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Introduction

Covariance matrices appear in every corner of statistical analysis:

Multivariate statistics

Stochastic processes

Sampling

Max likelihood fitting

Interpolation; kriging

Regression and classification

Prediction; forecasting

The handling of covariance matrices incurs many matrix computations
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Introduction

Example: Sampling

Generate a random vector from an n-dimensional normal distribution with mean

µ and covariance matrix K. Steps:

1. Compute a Cholesky factorization K = LLT

2. Generate a random vector z with i.i.d. standard normal variables

3. The vector y = Lz + µ is one such sample, because ...

E[y] = L · E[z] + µ = µ

cov[y] = E[(y − µ)(y − µ)T ] = E[(Lz)(zTLT )] = K

Can replace L by K1/2, so need to compute K1/2z.
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Introduction

Example: Maximum likelihood estimation

[Opposite of sampling:] Given a vector y, what is the most likely normal

distribution it comes from? Assuming that mean is zero and that the covariance

matrix K is parameterized by θ, then maximize the likelihood

L(θ) := (2π)−
n
2 (detK)−

1

2 exp

(

−1

2
yTK−1y

)

Can use any optimization method to solve max logL or ∇ logL = 0

Need to evaluate log(detK) and K−1y

log(detK) = tr(logK) ≈ 1
N

∑N
i=1 ui(logK)ui

[log(detK)]′ = tr(K−1K′K−1) ≈ 1
N

∑N
i=1 ui(K

−1K′K−1)ui
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Introduction

Example: Interpolation

Given some points xi (i = 1, . . . , n) and their function values f(xi), what is the

function value of an unknown point x0? If we assume that

f is a sample path of a stochastic process with covariance function φ

f(x0) =
∑n

i=1 wif(xi), then the weights wi are computed as







w1

...

wn






=







φ(x1, x1) · · · φ(x1, xn)
...

. . .
...

φ(xn, x1) · · · φ(xn, xn)







−1





φ(x1, x0)
...

φ(xn, x0)







Where does the above formula come from? Recall our old friend, least squares:

min
w

‖y −Aw‖ =⇒ w = (ATA)−1(AT y).
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Introduction

We focus on

Solving linear system with covariance matrix K,

where Kij = φ(xi − xj)

What is so special/challenging about covariance matrices?

Can be very large

Can be fully dense

Can be increasingly ill-conditioned as matrix size grows

Can be associated with a large number of random right-hand sides

Positive definite
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Linear Solver

Consider the conjugate gradient method for solving Kx = b

Require: Initial guess x0, preconditioner M ≈ K

1: Compute r0 = b−Kx0, z0 = M−1r0 and p0 = z0

2: for j = 0, 1, . . . until convergence do

3: αj = (rj , rj)/(Kpj , pj)

4: xj+1 = xj + αjpj

5: rj+1 = rj − αjKpj

6: zj+1 = M−1rj+1

7: βj = (rj+1, zj+1)/(rj , zj)

8: pj+1 = zj+1 + βjpj

9: end for

Check list:

Matrix-vector mult?

Preconditioner?

Parallelism?
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A Simple Case: Regular Grid

But not at all trivial...

Consider that Kij = φ(xi − xj) where the xi’s are on a regular grid

K is (multilevel) Toeplitz

Multiplying K with vector p requires embedding K to a larger (multilevel)

circulant matrix, and padding p with zeros

Multiplying (multilevel) circulant matrix needs (multi-dimensional) FFT

A (multilevel) circulant preconditioner M can be constructed

CG can be extended by using the seed method or block method to handle

multiple right-hand sides

Parallel implementation? ... is a headache ... because too many data transfers

and global synchronizations
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Preconditioning

In general, how do we precondition K?

Need some knowledge of φ... Matérn:

φ(x) =
1

2ν−1Γ(ν)

(√
2ν ‖x‖
θ

)ν

Kν

(√
2ν ‖x‖
θ

)

θ: Scale parameter. Can also make

function anisotropic.

ν: Smoothness. Controls the

differentiability of φ at 0.

More flexible than Gaussian kernel

(infinitely differentiable).

When ν → ∞, it is Gaussian. 0 1 2 3 4
0

0.2

0.4
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0.8

1

|x|

φ(
x)

 

 

θ = 1, ν = 0.5
θ = 1, ν = 2
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Spectral Density

(Covariance, spectral density) pair:

φ(x) =

∫

Rd

f(ω) exp(iωTx) dω, with f(ω) > 0.

Spectral density of Matérn kernel

f(ω) ∝
(
2ν + θ2 ‖ω‖2

)−(ν+d/2)
.

If regular grid, that is, xj = j/n, then write

φ(j/n) =

∫

[0,2π)d
fn(ω) exp(iω

T j) dω

fn(ω) = n
∑

l∈Zd

f (n ◦ (ω + 2πl)) , ω ∈ [0, 2π)d.
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Spectral Density
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Spectrum

Bilinear form:

aTKa =
∑

j,l

ajalφ(xj − xl) =

∫

Rd

f(ω)

∣
∣
∣
∣
∣

∑

j

aj exp(iω
Txj)

∣
∣
∣
∣
∣

2

dω.

If regular grid, that is, xj = j/n, then write

aTKa =

∫

[0,2π)d
fn(ω)

∣
∣
∣
∣
∣

∑

j

aj exp(iω
T j)

∣
∣
∣
∣
∣

2

dω

≈ (2π)d

n

∑

0≤k≤n−1

fn(2πk/n)

∣
∣
∣
∣

∑

0≤j≤n−1

aj exp(i (2πk/n)
T j)

∣
∣
∣
∣

2

.

Intuitively, eigenvalues of K “similar to” (2π)dfn(2πk/n).
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Spectrum

Definition: Two sets of real numbers {a(n)
j }j=1,...,n and {b(n)

j }j=1,...,n are

equally distributed in the interval [M1,M2] if for any continuous function

F : [M1,M2] → R,

lim
n→∞

1

n

n∑

j=1

[F (a
(n)
j )− F (b

(n)
j )] = 0.

Theorem: If φ ∈ L1 ∩ L2, then the set of eigenvalues of K/n and the set

{(2π)dfn(2πj/n)/n} are equally distributed.

Message: Loosely speaking, the spectrum of K is like fn evenly sampled on

[0, 2π).
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Spectrum

Matérn kernel (d = 2, ν = 3). Blue: eigenvalues of K. Red: (2π)dfn(2πj/n).
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Preconditioning

Preconditioning idea: suppress the variation of f .

∆φ(x) =

∫

Rd

−‖ω‖2f(ω) exp(iωTx) dω

Covariance Spectral density

φ f(ω) ∝
(
2ν + θ2 ‖ω‖2

)−(ν+d/2) ≍ (1 + ‖ω‖)−8

∆φ ‖ω‖2f(ω) ≍ ‖ω‖2(1 + ‖ω‖)−8

∆2φ ‖ω‖4f(ω) ≍ ‖ω‖4(1 + ‖ω‖)−8

∆3φ ‖ω‖6(1 + ‖ω‖)−8

∆4φ ‖ω‖8(1 + ‖ω‖)−8

...
...
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Preconditioning

Discrete case: (L, D: discrete Laplacian)

Matrix Entry

K φ(j/n) =

∫

[0,2π)d
fn(ω) exp(iω

T j) dω

Dφ(j/n) =

∫

[0,2π)d
f [1]
n (ω) exp(iωT j) dω

K [2] = LKLT D2 φ(j/n) =

∫

[0,2π)d
f [2]
n (ω) exp(iωT j) dω

D3 φ(j/n) =

∫

[0,2π)d
f [3]
n (ω) exp(iωT j) dω

K [4] = LK [2]LT D4 φ(j/n) =

∫

[0,2π)d
f [4]
n (ω) exp(iωT j) dω

f
[s]
n (ω) =

[

−4
∑d

p=1 n
2
p sin

2
(ωp

2

)]s

fn(ω)

Solving Large Dense Linear Systems with Covariance Matrices – p. 16/30



SIAM LA, June 19, 2012

Preconditioning

Same Matérn kernel as in page 14. Left: original. Right: after Laplacian.
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Preconditioning

Matrix Entry

K [2] = LKLT D2 φ(j/n) =

∫

[0,2π)d
f [2]
n (ω) exp(iωT j) dω

Note:

Can define K [s], Ds φ and f
[s]
n for odd number s; but unknown how to

write K [s] using L and K

L has fewer rows than columns (unknown how to define on grid boundary)

Nevertheless,

Theorem: If all the partial derivatives of φ of order up to 2s+ 1 belong to

L1 ∩ L2, then the eigenvalues of K [s]/n and the set {(2π)df [s]
n (2πk/n)/n} are

equally distributed.
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Preconditioning

Left: K [1] and (2π)df
[1]
n (2πj/n); Right: K [2] and (2π)df

[2]
n (2πj/n).
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Preconditioning

Can go further even though not supported by theorem

Left: K [3] and (2π)df
[3]
n (2πj/n); Right: K [4] and (2π)df

[4]
n (2πj/n).
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Preconditioning

Growth of condition number of K [s]
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Irregular Grid

What about irregular grid?

K [2] = LKLT : Need to define L (discrete Laplacian)

−→ consider finite element mesh

The points {xi} define a domain Ω

Nodal function vi(x) at xi; piecewise linear

For any twice differentiable u:

u ≈
n∑

i=1

u(xi) vi, ∆u ≈
n∑

i=1

∆u(xi) vi, ∇u ≈
n∑

i=1

u(xi)∇vi.

∇vi not defined at edges and mesh nodes. Arbitrarily define them.
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Irregular Grid

Green’s identity
∫

Ω

(v∆u+∇v · ∇u) =

∮

∂Ω

v(∇u · n)

Discretization: for any v = vk,

n∑

i=1

[∫

Ω

vkvi

]

︸ ︷︷ ︸

M

∆u(xi)+

n∑

i=1

[∫

Ω

∇vk · ∇vi

]

︸ ︷︷ ︸

−S

u(xi) ≈
n∑

i=1

[∮

∂Ω

vk (∇vi · n)
]

︸ ︷︷ ︸

B

u(xi).

Matrix form:

M ·
[

∆u(xi)
]

≈ (B + S) ·
[

u(xi)
]

.

Almost there...
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Irregular Grid

Properties of

M =

[
∫

Ω

vkvi

]

, S =

[

−
∫

Ω

∇vk · ∇vi

]

, B =

[
∮

∂Ω

vk (∇vi · n)
]

M(k, k) = 2
∑

i 6=k M(k, i)

Each row of S sum to zero. If xk not on boundary,
∑

i S(k, i)xi = 0

Each row of B sum to zero. If xk not on boundary, the row B(k, :) is zero

For each row k,
∑

i(B + S)ki xi = 0
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Irregular Grid

Definition of L:

M ·
[

∆u(xi)
]

≈ (B + S) ·
[

u(xi)
]

M ′ diagonal, M ′(k, k) = 3
2
M(k, k)

M ′ ·
[

∆u(xi)
]

≈ (B + S) ·
[

u(xi)
]

Remove rows and cols of M ′ corresponding to boundary: M ′ → M̃ ′

Remove rows of B corresponding to boundary: B → B̃

Remove rows of S corresponding to boundary: S → S̃
[

∆u(xi)
]

≈ (M̃ ′)−1(B̃ + S̃) ·
[

u(xi)
]

= (M̃ ′)−1S̃ ·
[

u(xi)
]
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Irregular Grid

Definition of L:

L = (M̃ ′)−1S̃

Operator form (infinite mesh):

Du(xk) =

n∑

i=1

2S(k, i)

3M(k, k)
u(xi)

Theorem: For conforming mesh and any w vanishing on ∂Ω,

∣
∣
∣
∣
∣

〈

[w(xk)], [∆u(xk)−Du(xk)]
〉

M′

∣
∣
∣
∣
∣
≤ C · tr(M ′) · h,

where C is some constant and h is the maximum diameter of the elements.

Note: tr(M ′) = 3
d
meas(Ω), hence is fixed.
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Irregular Grid

Growth of condition number of K [s]. Matérn, ν = 3
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Irregular Grid

Left: ν = 1.5 Right: ν = 2
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Summary

Covariance matrix K, large, fully dense, increasingly ill conditioned

K defined by covariance function φ(x)

Spectrum of K is tied to spectral density f(ω)

From spectral density f to one on grid: fn

Differentiating f gives better-behaved spectrum

Define the linear transformation from K to K [s], for regular grid

Extend the transformation for finite element mesh

The preconditioning step is to multiply sparse matrix

How about K-multiply?
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Wish List

(Regular grid case) Parallelization of conjugate gradient with FFT

(General situation) Fast summation with a covariance kernel

Better full-rank preconditioner

Linear scaling

Might be a good time to think about direct methods...
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