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�e material here is from Chapter 6 in No-
cedal and Wright, and Section 12.3 in Griva,
Sofer, and Nash.

�e idea behind Quasi-Newton methods is to make an optimization algorithm with
only a function value and gradient converge more quickly than steepest descent. �at is, a
Quasi-Newton method does not require a means to evaluate the Hessian matrix at the
current iterate, as in a Newton method. Instead, the algorithm constructs a matrix that
resembles the Hessian as it proceeds.

In fact, there are many ways of doing this, and so there is really a family of Quasi-
Newton methods.

1 quasi-newton in one variable: the secant method

In a one dimensional problem, approximating the Hessian simpli�es to approximating
the second derivative: f ′′(x) ≈ f ′(x+h)− f ′(x)

h . �us, the fact that this is possible is not
unreasonable. Using a related approximation in a one-dimensional optimization algorithm
results in a procedure called the Secant method:

“xk+1 = xk −
1

f ′′(xk)
f ′(xk)”

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
One dimensional Newton

→ xk+1 = xk −
(xk − xk−1)

f ′(xk) − f ′(xk−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≈1/ f ′′(xk)

f ′(xk)

�is new update is trying to approximate the Newton update by approximating the second
derivative information.

�e secant method converges superlinearly, under appropriate conditions; so this idea
checks out in one-dimension.

2 quasi-newton in general

Quasi-Newton methods are line-search methods that compute the search direction by
trying to approximate the Newton direction:

“H(xk)p = −g”

without using the matrixH(xk). �ey work by computing

Bk “that behaves like” H(xk).

Once we compute xk+1, then we update Bk → Bk+1. �us, a Quasi-Newton method has
the general iteration:

initialize B0, and k = 0
for k = 0, ... and while xk does not satisfy the conditions we want ...

solve for the search direction Bkpk = −g
compute a line search αk
update xk+1 = xk + αpk
update Bk+1 based on xk+1

We can derive di�erent Quasi-Newton methods by changing how we update Bk+1
from Bk .
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3 the secant condition

While there are many ways of updating Bk+1 from Bk , a random choice is unlikely to
provide any bene�t, and may making things considerably worse. �us, we want to start
from a principled approach.

Recall that the Newton directionHkpk = −g arises as the unconstrained minimizer of

mN
k (p) = fk + gTk p +

1
2p

THkp

whenHk is positive de�nite.
�e model for Quasi-Newton methods uses Bk instead ofHk :

mQ
k (p) = fk + gTk p +

1
2p

TBkp

so one common requirement for Bk is that it remains positive de�nite. �is requirement
is relaxed for some Quasi-Newton methods.

However, all Quasi-Newton methods require:

∇mQ
k+1(0) = g(xk+1)

and
∇mQ

k+1(−αkpk) = g(xk).
In other works, a Quasi-Newton method has the property that the gradient of the model
function mQ

k+1(p) has the same gradient as f at xk and xk+1.
�is requirement imposes some conditions on Bk+1:

∇mQ
k+1(−αpk) = g(xk+1) − αkBk+1pk = g(xk) Ð→ Bk+1αkpk = g(xk+1) − g(xk).

Note that αkpk = xk+1 − xk . If we de�ne:

sk = xk+1 − xk and yk = g(xk+1) − g(xk).

�en Quasi-Newton methods require:

Bk+1sk = yk ,

which is called the secant condition.
If we write this out for a one-dimensional problem:

bk+1(xk+1 − xk) = f ′(xk+1) − f ′(xk).

�is equation is identical to the approximation of f ′′(xk) used in the secant method.
Quiz Is it always possible to �nd such a Bk+1? Suppose that Bk is symmetric, positive

de�nite. Show that we need yTk xk > 0 in order for Bk+1 to be positive de�nite. If Bk = 1
for a one dimensional problem, �nd a function where this isn’t true.

4 finding the update

We are getting closer to �guring out how to �nd such an update. �ere are many ways
to derive the following updates, I’ll just list them and state their properties.

4.1 DAVIDSON, FLETCHER, POWELL (DFP)

Let ρ = 1
yTk sk

.

Bk+1 = (I − ρksyT)Bk(I − ρksyT) + ρkyky
T
k .

Clearly this matrix is symmetric when Bk is. Also, Bk+1 is positive de�nite.
Quiz Show that Bk+1 is positive de�nite.
�is choice of Bk+1 has the following optimality property:

minimize ∥B − Bk∥W

subject to BT
= B,Bsk = yk

whereW is a weight based on the average Hessian.
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4.2 BROYDEN, FLETCHER, GOLDFARB, SHANNO (BFGS) – “STANDARD”
Because we compute the search direction by solving a system with the approximate

Hessian matrix:
Bkpk = −gk ,

the BFGS update constructs an approximation of the inverse Hessian instead. Suppose that

Tk“behaves like”H(x)−1 .

�en
Tk+1yk = sk

is the secant condition for the inverse. �is helps because nowwe can �nd search directions
via

pk = −Tkgk ,

via a matrix-vector multiplication instead of a linear solve.
�e BFGS method uses the update:

Tk+1 = (I − ρksyT)Tk(I − ρksyT) + ρsksTk .

By the same proof, this update is also positive de�nite.
�is choice has the following optimality property:

minimize ∥T − Tk∥W

subject to TT
= T,Tyk = sk

whereW is a weight based on the average Hessian.

4.3 SYMMETRIC RANK-1 (SR1) – FOR TRUST REGION METHODS
Both of the previous updates were rank-2 changes to Bk (or Tk). �e SR1 method is

a rank-1 update to Bk . Unfortunately, this update will not preserve positive de�niteness.
Nonetheless, it’s frequently used in practice and is a reasonable choice for Trust Region
methods that don’t require a positive de�nite approximate Hessian.

Any rank-1 symmetric matrix is:
σvvT

and so the update is:
Bk+1 = Bk + σvvT .

Applying the Secant equation constrains v, and we have:

Bk+1 = Bk +
(yk − Bksk)(yk − Bksk)T

(yk − Bksk)Tsk
or

Tk+1 = Tk +
(sk − Tkyk)(sk − Tkyk)T

(sk − Tkyk)Tyk
.

�e SR1 method tends to generate better approximations to the true Hessian than
the other methods. For instance, if the search directions pk are all linearly independent
for k = 1, . . . , n, and f (x) is a simple quadratic model, then Tn is the inverse of the true
Hessian.

4.4 BROYDEN CLASS
�e Broyden class is a linear combination of the BFGS and the DFP method:

Bk+1 = (1 − ϕ)BBFGS
k+1 + ϕBDFP

k+1 .

(�is form requires the BFGS update for B and not T.)
�ere are all sorts of great properties of the Broyden class, e.g. for the right choice of

parameters, it’ll reproduce the CG method.
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