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Linear Eigenproblems in Machine Learning

Motivation: Eigenvalue problems are abundant in data analysis

Principal Component Analysis:
Largest eigenvectors of covariance matrix of the data
Usage: Denoising by projection onto largest eigenvectors.

Spectral Clustering:
Second smallest eigenvector of the graph Laplacian
Usage: Graph partitioning using thresholded eigenvector.

Latent Semantic Analysis:
Singular value decomposition of term-document matrix
Usage: Recover underlying latent semantic structure.

Many more ... !
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The Symmetric Linear Eigenproblem

Generalized Symmetric Linear Eigenproblem:
Let A,B ∈ Rn×n be symmetric and B positive definite. Then

Ax =
〈x ,Ax〉
〈x ,Bx〉

Bx ⇐⇒ x critical point of
〈x ,Ax〉
〈x ,Bx〉

.

Variational Principle:
Courant-Fischer min-max theorem yields n eigenvalues:

λm = minUm∈Um maxx∈Um

〈x ,Ax〉
〈x ,Bx〉

, m = 1, . . . , n,

where Um is the class of all m-dimensional subspaces of Rn.

Critical point theory for ratios of quadratic functions
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Robust PCA
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The Symmetric Linear Eigenproblem

Pros:

Fast solvers available

Cons:

Restriction to ratio of quadratic functionals =⇒ limited modeling
abilities

Quadratic functionals are non-robust against outliers (PCA).

Quadratic functionals cannot induce eigenvectors which are sparse.

Idea:
Replace quadratic functionals by convex p-homogeneous functions !
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The Nonlinear Eigenproblem

(Homogeneous) Nonlinear Eigenproblem:
Let R,S : Rn → R be convex, even and p-homogeneous
(R(γx) = |γ|pR(x)) and S(x) = 0⇔ x = 0. Then

0 ∈ ∂R(x)− R(x)

S(x)
∂S(x) ⇐= x critical point of

R(x)

S(x)
.

Variational Principle:
Lusternik-Schnirelmann min-max theorem yields n nonlinear eigenvalues:

λm = minK∈Km maxx∈K
R(x)

S(x)
, m = 1, . . . , n,

where Km is the class of all compact symmetric subsets of
{x ∈ Rn |S(x) > 0} with Krasnoselskii genus greater or equal to m.

New: general more than n eigenvectors exist.
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The Nonlinear Eigenproblem II

Pros:

Stronger modeling power using non-quadratic functions R and S

Specific properties of eigenvectors like robustness against outliers or
sparsity can be induced by nonsmooth choices of S respectively R.

Challenges:

Optimization problems for eigenproblems are typically nonconvex and
nonsmooth.

Need for new efficient algorithms !
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(Inverse) Power Method for Nonlinear Eigenproblems
Inverse Power Method for Linear Eigenproblems

Afk+1 = B fk ⇐⇒ fk+1 = argmin
u∈Rn

{1

2
〈u,Au〉 −

〈
u,Bf k

〉}
Sequence fk converges to smallest eigenvector of generalized eigenproblem.

Inverse Power Method for Nonlinear Eigenproblems (H.,B.(2010))

p > 1 p = 1
gk+1= argmin

u∈Rn

{R(u)− 〈u, s(fk)〉} fk+1= argmin
‖u‖2≤1

{R(u)− λk 〈u, s(fk)〉}

fk+1= gk+1/S(gk+1)1/p

s(fk+1)∈ ∂S(fk+1) s(fk+1)∈ ∂S(fk+1)

λk+1= R(fk+1)
S(fk+1)

λk+1= R(fk+1)
S(fk+1)

Hein (Saarland University) Nonlinear Eigenproblems in Data Analysis 8 / 27



Properties of Nonlinear Inverse Power Method

Theorem (Hein, Bühler (2010)): It holds either

λk+1 < λk

or λk+1 = λk and the sequence terminates. Moreover, for every cluster
point f ∗ of the sequence fk one has

0 ∈ ∂R(f ∗)− λ∗ ∂S(f ∗), where λ∗ =
R(f ∗)

S(f ∗)
.

Guarantees:

monotonic descent method

convergence guaranteed to some nonlinear eigenvector but not
necessarily the one associated with the smallest eigenvalue.
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Benefits of Nonlinear Eigenproblems

Linear EP Nonlinear EP

Modeling power low high

Relaxation of loose tight

combinatorial problems
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The Cheeger Cut Problem

Cheeger cut: (C ,C ) is a partition of the weighted, undirected graph

φ(C ) =
cut(C ,C )

min{|C | ,
∣∣C ∣∣} , where cut(A,B) =

∑
i∈A,j∈B

wij

Optimal Cheeger cut, φ∗ = min
C
φ(C ) , is NP-hard

Hein (Saarland University) Nonlinear Eigenproblems in Data Analysis 11 / 27



Balanced Graph Cuts - Applications

Clustering/Community detection Image Segmentation

	

Parallel Computing (Matrix Reordering)
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Relaxation of Cheeger Cut Problem

Relaxation into semi-definite program with |V |3 constraints:
Best known (worst case) approximation guarantee: O(

√
log |V |).

Spectral Relaxation based on graph Laplacian L

L = D −W ,

Isoperimetric inequality (Alon, Milman (1984))

(φ∗)2

2maxi di
≤ λ2(L) ≤ 2φ∗.

there are graphs known which realize lower bound

bipartitioning obtained by optimal thresholding of second eigenvector
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1-Spectral Clustering

1-graph Laplacian:
The nonlinear graph 1-Laplacian ∆1 induces the functional F1(f ),

F1(f ) :=
〈f ,∆1f 〉
‖f ‖1

=
1
2

∑n
i ,j=1 wij |fi − fj |
‖f ‖1

.

Theorem (Hein,Bühler (2010)): Let G be connected, then

min
C

cut(C ,C )

min{|C | ,
∣∣C ∣∣} = min

f nonconstant

median(f)=0

F1(f ) = λ2(∆1),

where λ2(∆1) is the second smallest eigenvalue of ∆1. The second
eigenvector of ∆1 is the indicator vector of the optimal partition.

Tight relaxation of the optimal Cheeger cut !
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Quality Guarantee

Tight relaxation of Cheeger cut:
Minimization of continuous relaxation is as hard as original Cheeger cut
problem =⇒ non-convex and non-smooth

No guarantee that one obtains optimal solution by NIPM !

but

Quality guarantee:

Theorem

Let (A,A) be a given partition of V . If one uses as initialization of NIPM,
f 0 = 1A, then either NIPM terminates after one step or it yields an f 1

which after optimal thresholding gives a partition (B,B) which satisifies

cut(B,B)

min{|B|, |B|}
<

cut(A,A)

min{|A|, |A|}
.

Next Goal: Global approximation guarantees.
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Cheeger Cut: 1-Laplacian (NLEP) vs. 2-Laplacian (LEP)
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Linear Nonlinear

Ratio
∑n

i,j=1 wij (xi−xj )2

‖x‖22

∑n
i,j=1 wij |xi−xj |
‖x‖1

Approximation Guarantee loose tight ! Hein, Bühler(2010)

Convergence globally optimal locally optimal

Scalability X X

Quality + +++

1-Spectral Clustering beats state of the art methods on graph
partitioning benchmark
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Balanced Graph Cuts and Nonlinear Eigenproblems
Balanced graph cut problem:

min
A⊂V

cut(A,A)

Ŝ(A)
.

Balancing set function Ŝ :

Name Ŝ(A)

Cheeger cut min{|A|, |A|}
Ratio cut |A||A|

Hard balanced cut

{
1, if min{|A|, |A|} ≥ K

0, else.

Modeling of different bias towards balanced partitions via choice of Ŝ .

Do there exist tight relaxations for all balancing set functions ?
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Definition

Let f ∈ RV be ordered in increasing order f1 ≤ f2 ≤ . . . ≤ fn and define
Ci = {j ∈ V | fj > fi}.Then S : RV → R given by

S(f ) =
n∑

i=1

fi

(
Ŝ(Ci−1)− Ŝ(Ci )

)
=

n−1∑
i=1

Ŝ(Ci )(fi+1 − fi ) + f1Ŝ(V )

is the Lovasz extension of Ŝ : 2V → R. One has S(1A) = Ŝ(A), ∀A ⊂ V .

Definition

A set function F̂ : 2V → R is submodular if for all A,B ⊂ V ,

F̂ (A ∪ B) + F̂ (A ∩ B) ≤ F̂ (A) + F̂ (B).

Proposition

Every set function can be written as difference of two submodular
functions.
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Balanced Graph Cuts as Nonlinear Eigenproblems

Theorem (Hein, Setzer (2011))
It holds

minf ∈RV

1
2

∑n
i ,j=1 wij |fi − fj |

S(f )
= minA⊂V

cut(A,A)

Ŝ(A)
,

if either one of the following two conditions holds

1 S is positively one-homogeneous, even, convex and S(f + α1) = S(f )
for all f ∈ RV , α ∈ R and Ŝ is defined as Ŝ(A) = S(1A), ∀A ⊂ V .

2 S is the Lovasz extension of the non-negative, symmetric set function
Ŝ with Ŝ(∅) = 0.

Let f ∈ RV and Ct := {i ∈ V | fi > t}, then it holds in both cases,

mint∈R
cut(Ct ,Ct)

Ŝ(Ct)
≤

1
2

∑n
i ,j=1 wij |fi − fj |

S(f )
.
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Ratio DCA (Hein, Setzer 2011)

Minimization of a non-negative ratio of 1-homogeneous d.c. functions

minf ∈Rn
R1(f )− R2(f )

S1(f )− S2(f )
.

Note that for a 1-homogeneous convex function

S(f ) ≥ 〈u, f 〉 ,∀f ∈ Rn, g ∈ Rn, u ∈ ∂S(g)

Minimize at each step the convex-concave ratio

R1(f )− 〈r2, f 〉
〈f , s1〉 − S2(f )

, where r2 ∈ ∂R2(f k), s1 ∈ ∂S1(f k)

via Dinkelbach’s method. This yields the convex opt. problem:

minf ∈D R1(f )− 〈r2, f 〉+ λk
(
S2(f )− 〈s1, f 〉

)
Monotonic descent and convergence to critical point as for NIPM
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Combinatorial Fractional Problems

Latest result:

minC⊂V
R̂(C )

Ŝ(C )

subj. to : M̂i (C ) ≥ ki , i = 1, . . . ,K

has a tight relaxation into a nonlinear eigenproblem if

R̂, Ŝ are non-negative set functions

R̂(∅) = Ŝ(∅) = 0

The constraint functions M̂i underlie no restrictions

Integration of prior knowledge in clustering/community detection
problems via constraints !
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Constrained Normalized Cut

Clustering with prior knowledge (Rangapuram, Hein (2012))

must-link and cannot-link constraints

a partition is called consistent if all constraints are satisfied

Constrained ratio cut problem:

min
(C ,C) consistent

cut(C ,C )

vol(C ) vol(C )

previous methods can not guarantee that constraints are satisfied
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Constrained Normalized Cut - II

Must-link and cannot-link constraints

Result of unconstrained 1-Spectral Clustering (left) and constrained
normalized cut (right)
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Constrained Normalized Cut - Results II

Our NLEP formulation: COSC

Binary-partitioning problem (Spam dataset |V | = 4207):

Multi-partitioning problem (extended MNIST dataset, |V | = 630000):
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Conclusion and Outlook

Benefits of Nonlinear Eigenproblems

better integration of modeling goals using additional degrees of
freedom

generalized inverse power method makes computation of nonlinear
eigenvectors feasible

Tight relaxation of combinatorial problems as nonlinear eigenproblems

Open Problems in Nonlinear Eigenproblems:

What is a suitable min-max principle for nonlinear eigenvectors ?

Computation of higher-order eigenvectors

Theory of modeling properties of eigenvectors via choice of R and S

Approximation guarantees for tight relaxations of combinatorial
problems

. . .
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Job Advertisement

Ph.D. and Postdoc positions

ERC Starting Grant starting in
Autumn

Nonlinear Eigenproblems for Data
Analysis

Desired background in one or more of
the following areas

1 convex (and non-convex)
optimization

2 machine learning/statistics
3 functional analysis, variational

problems

Hein (Saarland University) Nonlinear Eigenproblems in Data Analysis 27 / 27


	Appendix

