Computational methods in optimization

David F. Gleich

Purdue University

Thanks to Nick Henderson for many slides.

Course objectives

To understand optimization

To be able to optimize a function

Course outline

Background

Software

Least Squares

Matrix calculus

Unconstrained Optimization

Non-linear equations

Newton methods

Line search

Trust region

Quasi-newton

minimize f(x)

Constrained Optimization

Linear programming

Quadratic programming

Large-scale

minimize f(x)subject to $l \leq \begin{bmatrix} x \\ Ax \\ c(x) \end{bmatrix} \leq u$

Modern Topics

Convex

Integer

Stochastic

Questions about topics?

Your first quiz

Source: <u>http://xkcd.com/135/</u>

 You are at the center of a 20m equilateral triangle with a raptor at each corner. The top raptor has a wounded leg and is limited to a top speed of 10 m/s.

The raptors will run toward you. At what angle should you run to maximize the time you stay alive?

Raptors move at 25 m/s You move at 6 m/s

But who cares?

The new model

choose direction to run $\mathbf{v}_p[j]$ for $j = \{1, \dots, N\}$

to minimize "likelihood" of being eaten $\sum_{j=1}^{N} \sum_{i=1}^{3} \frac{1}{\|\mathbf{p}[j] - \mathbf{r}_i[j]\|^2} dt$

subject to raptor motion $\mathbf{r}_i[j+1] = \mathbf{r}_i[j] + hv_i \frac{\mathbf{p}[j] - \mathbf{r}_i[j]}{\|\mathbf{p}[j] - \mathbf{r}_i[j]\|}$ human motion $\mathbf{p}[j+1] = \mathbf{p}[j] + h\mathbf{v}_p[j]$

Thanks to Nick Henderson for many slides.

How it's done

Thanks to Nick Henderson for many slides.

Solve!

Source: http://en.wikipedia.org/wiki/Velociraptor

OTIS #!

What are your applications?