
Non-negative Matrix Factorization

Fast Coordinate Descent methods for Non-Negative

Matrix Factorization

Inderjit S. Dhillon
University of Texas at Austin

SIAM Conference on Applied Linear Algebra
Valencia, Spain
June 19, 2012

Joint work with Cho-Jui Hsieh



Non-negative Matrix Factorization

Outline

1 Non-negative Matrix Factorization
Non-negative Matrix Factorization (NMF)
Greedy Coordinate Descent (GCD) for least squares NMF
NMF with KL-divergence
Non-negative Tensor Factorization (NTF)



Non-negative Matrix Factorization

Non-negative Matrix Factorization (NMF)
Greedy Coordinate Descent (GCD) for least squares NMF
NMF with KL-divergence
Non-negative Tensor Factorization (NTF)

Outline

1 Non-negative Matrix Factorization
Non-negative Matrix Factorization (NMF)
Greedy Coordinate Descent (GCD) for least squares NMF
NMF with KL-divergence
Non-negative Tensor Factorization (NTF)



Non-negative Matrix Factorization

Non-negative Matrix Factorization (NMF)
Greedy Coordinate Descent (GCD) for least squares NMF
NMF with KL-divergence
Non-negative Tensor Factorization (NTF)

Problem Definition

Input: Given a non-negative matrix V ∈ R
m×n and the target rank k

Output: two non-negative matrices W ∈ R
m×k and H ∈ R

n×k ,

such that WHT is a good approximation to V .

Usually m, n≫ k.

How to measure goodness of approximation? Two widely used choices:

Least squares NMF:

min
W ,H≥0

f (W , H) ≡ ‖V −WHT‖2F =
∑

i ,j

(Vij − (WHT )ij)
2

KL-divergence NMF:

min
W ,H≥0

L(W , H) ≡
∑

i ,j

Vij log(Vij/(WHT )ij)− Vij + (WHT )ij
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Problem Definition (Cont’d)

Applications: text mining, image processing, . . . .

Can get more interpretable basis than SVD.

To achieve better sparsity, researchers have proposed adding L1
regularization terms on W and H:

(W ,H) = arg min
W ,H≥0







1

2
‖V −WHT ‖2F + ρ1

∑

i ,r

Wir + ρ2

∑

j ,r

Hjr






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Existing Optimization Methods

NMF is nonconvex, but is convex when W or H is fixed.

Recent methods follow the alternating minimization framework:

Iteratively solve minW≥0 f (W ,H) and minH≥0 f (W ,H) until
convergence.

For least squares NMF, each sub-problem can be exactly or
approximately solved by

1 Multiplicative rule (Lee and Seung, 2001)
2 Projected gradient method (Lin, 2007)
3 Newton type updates (Kim, Sra and Dhillon, 2007)
4 Active set method (Kim and Park, 2008)
5 Cyclic coordinate descent method (Chichocki and Phan, 2009)
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Coordinate Descent Method

Update one variable at a time until convergence:

(W ,H)← (W + sEir ,H).

Get s by solving a one-variable problem:

min
s:Wir+s≥0

gW
ir (s) ≡ f (W + sEir ,H).

For square loss, gW
ir has a closed form solution:

s∗ = max
(

0,Wir − g ′
ir (0)/g

′′
ir (0)

)

−Wir ,

where g ′
ir (0) = ∇Wir

f (W ,H) = (WHT H − VH)ir ,

g ′′
ir (0) = ∇2

Wir
f (W ,H) = (HT H)rr .
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Cyclic Coordinate Descent for Least Squares NMF
(FastHals)

Recently, (Chichocki and Phan, 2009) proposed a cyclic coordinate
descent algorithm (FastHals) for least squares NMF.

Fixed update sequence:

W11,
,W1,2, . . . ,W1,k ,W2,1, . . . ,Wm,k , . . . ,H1,1, . . . ,Hn,k ,W1,1, . . .

Each update has time complexity O(k).
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Variable Selection

FastHals updates variables uniformly.

However, an efficient algorithm should update variables with frequency
proportional to their “importance”!

We propose a Greedy Coordinate Descent method (GCD) for NMF.
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Greedy Coordinate Descent (GCD)

Stategy — select variables which maximally reduce objective function

When Wir is selected, the objective function can be reduced by

DW
ir ≡ f (W ,H)− f (W + s∗Eir ,H) = −GW

ir s∗ −
1

2
(HT H)rr (s

∗)2,

where GW ≡ ∇W f (W ,H) = WHT H − VH,

and s∗ is the optimal step size.

If DW can be easily maintained, we can choose variables with the
largest objective function value reduction according to DW .
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How to maintain D
W (objective value reduction)

s∗ can be computed from GW and HT H

(from one-variable update rule).

DW
ir = −GW s∗ − 1

2(HT H)rr (s
∗)2, where GW = WHT H − VH.

Therefore, we can maintain DW if GW and HT H are known.

When Wir ← Wir + s∗, the ith row of GW is changed:

GW
ij ← GW

ij + s∗(HT H)rj ∀j = 1, . . . , k.

Therefore, time for maintaining DW is only O(k), which has the same
time complexity as Cyclic Coordinate Descent!
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Greedy Coordinate Descent (GCD)

Follow the alternating minimization framework, our algorithm GCD
alternatively updates variables in W and H.

When updating one variables in W , we can maintain DW in O(k) time.

We conduct a sequence of updates on W : W (0),W (1), . . .
with a corresponding sequence (DW )(0), (DW )(1), . . .

When to switch from W ’s updates to H’s updates?
We update variables in W until the maximum function value decrease
is small enough.

max
j

DW
ij < ǫpinit, where pinit = (DW )(0)
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Greedy Coordinate Descent (GCD)

Initialize HT H,W T W .

While (not converged)

1. Compute GW = W (HTH) − VH.

2. Compute DW according to GW .

3. Compute pinit = maxi ,r(D
W
ir ).

4. For each row i of W

- qi = arg maxr DW
i ,r

- While DW
i ,qi

> ǫpinit

4.1 Update Wi ,qi
.

4.2 Update W TW and DW

4.3 qi ← arg maxr DW
ir

5. For updates to H, repeat steps analogous to Steps 1 through 4.
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Comparisons

dataset m n k
relative Time (in seconds)
error GCD FHals PGrad BPivot

Synth03 500 1,000
10 10−4 0.6 2.3 2.1 1.7
30 10−4 4.0 9.3 26.6 12.4

Synth08 500 1,000
10 10−4 0.21 0.43 0.53 0.56
30 10−4 0.43 0.77 2.54 2.86

CBCL 361 2,429 49
0.0410 2.3 4.0 13.5 10.6
0.0376 8.9 18.0 45.6 30.9
0.0373 14.6 29.0 84.6 51.5

ORL 10,304 400 25
0.0365 1.8 6.5 9.0 7.4
0.0335 14.1 30.3 98.6 33.9
0.0332 33.0 63.3 256.8 76.5
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Comparisons

Results on MNIST (m = 780, n = 60000,# nz = 8994156, k = 10).
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KL-NMF

KL-NMF:

min
W ,H≥0

L(W ,H) ≡
∑

i ,j

Vij log(
Vij

(WHT )ij
)− Vij + (WHT )ij

The one variable sub-problem:

Dir (s)=L(W +sEir ,H)=
l

∑

j=1

−Vij log

(

(WHT )ij +sHrj

)

+sHjr+constant

One variable update does not have closed form solution
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Newton Update for One Variable Subproblem

We use Newton method to solve each one-variable sub-problem

When updating Wir , iteratively update s by Newton direction:

s ← max(−Wir , s − h′ir (s)/h
′′
ir (s)),

where

h′ir (s) =

n
∑

j=1

Hjr

(

1−
Vij

(WHT )ij + sHjr

)

.

h′′ir (s) =

n
∑

j=1

VijH
2
jr

((WHT )ij + sHjr )2
.

Can show that Newton method without line search converges to
optimum for this one-variable sub-problem.
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CCD for KL-divergence

Compute WHT

While (not converged)

1. For all (i , r) pairs

While (not converged)

- s ← max(−Wir , s − h′ir (s)/h
′′
ir (s))

- Wir ←Wir + s

- Maintain (WHT )i ,: by (WHT )i ,: ← (WHT )i ,: + sHT
:,r .

2. For updates to H, repeats steps analogous to Step 1.



Non-negative Matrix Factorization

Non-negative Matrix Factorization (NMF)
Greedy Coordinate Descent (GCD) for least squares NMF
NMF with KL-divergence
Non-negative Tensor Factorization (NTF)

Experimental Results

Time comparison results for KL divergence. ∗ indicates the specified
objective value is not achievable.

dataset k
relative Time (in seconds)
error CCD Multiplicative

Synth03 30
10−3 121.1 749.5
10−5 184.32 7092.3

Synth08 30
10−2 22.6 46.0
10−5 56.8 *

CBCL 49
0.1202 38.2 21.2

0.1103 123.2 562.6
0.1093 166.0 3266.9

ORL 25
0.3370 73.7 165.2
0.3095 253.6 902.2
0.3067 370.2 1631.9
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Non-negative Tensor Factorization (NTF)

Our method can be naturally extended to solve Non-negative Tensor
Factorization (NTF).

A tensor is a multi-dimensional matrix:

V ∈ R
I1×I2×···×IN , where I1, . . . , IN are index upper bounds and N is the

order (dimension) of the tensor.

A rank-k approximation to the N-way tensor:

V ≈
k

∑

j=1

u
j
1 ⊗ u

j
2 ⊗ · · · ⊗ u

j
N
,

where ⊗ indicates outer product of vectors.
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GCD for non-negative tensor factorization

GCD can be extended to solve NTF problems.

Similar to the NMF cases, GCD outperforms state-of-the-art algorithms.
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Synthetic (1000 × 200 × 100) CMU image data (640 × 128× 120)
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Conclusions

We propose two algorithms: Greedy Coordinate Descent (GCD) for
least squares NMF and Cyclic Coordinate Descent (CCD) for KL-NMF.

Both algorithms outperform state-of-the-art methods.

Code is available at http://www.cs.utexas.edu/~cjhsieh/nmf/

http://www.cs.utexas.edu/~cjhsieh/nmf/
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