Nonlinear Eigenproblems in Data Analysis and Graph Partitioning

Matthias Hein

Department of Mathematics and Computer Science Saarland University, Saarbrücken, Germany

Minisymposium: Modern matrix methods for large scale data and networks SIAM Conference on Applied Linear Algebra, Valencia 19.06.2012

Linear Eigenproblems in Machine Learning

Motivation: Eigenvalue problems are abundant in data analysis

• Principal Component Analysis:

Largest eigenvectors of covariance matrix of the data **Usage:** Denoising by projection onto largest eigenvectors.

• Spectral Clustering:

Second smallest eigenvector of the graph Laplacian **Usage:** Graph partitioning using thresholded eigenvector.

• Latent Semantic Analysis:

Singular value decomposition of term-document matrix **Usage:** Recover underlying latent semantic structure.

• Many more ... !

The Symmetric Linear Eigenproblem

Generalized Symmetric Linear Eigenproblem:

Let $A, B \in \mathbb{R}^{n imes n}$ be symmetric and B positive definite. Then

$$Ax = rac{\langle x, Ax \rangle}{\langle x, Bx
angle} Bx \iff x ext{ critical point of } rac{\langle x, Ax
angle}{\langle x, Bx
angle}.$$

Variational Principle:

Courant-Fischer min-max theorem yields *n* eigenvalues:

$$\lambda_m = \min_{U_m \in \mathcal{U}_m} \max_{x \in U_m} \frac{\langle x, Ax \rangle}{\langle x, Bx \rangle}, \quad m = 1, \dots, n,$$

where \mathcal{U}_m is the class of all *m*-dimensional subspaces of \mathbb{R}^n .

Critical point theory for ratios of quadratic functions

Robust PCA

	РСА
Type of eigenproblem	Linear
Ratio	$\frac{\sum_{i=1}^{n} \left\langle w, X_i - \frac{1}{n} \sum_{j=1}^{n} X_j \right\rangle^2}{\ w\ _2^2}$

Robust PCA

Source of outliers

- noisy data
- adversarial manipulation

	РСА
Type of eigenproblem	Linear
Ratio	$\frac{\sum_{i=1}^{n} \left\langle w, X_i - \frac{1}{n} \sum_{j=1}^{n} X_j \right\rangle^2}{\ w\ _2^2}$
Robustness	no

Robust PCA

	РСА		
Type of eigenproblem	Linear		Nonlinear
Ratio	$\frac{\sum_{i=1}^{n} \left\langle w, X_i - \frac{1}{n} \sum_{j=1}^{n} X_j \right\rangle^2}{\ w\ _2^2}$	\Rightarrow	$\frac{V\left(\langle w, X_1 \rangle,, \langle w, X_n \rangle\right)}{\ w\ _2}$
Robustness	no		yes

Hein (Saarland University) Nonlinear Eigenproblems in Data Analysis

Pros:

• Fast solvers available

Cons:

- Restriction to ratio of quadratic functionals \Longrightarrow limited modeling abilities
- Quadratic functionals are non-robust against outliers (PCA).
- Quadratic functionals cannot induce eigenvectors which are sparse.

Idea:

Replace quadratic functionals by convex *p*-homogeneous functions !

The Nonlinear Eigenproblem

(Homogeneous) Nonlinear Eigenproblem: Let $R, S : \mathbb{R}^n \to \mathbb{R}$ be convex, even and *p*-homogeneous $(R(\gamma x) = |\gamma|^p R(x))$ and $S(x) = 0 \Leftrightarrow x = 0$. Then

$$0 \in \partial R(x) - rac{R(x)}{S(x)} \partial S(x) \quad \Longleftrightarrow \quad x ext{ critical point of } \quad rac{R(x)}{S(x)}$$

Variational Principle:

Lusternik-Schnirelmann min-max theorem yields *n* nonlinear eigenvalues:

$$\lambda_m = \min_{K \in \mathcal{K}_m} \max_{x \in K} \frac{R(x)}{S(x)}, \quad m = 1, \dots, n,$$

where \mathcal{K}_m is the class of all compact symmetric subsets of $\{x \in \mathbb{R}^n | S(x) > 0\}$ with Krasnoselskii genus greater or equal to m.

New: general more than *n* eigenvectors exist.

Pros:

- Stronger modeling power using non-quadratic functions R and S
- Specific properties of eigenvectors like **robustness** against outliers or **sparsity** can be induced by nonsmooth choices of *S* respectively *R*.

Challenges:

- Optimization problems for eigenproblems are typically **nonconvex** and **nonsmooth**.
- Need for new efficient algorithms !

(Inverse) Power Method for Nonlinear Eigenproblems

Inverse Power Method for Linear Eigenproblems

$$Af_{k+1} = B f_k \quad \Longleftrightarrow \quad f_{k+1} = \operatorname*{arg\,min}_{u \in \mathbb{R}^n} \left\{ \frac{1}{2} \langle u, Au \rangle - \left\langle u, Bf^k \right\rangle \right\}$$

Sequence f_k converges to smallest eigenvector of generalized eigenproblem.

Inverse Power Method for Nonlinear Eigenproblems (H.,B.(2010))

$$\begin{array}{|c|c|c|c|} \hline p > 1 & p = 1 \\ \hline g_{k+1} = \mathop{\arg\min}_{u \in \mathbb{R}^n} \left\{ R(u) - \langle u, s(f_k) \rangle \right\} & f_{k+1} = \mathop{\arg\min}_{\|u\|_2 \le 1} \left\{ R(u) - \lambda_k \left\langle u, s(f_k) \right\rangle \right\} \\ \hline f_{k+1} = g_{k+1} / S(g_{k+1})^{1/p} & \\ s(f_{k+1}) \in \partial S(f_{k+1}) & \\ \lambda_{k+1} = \frac{R(f_{k+1})}{S(f_{k+1})} & \lambda_{k+1} = \frac{R(f_{k+1})}{S(f_{k+1})} \end{array}$$

Properties of Nonlinear Inverse Power Method

Theorem (Hein, Bühler (2010)): It holds either

 $\lambda_{k+1} < \lambda_k$

or $\lambda_{k+1} = \lambda_k$ and the sequence terminates. Moreover, for every cluster point f^* of the sequence f_k one has

$$0\in \partial R(f^*)-\lambda^*\,\partial S(f^*), \ \ ext{where} \ \ \lambda^*=rac{R(f^*)}{S(f^*)}.$$

Guarantees:

- monotonic descent method
- convergence guaranteed to some nonlinear eigenvector **but** not necessarily the one associated with the smallest eigenvalue.

	Linear EP	Nonlinear EP
Modeling power	low	high
Relaxation of	loose	tight
combinatorial problems		

The Cheeger Cut Problem

Cheeger cut: (C, \overline{C}) is a partition of the weighted, undirected graph

$$\phi(C) = rac{\operatorname{cut}(C,\overline{C})}{\min\{|C|,|\overline{C}|\}}, \quad ext{where} \quad \operatorname{cut}(A,B) = \sum_{i \in A, j \in B} w_{ij}$$

Optimal Cheeger cut, $\phi^* = \min_{\mathcal{C}} \phi(\mathcal{C})$, is NP-hard

Balanced Graph Cuts - Applications

Parallel Computing (Matrix Reordering)

Hein (Saarland University)

Nonlinear Eigenproblems in Data Analysis

Relaxation into semi-definite program with $|V|^3$ **constraints:** Best known (worst case) approximation guarantee: $O(\sqrt{\log |V|})$.

Spectral Relaxation based on graph Laplacian L

L=D-W,

Isoperimetric inequality (Alon, Milman (1984))

$$\frac{(\phi^*)^2}{2\max_i d_i} \leq \lambda_2(L) \leq 2\phi^*.$$

- there are graphs known which realize lower bound
- bipartitioning obtained by optimal thresholding of second eigenvector

1-graph Laplacian:

The nonlinear graph 1-Laplacian Δ_1 induces the functional $F_1(f)$,

$$F_1(f) := \frac{\langle f, \Delta_1 f \rangle}{\|f\|_1} = \frac{\frac{1}{2} \sum_{i,j=1}^n w_{ij} |f_i - f_j|}{\|f\|_1}.$$

Theorem (Hein, Bühler (2010)): Let G be connected, then

$$\min_{C} \frac{\operatorname{cut}(C,\overline{C})}{\min\{|C|,|\overline{C}|\}} = \min_{\substack{f \text{ nonconstant} \\ \operatorname{median}(f)=0}} F_1(f) = \lambda_2(\Delta_1),$$

where $\lambda_2(\Delta_1)$ is the second smallest eigenvalue of Δ_1 . The second eigenvector of Δ_1 is the indicator vector of the optimal partition.

Tight relaxation of the optimal Cheeger cut !

Quality Guarantee

Tight relaxation of Cheeger cut:

Minimization of continuous relaxation is as hard as original Cheeger cut problem \implies **non-convex** and **non-smooth**

No guarantee that one obtains optimal solution by NIPM !

Quality Guarantee

Tight relaxation of Cheeger cut:

Minimization of continuous relaxation is as hard as original Cheeger cut problem \implies **non-convex** and **non-smooth**

No guarantee that one obtains optimal solution by NIPM !

but

Quality guarantee:

Theorem

Let (A, \overline{A}) be a given partition of V. If one uses as initialization of NIPM, $f^0 = \mathbf{1}_A$, then either NIPM terminates after one step or it yields an f^1 which after optimal thresholding gives a partition (B, \overline{B}) which satisifies

$$\frac{\operatorname{cut}(B,\overline{B})}{\min\{|B|,|\overline{B}|\}} < \frac{\operatorname{cut}(A,\overline{A})}{\min\{|A|,|\overline{A}|\}}$$

Next Goal: Global approximation guarantees.

Cheeger Cut: 1-Laplacian (NLEP) vs. 2-Laplacian (LEP)

Partitioning obtained by optimal thresholding of the second eigenvector of the graph Laplacian

	Linear	Nonlinear
Ratio	$\frac{\sum_{i,j=1}^{n} w_{ij}(x_i - x_j)^2}{\ x\ _2^2}$	$\frac{\sum_{i,j=1}^{n} w_{ij} x_i - x_j }{\ x\ _1}$
Approximation Guarantee	loose	tight ! Hein, Bühler(2010)
Convergence	globally optimal	locally optimal
Scalability	\checkmark	\checkmark
Quality	+	+++

1-Spectral Clustering beats state of the art methods on graph partitioning benchmark

Hein (Saarland University)

Balanced Graph Cuts and Nonlinear Eigenproblems

Balanced graph cut problem:

$$\min_{A\subset V} \frac{\operatorname{cut}(A,\overline{A})}{\widehat{S}(A)}.$$

Balancing set function \hat{S} :

Name	$\hat{S}(A)$
Cheeger cut	$\min\{ A , \overline{A} \}$
Ratio cut	$ A \overline{A} $
Hard balanced cut	$\begin{vmatrix} 1, & \text{if } \min\{ A , \overline{A} \} \ge K \\ 0, & \text{else.} \end{vmatrix}$

Modeling of different bias towards balanced partitions via choice of \hat{S} .

Do there exist tight relaxations for all balancing set functions ?

Definition

Let $f \in \mathbb{R}^V$ be ordered in increasing order $f_1 \leq f_2 \leq \ldots \leq f_n$ and define $C_i = \{j \in V \mid f_j > f_i\}$. Then $S : \mathbb{R}^V \to \mathbb{R}$ given by

$$S(f) = \sum_{i=1}^{n} f_i \Big(\hat{S}(C_{i-1}) - \hat{S}(C_i) \Big) = \sum_{i=1}^{n-1} \hat{S}(C_i) (f_{i+1} - f_i) + f_1 \hat{S}(V)$$

is the Lovasz extension of $\hat{S} : 2^V \to \mathbb{R}$. One has $S(\mathbf{1}_A) = \hat{S}(A), \forall A \subset V$.

Definition

A set function $\hat{F} : 2^V \to \mathbb{R}$ is submodular if for all $A, B \subset V$,

$$\hat{F}(A \cup B) + \hat{F}(A \cap B) \leq \hat{F}(A) + \hat{F}(B).$$

Proposition

Every set function can be written as difference of two submodular functions.

Hein (Saarland University)

Balanced Graph Cuts as Nonlinear Eigenproblems

Theorem (Hein, Setzer (2011)) It holds

$$\min_{f\in\mathbb{R}^V}\frac{\frac{1}{2}\sum_{i,j=1}^n w_{ij}|f_i-f_j|}{S(f)}=\min_{A\subset V}\frac{\operatorname{cut}(A,\overline{A})}{\widehat{S}(A)},$$

if either one of the following two conditions holds

- S is positively one-homogeneous, even, convex and S(f + α1) = S(f) for all f ∈ ℝ^V, α ∈ ℝ and Ŝ is defined as Ŝ(A) = S(1_A), ∀A ⊂ V.
- **2** *S* is the Lovasz extension of the non-negative, symmetric set function \hat{S} with $\hat{S}(\emptyset) = 0$.
- Let $f \in \mathbb{R}^V$ and $C_t := \{i \in V \mid f_i > t\}$, then it holds in both cases,

$$\min_{t\in\mathbb{R}}\frac{\operatorname{cut}(C_t,\overline{C_t})}{\hat{S}(C_t)}\leq \frac{\frac{1}{2}\sum_{i,j=1}^n w_{ij}|f_i-f_j|}{S(f)}.$$

Ratio DCA (Hein, Setzer 2011)

Minimization of a non-negative ratio of 1-homogeneous d.c. functions

$$\min_{f\in\mathbb{R}^n} \frac{R_1(f) - R_2(f)}{S_1(f) - S_2(f)}.$$

• Note that for a 1-homogeneous convex function

$$S(f) \geq \langle u, f \rangle, \forall f \in \mathbb{R}^n, g \in \mathbb{R}^n, u \in \partial S(g)$$

• Minimize at each step the convex-concave ratio

$$\frac{R_1(f)-\langle r_2,f\rangle}{\langle f,s_1\rangle-S_2(f)}, \quad \text{ where } r_2\in \partial R_2(f^k), \, s_1\in \partial S_1(f^k)$$

via Dinkelbach's method. This yields the convex opt. problem:

$$\min_{f \in D} R_1(f) - \langle r_2, f \rangle + \lambda^k \left(S_2(f) - \langle s_1, f \rangle \right)$$

Monotonic descent and convergence to critical point as for NIPM

Combinatorial Fractional Problems

Latest result:

$$\begin{array}{ll} \min_{\mathcal{C}\subset \mathcal{V}} & \frac{\hat{R}(\mathcal{C})}{\hat{S}(\mathcal{C})}\\ \text{subj. to:} & \widehat{\mathcal{M}}_i(\mathcal{C}) \geq k_i, \quad i = 1, \dots, K \end{array}$$

has a tight relaxation into a nonlinear eigenproblem if

• \hat{R}, \hat{S} are non-negative set functions

•
$$\hat{R}(\emptyset) = \hat{S}(\emptyset) = 0$$

• The constraint functions \hat{M}_i underlie no restrictions

Integration of prior knowledge in clustering/community detection problems via constraints !

Constrained Normalized Cut

Clustering with prior knowledge (Rangapuram, Hein (2012))

must-link and cannot-link constraints

• a partition is called consistent if all constraints are satisfied **Constrained ratio cut problem:**

$$\min_{\substack{(\mathcal{C},\overline{\mathcal{C}}) \text{ consistent}}} \frac{\operatorname{cut}(\mathcal{C},\overline{\mathcal{C}})}{\operatorname{vol}(\mathcal{C})\operatorname{vol}(\overline{\mathcal{C}})}$$

previous methods can not guarantee that constraints are satisfied

Hein (Saarland University)

Constrained Normalized Cut - II

Must-link and cannot-link constraints

Result of unconstrained 1-Spectral Clustering (left) and constrained normalized cut (right)

Constrained Normalized Cut - Results II

Our NLEP formulation: COSC

Binary-partitioning problem (Spam dataset |V| = 4207):

Multi-partitioning problem (extended MNIST dataset, |V| = 630000):

Conclusion and Outlook

Benefits of Nonlinear Eigenproblems

- better integration of modeling goals using additional degrees of freedom
- generalized inverse power method makes computation of nonlinear eigenvectors feasible
- Tight relaxation of combinatorial problems as nonlinear eigenproblems

Open Problems in Nonlinear Eigenproblems:

- What is a suitable min-max principle for nonlinear eigenvectors ?
- Computation of higher-order eigenvectors
- Theory of modeling properties of eigenvectors via choice of R and S
- Approximation guarantees for tight relaxations of combinatorial problems

• . . .

Job Advertisement

European Research Council

Established by the European Commission

Supporting top researchers from anywhere in the world

Ph.D. and Postdoc positions

• ERC Starting Grant starting in Autumn

Nonlinear Eigenproblems for Data Analysis

- Desired background in one or more of the following areas
 - convex (and non-convex) optimization
 - 2 machine learning/statistics
 - functional analysis, variational problems