
Sec. 13.12 Clock Interrupt Processing 251

Clkhandler begins by decrementing local variable count1000, which counts from
1000 down to 0. When count1000 reaches zero, one second (i.e., 1000 ms.) has
elapsed, so clkhandler increments global variable clktime, which stores the time in
seconds since the system booted. Clktime is used to provide the date (e.g., it is used by
the Xinu shell command date).

Once it has handled incrementing global counters, clkhandler performs two tasks
related to processes: sleeping processes and time slicing. To manage sleeping
processes, clkhandler decrements the time remaining on the first process in sleepq (pro-
vided sleepq is nonempty). If the remaining delay reaches zero, clkhandler calls wake-
up, which removes all processes from the sleep queue that have a zero delay. As we
have seen, wakeup makes the processes ready. Finally, clkhandler decrements the
preemption counter, calling resched if the preemption counter reaches zero.

13.13 Clock Initialization

Clock initialization can be divided into two conceptual parts: initialization related
to the operating system and initialization related to the underlying clock hardware. In
terms of the operating system, the clock initialization code performs three steps. First,
it allocates a queue to hold the delta list of sleeping processes, and stores the queue ID
in global variable sleepq. Second, it initializes the preemption counter, preempt to
QUANTUM. Third, the code initializes global variable clktime, which gives the seconds
since the system booted, to zero.

In terms of clock hardware initialization, the details vary widely among platforms.
On the simplest systems, the clock hardware is completely preconfigured — both the in-
terrupt vector and clock rate are hardwired. On most systems, the hardware is
parameterized, which means the operating system can control the rate at which inter-
rupts are generated. The operating system, may also be able to assign an interrupt vec-
tor.

Both the Galileo and BeagleBone Black platforms have configurable clock
hardware. On the Galileo, the operating system must assign an interrupt vector, set the
mode of the clock, and set the exact clock rate. Our code calls set_evec to configure
clkdisp to be the function that receives interrupts. It then uses an outb call to configure
the clock as a 16-bit timer. Finally, our code uses two calls of outb to configure the
16-bit rate register to 1193, which will cause the clock to interrupt once per millisecond.
The clock initialization code for the Galileo can be found in file clkinit.c.

