
LSRN: A Parallel Iterative Solver for Strongly
Over- or Under-Determined Systems

Xiangrui Meng
Joint with Michael A. Saunders and Michael W. Mahoney

Stanford University

June 19, 2012

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 1 / 27

Strongly over- or under-determined least squares

We are interested in computing the unique min-length solution,
denoted by x∗, to

minimize
x∈Rn

‖Ax − b‖2,

where A ∈ Rm×n with m� n or m� n and b ∈ Rm. A could be rank
deficient. When the system is under-determined, we may want to solve
it with Tikhonov regularization:

minimize
x∈Rn

1
2
‖Ax − b‖22 +

λ

2
‖x‖22,

where λ > 0 is a regularization parameter.

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 2 / 27

Strongly rectangular data

m n
SNP number of SNPs (106) number of subjects (103)

TinyImages number of pixels in each image (103) number of images (108)
PDE number of degrees of freedom number of time steps

sensor network size of sensing data number of sensors
NLP number of words and n-grams number of principle components

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 3 / 27

Traditional algorithms: singular value decomposition

It is well known that x∗ = V Σ−1UT b, where UΣV T is A’s
economy-sized SVD. The time complexity is O(mn2 + n3).

Pros:
I High precision and robust to rank deficiency.
I Implemented in LAPACK.

Cons:
I Hard to take advantage of sparsity.
I Hard to implement in a parallel environment.
I Incapable of implicit inputs.

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 4 / 27

Traditional algorithms: iterative methods

Iterative methods are widely used to solve large-scale sparse linear
systems. Practical methods include, for example, CGLS and LSQR.

Pros:
I Low cost per iteration.
I Taking A as a linear operator.
I Easy to implement in a parallel environment.
I Capable of computing approximate solutions.

Cons:
I Hard to predict the number of iterations needed.

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 5 / 27

Traditional algorithms: iterative methods

The convergence rate of an iterative method is affected by the
condition number of A, denoted by κ(A) = σmax(A)/σ+min(A). For a
family of iterative methods, we have

‖x (k) − x∗‖AT A

‖x (0) − x∗‖AT A
≤ 2

(
κ(A)− 1
κ(A) + 1

)k

.

However, estimating κ(A) is generally as hard as solving the least
squares problem itself. For ill-conditioned problems (e.g., κ(A) ≈ 106),
the convergence speed would be very low.

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 6 / 27

Before LSRN: random sampling (Drineas, Mahoney, and Muthukrishnan 2006)

Random sample some rows of A based on its leverage scores:

ui = ‖Ui∗‖22, i = 1, . . . ,m,

where U is an orthonormal basis matrix of range(A).
If the sample size s > O(n2 log(1/δ)/ε4), with probability at least
1− δ, the subsampled solution x̂ gives an (1 + ε)-approximation:

‖Ax̂ − b‖2 ≤ (1 + ε)‖Ax∗ − b‖2.

How to compute or estimate the leverage scores?

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 7 / 27

Before LSRN: row mixing (Drineas, Mahoney, Muthukrishnan, and Sarlós 2007)

Mix rows of A via randomized Hadamard transform to make
leverage scores distributed uniformly:

Ã = HDA,

where D is a diagonal matrix with diagonal elements chosen
randomly from +1 and −1, and H is the Hadamard matrix.
Sample s = O(d log(nd)/ε) rows of Ã uniformly and solve the
subsampled problem:

x̂ = (SHDA)†(SHD)b,

where S is the sample matrix.
With probability, say, at least 0.8, x̂ gives an (1 + ε)-approximation.
Running time: O(mn log m + n3 log(mn)/ε).

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 8 / 27

Before LSRN: iteratively solving (Rokhlin and Tygert 2008)

Combine random Givens rotations and the randomized Fourier
transform for row mixing.
In stead of solving the subsampled problem, use the QR
factorization of the subsampled matrix to create preconditioners.
Solve the preconditioned system minx ‖AR−1y − b‖2 iteratively.
In theory, choosing s ≥ 4n2 guarantees that the condition number
is at most 3 with high probability. In practice, choosing s = 4n
produced a condition number less than 3 in all their test problems.
Running time: O(mn log n + mn log(1/ε) + n3).

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 9 / 27

Before LSRN: Blendenpik (Avron , Maymounkov , and Toledo 2010)

High-performance black-box solver.
Extensive experiments on selecting randomized projections.
Outperforms LAPACK on strongly over-determined problems.

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 10 / 27

Before LSRN: what are missing?

Rank deficiency.
Sparse A or implicit A.
Under-determined problems (with Tikhonov regularization).
Parallel implementation.

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 11 / 27

Algorithm LSRN (for strongly over-determined systems)

1: Choose an oversampling factor γ > 1, e.g., γ = 2. Set s = dγne.
2: Generate G = randn(s,m), a Gaussian matrix.
3: Compute Ã = GA.
4: Compute Ã’s economy-sized SVD: ŨΣ̃Ṽ T .
5: Let N = Ṽ Σ̃−1.
6: Iteratively compute the min-length solution ŷ to

minimizey∈Rr ‖ANy − b‖2.

7: Return x̂ = Nŷ .

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 12 / 27

Algorithm LSRN (for strongly under-determined systems)

1: Choose an oversampling factor γ > 1, e.g., γ = 2. Set s = dγme.
2: Generate G = randn(n, s), a Gaussian matrix.
3: Compute Ã = AG.
4: Compute Ã’s economy-sized SVD: ŨΣ̃Ṽ T .
5: Let M = ŨΣ̃−1.
6: Iteratively compute the min-length solution x̂ to

minimizex∈Rn ‖MT Ax −MT b‖2.

7: Return x̂ .

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 13 / 27

Why we choose Gaussian random projection

Gaussian random projection
has the best theoretical result on conditioning,
can be generated super fast,
uses level 3 BLAS on dense matrices,
speeds up automatically on sparse matrices and fast operators,
still works (with an extra “allreduce” operation) when A is
partitioned along its bigger dimension.

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 14 / 27

Preconditioning for linear least squares

Given a matrix N ∈ Rn×p, consider the following least squares problem:

minimize
y∈Rp

‖ANy − b‖2.

Denote its min-length solution by y∗. We proved that x∗ = Ny∗ if
range(N) = range(AT). Similarly, we proved that x∗ is the min-length
solution to

minimize
x∈Rn

‖MT Ax −MT b‖2,

if range(M) = range(A).

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 15 / 27

Theoretical properties of LSRN

In exact arithmetic, x̂ = x∗ almost surely.
The distribution of the spectrum of AN is the same as that of the
pseudoinverse of a Gaussian matrix of size s × r .
κ(AN) is independent of all the entries of A and hence κ(A).
For any α ∈ (0,1−

√
r/s), we have

P

(
κ(AN) ≤

1 + α +
√

r/s
1− α−

√
r/s

)
≥ 1− 2e−α

2s/2,

where r is the rank of A.

It means that, if we choose s = 2n ≥ 2r for a large-scale problem, we
have κ(AN) < 6 with high probability and hence we only need around
100 iterations to reach machine precision.

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 16 / 27

Tikhonov regularization

If we want to solve an under-determined system with Tikhonov
regularization:

minimize
1
2
‖Ax − b‖22 +

λ

2
‖x‖22.

we can first re-write it as

minimize
1
2

∥∥∥∥(z
r

)∥∥∥∥2

2
s.t. (A/

√
λ, I)

(
z
r

)
= b,

which is asking for the min-length solution of an under-determined
system. We have x∗ = z∗/

√
λ, where (z∗, r∗) solves the above

problem.

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 17 / 27

Implementation

Shared memory (C++ with MATLAB interface)
I Multi-threaded ziggurat random number generator (Marsaglia and

Tsang 2000), generating 109 numbers in less than 2 seconds using
12 CPU cores.

I A naı̈ve implementation of multi-threaded dense-sparse matrix
multiplications.

Message passing (Python)
I Single-threaded BLAS for matrix-matrix and matrix-vector products.
I Multi-threaded BLAS/LAPACK for SVD.
I Using the Chebyshev semi-iterative method (Golub and Varga 1961)

instead of LSQR.

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 18 / 27

A comparison of least squares solvers

solver min-len solution to taking advantage of
under-det? rank-def? sparse A operator A

LAPACK’s DGELSD yes yes no no
Matlab’s backslash no no yes no

Blendenpik yes no no no
LSRN yes yes yes yes

Table: Matlab’s backslash uses different algorithms for different problem
types. For sparse rectangular systems, it uses SuiteSparseQR, which tries to
compute a sparse QR decomposition of A by analyzing A’s pattern.

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 19 / 27

κ(AN) and number of iterations

Figure: Left: κ+(A) vs. κ(AN) for different choices of r and s. A ∈ R104×103
is

randomly generated with rank r . For each (r , s) pair, we take the largest value
of κ(AN) in 10 independent runs for each κ+(A) and connect them using a
solid line. The estimate (1 +

√
r/s)/(1−

√
r/s) is drawn in a dotted line for

each (r , s) pair, if not overlapped with the corresponding solid line. Right:
number of LSQR iterations vs. r/s. The number of LSQR iterations is merely
a function of r/s, independent of the condition number of the original system.

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 20 / 27

Tuning the oversampling factor

Figure: The overall running time of LSRN and the running time of each LSRN
stage with different oversampling factor γ for a randomly generated problem
of size 105 × 103. For this particular problem, the optimal γ that minimizes the
overall running time lies in [1.8,2.2].

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 21 / 27

Solving dense least squares

Figure: Running times on m× 1000 dense over-determined problems with full
rank (left) and on 1000× n dense under-determined problems with full rank
(right). Note that DGELS and DGELSD almost overlap. When m > 3e4, we
have Blendenpik > LSRN > DGELS/DGELSD > DGELSY > A\b in terms of
speed. On under-determined problems, LAPACK’s performance decreases
significantly compared with the over-determined cases. Blendenpik’s
performance decreases as well. LSRN doesn’t change much.

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 22 / 27

Solving sparse least squares

Figure: Running times on m × 1000 sparse over-determined problems with
full rank (left) and on 1000× n sparse under-determined problems with full
rank (right). DGELS and DGELSD overlap with each other. LAPACK’s solvers
and Blendenpik perform almost the same as in the dense case. MATLAB’s
backslash speeds up on sparse problems, and performs a little better than
Blendenpik, but it is still slower than LSRN. LSRN leads by a huge margin on
sparse problems.

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 23 / 27

Solving real-world problems

matrix m n nnz rank cond DGELSD A\b Blendenpik LSRN
landmark 71952 2704 1.15e6 2671 1.0e8 29.54 0.6498∗ - 17.55
rail4284 4284 1.1e6 1.1e7 full 400.0 > 3600 1.203∗ OOM 136.0
tnimg 1 951 1e6 2.1e7 925 - 630.6 1067∗ - 36.02
tnimg 2 1000 2e6 4.2e7 981 - 1291 > 3600∗ - 72.05
tnimg 3 1018 3e6 6.3e7 1016 - 2084 > 3600∗ - 111.1
tnimg 4 1019 4e6 8.4e7 1018 - 2945 > 3600∗ - 147.1
tnimg 5 1023 5e6 1.1e8 full - > 3600 > 3600∗ OOM 188.5

Table: Real-world problems and corresponding running times. DGELSD
doesn’t take advantage of sparsity. Though MATLAB’s backslash may not
give the min-length solutions to rank-deficient or under-determined problems,
we still report its running times. Blendenpik either doesn’t apply to
rank-deficient problems or runs out of memory (OOM). LSRN’s running time
is mainly determined by the problem size and the sparsity.

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 24 / 27

Scalability and choice of iterative solvers on clusters

solver Nnodes Nprocesses m n nnz Niter Titer Ttotal
LSRN w/ CS 2 4 1024 4e6 8.4e7 106 34.03 170.4

LSRN w/ LSQR 84 41.14 178.6
LSRN w/ CS 5 10 1024 1e7 2.1e8 106 50.37 193.3

LSRN w/ LSQR 84 68.72 211.6
LSRN w/ CS 10 20 1024 2e7 4.2e8 106 73.73 220.9

LSRN w/ LSQR 84 102.3 249.0
LSRN w/ CS 20 40 1024 4e7 8.4e8 106 102.5 255.6

LSRN w/ LSQR 84 137.2 290.2

Table: Test problems on an Amazon EC2 cluster and corresponding running
times in seconds. When we enlarge the problem scale by a factor of 10 and
increase the number of cores accordingly, the running time only increases by
a factor of 50%. It shows LSRN’s good scalability. Though the CS method
takes more iterations, it actually runs faster than LSQR by making only two
cluster-wide synchronizations per iteration.

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 25 / 27

LSQR vs. the Chebyshev semi-iterative method

LSQR code snippet:

u = A. matvec (v) − alpha∗u
beta = s q r t (comm. a l l r educe (np . dot (u , u)))
. . .
v = comm. a l l r educe (A . rmatvec (u)) − beta∗v

Chebyshev code snippet:

v = comm. a l l r educe (A . rmatvec (r)) − beta∗v
x += alpha∗v
r −= alpha∗A. matvec (v)

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 26 / 27

Pros and cons of LSRN

Pros:
I A high-precision iterative solver with predictable running time.
I Accelerating automatically on sparse matrices and fast operators.
I Capable of solving rank deficient problems and even taking

advantage of rank deficiency.
I Embarrassingly parallel (multi-threading or MPI) and scalable.
I Possible to use the Chebyshev semi-iterative method.
I Capable of handling Tikhonov regularization.

Cons:
I Large overhead on small-scale problems.
I Randomized normal projection is slow on dense problems.
I The smaller dimension cannot be too large.

Meng, Saunders, Mahoney (Stanford) LSRN: A Parallel Iterative Solver June 19, 2012 27 / 27

