
Sec. 12.6 ARM Exception Vectors Using Code 219

expjmpinstr:

ldr pc, [pc, #24]

The last statement of the file is the relative jump instruction. We use the assem-
bler to create the instruction, which is both easier to read and less prone to errors than
defining a constant.

12.7 Assignment Of Device Interrupt Vector Numbers

The positions of exceptions in an exception vector are chosen when a system is
designed and never change. For example, we said that the Galileo hardware is built so
an illegal instruction error always raises exception 5. On the BeagleBone Black, an ille-
gal instruction raises exception 6. However, IRQ values cannot be preassigned unless
the set of devices is fixed when the hardware is built (e.g., an SoC that has three de-
vices). To understand why, observe that most computer systems allow an owner to pur-
chase and install new device hardware. To accommodate an arbitrary set of devices,
three basic approaches have been used for IRQ assignment:

d Manual device configuration

d Automated assignment during bootstrap

d Dynamic assignment for pluggable devices

Manual device configuration. On early hardware, a human had to assign a unique
IRQ to each device before the device was connected to a computer. Typically, the as-
signment was made using switches or wire jumpers on the device circuit board. Once
an assignment was made to the hardware, the operating system had to be configured to
match the hardware. Manual assignment had the problems of being tedious and error-
prone — if a human accidentally assigned the same IRQ to two different devices, or the
vector number configured into the operating system did not match the IRQ value con-
figured into device hardware, devices would fail to operate correctly.

Automated assignment during bootstrap. As bus hardware became more sophisti-
cated, techniques were developed that automated interrupt vector assignments. Au-
tomated assignment requires programmable devices. That is, the operating system uses
the bus to find devices that are attached to the bus, and assigns each device an IRQ. In
essence, programmable devices allow the paradigm to be reversed: instead of assigning
an IRQ to a device and then configuring the operating system to match the assignment,
programmable devices allow the operating system to choose an IRQ and then assign the
number to the device. Because the operating system handles assignment when a com-
puter boots, the automated approach eliminates human error, and makes it possible for
users to attach new hardware to their computer without understanding IRQ assignment.

Dynamic assignment for pluggable devices. A final approach is used to accommo-
date devices that can be plugged into a computer while the operating system is running.

