This is a summary of Theorem 11.7 from Griva, Nash, and Sofer.

ASSUMPTIONS
$f: \mathbb{R}^{n} \mapsto \mathbb{R}$
\mathbf{x}_{0} is given
$\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k}$ is the iteration
each $\alpha_{k}>0$ is chosen by backtracking line search for a sufficient decrease condition, i.e.

$$
f\left(\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k}\right) \leq f\left(\mathbf{x}_{k}\right)+\mu \alpha_{k} \mathbf{p}_{k}^{T} \mathbf{g}\left(\mathbf{x}_{k}\right) \quad \mu<1
$$

and α_{k} is the first element of the sequence $1,1 / 2,1 / 4, \ldots$ to satisfy this bound the set $S=\left\{x: f(x) \leq f\left(x_{0}\right)\right\}$ is bounded
$\mathbf{g}(\mathbf{x})$ is Lipschitz continuous, i.e.

$$
\|\mathbf{g}(\mathbf{y})-\mathbf{g}(\mathbf{x})\| \leq L\|\mathbf{y}-\mathbf{x}\| \quad L<\infty
$$

the search directions \mathbf{p}_{k} satisfy sufficient descent, i.e.

$$
-\frac{\mathbf{p}_{k}^{T} \mathbf{g}(\mathbf{x})}{\left\|\mathbf{p}_{k}\right\|\left\|\mathbf{g}\left(\mathbf{x}_{k}\right)\right\|} \geq \varepsilon>0
$$

the search directions are gradient related and bounded, i.e.

$$
\left\|\mathbf{p}_{k}\right\| \geq m\left\|\mathbf{g}\left(\mathbf{x}_{k}\right)\right\| \text { and }\left\|\mathbf{p}_{k}\right\| \leq M
$$

each scalar
conclusion

$$
\lim _{k \rightarrow \infty}\left\|\mathbf{g}\left(\mathbf{x}_{k}\right)\right\|=0
$$

proof
There are five steps to the proof.

1. Show that f is bounded below. (i.e. Won't run forever ...)
2. Show that $\lim _{k \rightarrow \infty} f\left(\mathbf{x}_{k}\right)$ exists (i.e. we converge in one sense ...)
3. Show that

$$
\lim _{k \rightarrow \infty} \alpha_{k}\left\|\mathbf{g}\left(\mathbf{x}_{k}\right)\right\|^{2}=0
$$

4. Show that $\alpha_{k}<1$ implies $\alpha_{k} \geq \gamma\left\|\mathbf{g}\left(\mathbf{x}_{k}\right)\right\|^{2}$ (i.e. that small steps aren't too small...)
5. Finally, we conclude

$$
\lim _{k \rightarrow \infty}\left\|\mathbf{g}\left(\mathbf{x}_{k}\right)\right\|=0
$$

step 1 We know that f is continuous, so the set S is closed. Because we assume that S is bounded, then a closed bounded set must take on a minimum somewhere. Hence,

$$
f(\mathbf{x}) \geq C
$$

STEP 2 At each step $f\left(\mathbf{x}_{k+1}\right)<f\left(\mathbf{x}_{k}\right)$ and we have that f is bounded from below, so $\lim _{k \rightarrow \infty} f\left(\mathbf{x}_{k}\right)$ must converge (but may not be a minimizer.) Let \bar{f} be the limit.
step 3 Things get a little tricker here. Note that

$$
f\left(\mathbf{x}_{0}\right)-\bar{f}=\sum_{k=0}^{\infty}\left[f\left(\mathbf{x}_{k}\right)-f\left(\mathbf{x}_{k+1}\right)\right]
$$

by a telescoping series.
Let's use our conditions.
By the line search, $f\left(\mathbf{x}_{k}\right)-f\left(\mathbf{x}_{k+1}\right) \geq-\mu \alpha_{k} \mathbf{p}_{k}^{T} \mathbf{g}\left(\mathbf{x}_{k}\right)$.
By sufficient descent, $\mathbf{p}_{k}^{T} \mathbf{g}\left(\mathbf{x}_{k}\right) \geq-\varepsilon\left\|\mathbf{p}_{k}\right\|\left\|\mathbf{g}\left(\mathbf{x}_{k}\right)\right\|$.
By gradient relatedness, $\left\|\mathbf{p}_{k}\right\| \geq m\left\|\mathbf{p}_{k}\right\|$.
Thus

$$
f\left(\mathbf{x}_{0}\right)-\bar{f} \geq \sum_{k=0}^{\infty} \mu \alpha_{k} \varepsilon m\left\|\mathbf{g}\left(\mathbf{x}_{k}\right)\right\|^{2}
$$

Because $f\left(\mathbf{x}_{0}\right)-\bar{f} \leq f\left(\mathbf{x}_{0}\right)-C<\infty$, this sum must converge, and thus

$$
\lim _{k \rightarrow \infty} \alpha_{k}\left\|\mathbf{g}\left(\mathbf{x}_{k}\right)\right\|^{2}=0
$$

(All the other terms in the limit were positive constants.)
STEP 4 At this point, we haven't used the "backtracking" piece of the line-search algorithm yet. So we'll see that here to show that small steps aren't too small.

If $\alpha_{k}<1$, then we know that $2 \alpha_{k}$ violated sufficient decrease:

$$
f\left(\mathbf{x}_{k}+2 \alpha_{k} \mathbf{p}_{k}\right)-f\left(\mathbf{x}_{k}\right)>2 \mu \alpha_{k} \mathbf{p}_{k}^{T} \mathbf{g}(\mathbf{x}) .
$$

By a theorem about Lipschitz functions,

$$
f\left(\mathbf{x}_{k}+2 \alpha_{k} \mathbf{p}_{k}\right)-f\left(\mathbf{x}_{k}\right)-2 \alpha_{k} \mathbf{p}_{k}^{T} \mathbf{g}(\mathbf{x}) \leq \frac{1}{2} L\left\|2 \alpha_{k} \mathbf{p}_{k}\right\|^{2}
$$

By rearrangement, we have:

$$
f\left(\mathbf{x}_{k}\right)-f\left(\mathbf{x}_{k}+2 \alpha_{k} \mathbf{p}_{k}\right) \geq-2 \mu \alpha_{k} \mathbf{p}_{k}^{T} \mathbf{g}(\mathbf{x})-2 L\left\|\alpha_{k} \mathbf{p}_{k}\right\|^{2} .
$$

If we add this to our starting inequality:

$$
f\left(\mathbf{x}_{k}+2 \alpha_{k} \mathbf{p}_{k}\right)-f\left(\mathbf{x}_{k}\right)>2 \mu \alpha_{k} \mathbf{p}_{k}^{T} \mathbf{g}(\mathbf{x})
$$

then the left hand side cancels and

$$
0 \geq-2 \alpha_{k} \mathbf{p}_{k}^{T} \mathbf{g}(\mathbf{x})-2 L\left\|\alpha_{k} \mathbf{p}_{k}\right\|^{2}+2 \mu \alpha_{k} \mathbf{p}_{k}^{T} \mathbf{g}(\mathbf{x})
$$

or

$$
\alpha_{k} L\left\|\mathbf{p}_{k}\right\|^{2} \geq-(1-\mu) \mathbf{p}_{k}^{T} \mathbf{g}(\mathbf{k})
$$

Sufficient descent and gradient relatedness let us play the same tricks with $\mathbf{p}_{k}^{T} \mathbf{g}(\mathbf{k})$, so we have

$$
\alpha_{k} L\left\|\mathbf{p}_{k}\right\|^{2} \geq(1-\mu) \varepsilon m\left\|\mathbf{g}\left(\mathbf{x}_{k}\right)\right\|^{2} .
$$

Consequently,

$$
\alpha_{k} \geq \gamma\left\|\mathbf{g}\left(\mathbf{x}_{k}\right)\right\|^{2} \quad \gamma=\frac{(1-\mu) \varepsilon m}{M^{2} L}>0 .
$$

step $5 \quad$ Because $\lim _{k \rightarrow \infty} \alpha_{k}\left\|\mathbf{g}\left(\mathbf{x}_{k}\right)\right\|^{2}=0$ and α_{k} doesn't get too small, i.e.

$$
\alpha_{k} \geq \min \left(1, \gamma\left\|\mathbf{g}\left(\mathbf{x}_{k}\right)\right\|^{2}\right)
$$

then the norm must go to zero for this limit to exist.

Here's the result, if f has Lipschitz gradients, with constant L, then $\mid f(\mathbf{y})-f(\mathbf{x})-$ $\mathbf{g}(x)^{T}(\mathbf{y}-\mathbf{x}) \mid \leq 1 / 2 L\|\mathbf{y}-\mathbf{x}\|^{2}$. I can prove this using a Taylor series and Cauchy Schwartz without the extra factor of $1 / 2$, but not with that factor.

