)` takes k steps of a random walk starting
from vertex 0 and returns x, the identifier of the last vertex we

6

visited, along with the degree of the vertex x. To get the neighbors
of the vertex, this function calls `get_links_big`

Example

~~~~
@show x,d = sample_vertex_big(1)
@show x,d = sample_vertex_big(2)
~~~~
"""
function sample_vertex_big(k)
end

Report the results of

vbig,d = sample_vertex_big(1)
vsmall,d = sample_vertex_small(1)

Aside on Julia programming The contents of sample_vertex_small
and sample_vertex_big will be identical except you’ll call get_links_big
instead of get_links_small. It’s generally bad programming practice to
repeat code like this. One Juila construct that would help is to use a
function handle. If you write:

f = get_links_big

Then the variable f will “point to” the get_links_big function and you
can call it via f(0) to get the same output you saw in the previous problem.
You do not have to implement it this way, but it’s something I
wanted to tell you about.

4. (5 points) Implement the missing pieces of this program to estimate the
number of nodes in a graph. I placed this code into a Matlab script called
estimate_small.m but you are welcome to use any name you wish.

nsamp = 125
X = zeros(Int64,nsamp)
d = zeros(Int64,nsamp)
C = Dict{Int64,Int64}() # this is a hash-table or dictionary
ncollisions = 0
for i=1:nsamp

X[i],d[i] = sample_vertex_small(25)
@show X[i]
if haskey(C,X[i])

we have already seen X[i] before, update the collisions
COMPLETE

else
then we haven't seen vertex X(i) before, record that
we've seen it.
C[X[i]] = 0

end
end
estimate the number of nodes
COMPLETE

The small graph has around 6500 vertices, and so you should see something
fairly similar.

5. (2 points) Alter your code above to produce an estimate for the big graph of
unknown size. Use nsamp = 1500 and the call sample_vertex_big(100).
Note this can take almost a few hours to run! So I recommend testing with

7

the small graph and then just using the result from the big graph straight
away.

For fun Use the julia package “ProgressMeter” to get a nice looking progress
meter as this is running!

5. (0 points) Note, this estimate is derived in the paper by Liran Katzir, Edo
Liberty, and Oren Somekh called Estimating Sizes of Social Networks via
Biased Sampling (See section 3.) They used this idea to produce an estimate
of how many nodes are on the facebook network. If you wish to play around,
see how changing the values of nsamp and the random walk length affect
your results.

8

http://www.cs.yale.edu/homes/el327/papers/Estimating_the_size_of_OSN-WWW2011.pdf
http://www.cs.yale.edu/homes/el327/papers/Estimating_the_size_of_OSN-WWW2011.pdf

	Homework 2
	Problem 1: Warm up problems (15 points)
	Problem 2: Floating point mathematics (20 points)
	Problem 3: Fibonacci, Floating point, and the Quadratic equation (15 points)
	Problem 4: Fun with floating point (10 points)
	Problem 5: A big integral (10 points)
	Problem 6: Resolving the birthday paradox (15 points)
	Problem 7: Inverting the birthday paradox (15 points)

