
Sec. 25.3 Configuration In Xinu 613

25.3 Configuration In Xinu

Because it runs as an embedded system, Xinu follows a static configuration ap-
proach, with the majority of configuration occurring when the system is compiled and
linked. Of course, even in some embedded systems, part of the configuration must be
postponed until system startup. For example, some versions of Xinu calculate the size
of memory during system initialization. Others use dynamic configuration to detect the
presence of a real-time clock. As we have seen, some bus hardware chooses IRQs and
device addresses when the bus is powered on. On such hardware, Xinu must wait until
it runs to find the interrupt vector addresses and device CSR addresses.

To help manage configuration and to automate the selection of device driver
modules, Xinu uses a separate configuration program. Named config, the program is
not part of the operating system, and we do not need to examine the source code. In-
stead, we will look at how config operates: it takes an input file that contains specifica-
tions, and produces output files that become part of the operating system code. The
next sections explain the configuration program and show examples.

25.4 Contents Of The Xinu Configuration File

The config program takes as input a text file named Configuration. It parses the
input file, and generates two output files: conf.h and conf.c. We have already seen the
output files, which contain defined constants for devices and a definition of the device
switch table.†

The Xinu configuration file is a text file, divided into three sections. The sections
are separated by lines that contain two percent characters (%%). The three sections are:

d Section 1: Type declarations for device types

d Section 2: Device specifications for specific devices

d Section 3: Symbolic constants

25.4.1 Section 1: Type Declarations

The motivation for a type declaration arises because a system may contain more
than one copy of a particular hardware device. For example, a system may contain two
UART devices that both use the tty abstraction. In such cases, a set of functions that
comprise a tty driver must be specified for each UART. Entering the specification
many times manually is error-prone, and can lead to inconsistencies. Thus, the type
section allows the specification to be entered once and assigned a name that is used
with both devices in the device specification section.

Each type declaration defines a name for the type, and lists a set of default device
driver functions for the type. The declaration also allows one to specify the type of
hardware with which the device is associated. For example, the type declaration:

33333333333333333333333333333333

†File conf.h can be found on page 267, and conf.c can be found on page 279.

