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Non-negative Matrix Factorization

@ Input: Given a non-negative matrix V € R™*" and the target rank k

@ Output: two non-negative matrices W € R™*k and H € R"*k,
such that WH is a good approximation to V.

@ Usually m,n> k.

@ How to measure goodness of approximation? Two widely used choices:
o Least squares NMF:
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Jmin F(W. H) = [V = WHT [ = Y (V; — (WHT);)
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o KL-divergence NMF:

in L(W,H)=) Vjlog(V;/(WHT);)— Vi + (WHT);
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Non-negative Matrix Factorization

@ Applications: text mining, image processing, . ...
@ Can get more interpretable basis than SVD.

@ To achieve better sparsity, researchers have proposed adding L1
regularization terms on W and H:

R
(W.H) =arg min $ ||V = WHT|[E +p1 Y Wi+ p2 ) Hy

i’r j?r



Non-negative Matrix Factorization

@ NMF is nonconvex, but is convex when W or H is fixed.

@ Recent methods follow the alternating minimization framework:
Iteratively solve miny>o f(W, H) and miny>o f(W, H) until
convergence.

@ For least squares NMF, each sub-problem can be exactly or
approximately solved by

© Multiplicative rule (Lee and Seung, 2001)

© Projected gradient method (Lin, 2007)

© Newton type updates (Kim, Sra and Dhillon, 2007)

© Active set method (Kim and Park, 2008)

© Cyclic coordinate descent method (Chichocki and Phan, 2009)



Non-negative Matrix Factorization

@ Update one variable at a time until convergence:
(W, H) — (W + sEj,, H).

@ Get s by solving a one-variable problem:

: w —
sunin_&ir (s) = F(W + sEir, H)

@ For square loss, g,-‘r/v has a closed form solution:

s* = max (07 VVir - gllr(o)/gllf/‘(o)) - VVI'N
where g/ (0) = Vy, f(W,H) = (WHT H — VH),;,
g(0) = Viy, f(W,H) = (HT H),.
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@ Non-negative Matrix Factorization

@ Greedy Coordinate Descent (GCD) for least squares NMF



Non-negative Matrix Factorization

@ Recently, (Chichocki and Phan, 2009) proposed a cyclic coordinate
descent algorithm (FastHals) for least squares NMF.

@ Fixed update sequence:
Wi, Wia, ... Wi, Wor, oo o s Wi, ooy Hig, ooy Ho, W, .

@ Each update has time complexity O(k).



Non-negative Matrix Factorization

FastHals updates variables uniformly.

@ However, an efficient algorithm should update variables with frequency
proportional to their “importance
@ We propose a Greedy Coordinate Descent method (GCD) for NMF.
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Non-negative Matrix Factorization

o Stategy — select variables which maximally reduce objective function

@ When Wi, is selected, the objective function can be reduced by

DY = f(W,H) — f(W + s*E;;, H) = —GVs* — %(HTH),,(S*)z,

where GV =V f(W,H) = WHTH — VH,

and s* is the optimal step size.

o If DV can be easily maintained, we can choose variables with the
largest objective function value reduction according to D"



Non-negative Matrix Factorization

@ s* can be computed from G and HTH
(from one-variable update rule).

o D)V = —-GWs* — Z(H"H),(s*)? where G = WHTH — VH.
@ Therefore, we can maintain DY if GW and HT H are known.
® When W, «— Wi, + s*, the ith row of G" is changed:

Gl — G +s*(HTH),; Vj=1,... k.

@ Therefore, time for maintaining D" is only O(k), which has the same
time complexity as Cyclic Coordinate Descent!



Non-negative Matrix Factorization

@ Follow the alternating minimization framework, our algorithm GCD
alternatively updates variables in W and H.

@ When updating one variables in W, we can maintain D" in O(k) time.
@ We conduct a sequence of updates on W: WO w®)
with a corresponding sequence (DW)(© (DW)(1) .

@ When to switch from W's updates to H's updates?
We update variables in W until the maximum function value decrease

is small enough.

max ng < ep™®, where p"t = (DW)(©)
J



Non-negative Matrix Factorization

o Initialize HTH, WT W.
@ While (not converged)

1. Compute G = W(HTH) — VH.
Compute D" according to G".
Compute p"'t = max; (D).

For each row i of W

N

- g; = arg max, D,-‘fy
- While DY > ep'™®
4.1 Update W, ;.
4.2 Update W™ W and DW
4.3 g; < arg max, D,-ZV
5. For updates to H, repeat steps analogous to Steps 1 through 4.
e



Non-negative Matrix Factorization

relative Time (in seconds)

error GCD | FHals | PGrad | BPivot
10| 10~* 0.6 2.3 2.1 1.7
30| 1074 4.0 9.3 26.6 12.4
10 10~ 0.21 0.43 0.53 0.56
30| 107* | 0.43 | 077 | 254 2.86
0.0410 2.3 4.0 135 10.6
CBCL 361 | 2,429 | 49 | 0.0376 8.9 18.0 45.6 30.9
0.0373 | 14.6 29.0 84.6 51.5
0.0365 1.8 6.5 9.0 7.4
ORL | 10,304 400 | 25 | 0.0335 | 14.1 30.3 98.6 33.9
0.0332 | 33.0 63.3 | 256.8 76.5

dataset m n k

Synth03 500 | 1,000

Synth08 500 | 1,000




Non-negative Matrix Factorization

Results on MNIST (m = 780, n = 60000, # nz = 8994156, k = 10).

Relative function value difference
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@ Non-negative Matrix Factorization

o NMF with KL-divergence



Non-negative Matrix Factorization

o KL-NMF:

- _ Vij T
AT L(W,H) = ; Vijj Iog(m) - Vj+ (WH");

@ The one variable sub-problem:

/
Dir(s)=L(W +sEj,, H)= Z —Vjjlog (( WHT); —i—sH,j)—l—sl-Ij,—l—constant
j=1

@ One variable update does not have closed form solution



Non-negative Matrix Factorization

@ We use Newton method to solve each one-variable sub-problem
@ When updating W;,, iteratively update s by Newton direction:

S5 max(—W,-,, S — h:r(s)/hx(s))a

where

n V.
Ho(s)=> H;|1- el .
=2 ”< (WHT)U+5"IJ'r>

i ViiH;

hip(s) = J:Z1 ((WHT);; + sH; )2

@ Can show that Newton method without line search converges to
optimum for this one-variable sub-problem.



Non-negative Matrix Factorization

o Compute WHT
@ While (not converged)
1. For all (i, r) pairs
While (not converged)
s o max(— Wy s — 1, (s)/H(s)
- Wi — Wi +s
- Maintain (WHT);. by (WHT);. — (WHT);. + sH.,.
2. For updates to H, repeats steps analogous to Step 1.



Non-negative Matrix Factorization

Time comparison results for KL divergence. * indicates the specified
objective value is not achievable.

dataset | k relative Time (in seconds)
error CCD Multiplicative
1073 [ 1211 749.5
Synth031 30| 155 | 184.32 7092.3
1072 | 22.6 46.0
Synth08| 30 10-5 56.8 "
0.1202 | 38.2 21.2
CBCL 491 0.1103 | 123.2 562.6
0.1093 | 166.0 3266.9
0.3370 | 73.7 165.2
ORL 25| 0.3095 | 253.6 902.2
0.3067 | 370.2 1631.9
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Non-negative Matrix Factorization

@ Our method can be naturally extended to solve Non-negative Tensor
Factorization (NTF).

@ A tensor is a multi-dimensional matrix:

V e RhixkxxIv \where Iy, ..., Iy are index upper bounds and N is the
order (dimension) of the tensor.

@ A rank-k approximation to the N-way tensor:
k . . .
VaY deuwe - ou)
j=1
where ® indicates outer product of vectors.



Non-negative Matrix Factorization

@ GCD can be extended to solve NTF problems.
@ Similar to the NMF cases, GCD outperforms state-of-the-art algorithms.
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Non-negative Matrix Factorization

@ We propose two algorithms: Greedy Coordinate Descent (GCD) for
least squares NMF and Cyclic Coordinate Descent (CCD) for KL-NMF.

@ Both algorithms outperform state-of-the-art methods.

@ Code is available at http://www.cs.utexas.edu/~cjhsieh/nmf/


http://www.cs.utexas.edu/~cjhsieh/nmf/
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