
Location-sensitive Query Auto-completion

Chunbin Lin†, Jianguo Wang†, Jiaheng Lu‡

† University of California, San Diego ‡ University of Helsinki, Finland
† {chunbinlin, csjgwang}@cs.ucsd.edu ‡ jiaheng.lu@helsinki.fi

ABSTRACT
This paper studies the location-sensitive auto-completion
problem. We propose an efficient algorithm SQA running
on a native index combining both IR-tree and Trie index.
The experiments on real-life datasets demonstrate that SQA
outperforms baseline methods by one order of magnitude.

1. INTRODUCTION
The pervasiveness and importance of spatial keyword search

has sparked a lot of research work on the topic. However,
they ignore the fact that typing meaningful spatial keyword
queries is a time-consuming and error-prone process, espe-
cially on mobile devices. Query auto-completion [4, 5] is a
popular feature of web search engines that aims to assist
users to formulate queries faster and avoid spelling mistakes
by presenting them with possible completions as soon as
they start typing.
Motivation. However, existing auto-completion techniques
are not location sensitive (or spatial-aware). They only con-
sider the text descriptions while ignoring the spatial infor-
mation. For example, a user in San Diego types“Uni” to for-
mulate a query. One of the expected queries is“University of
California, San Diego”. However, existing auto-completion
algorithms may return “University of California, Los Ange-
les” as a suggestion, which is more than 100 miles far away
from the user. A successful spatial keyword search system
should provide efficient location sensitive auto-completion
feature to help users formulate a meaningful query. More
precisely, given a query prefix (a prefix that a user is typ-
ing) and a location, which can be obtained automatically
by tracking the GPS signal of the mobile devices, the an-
swer is a list of ranked spatial objects whose distances to
the given location are bounded by a threshold value and the
text descriptions have prefixes matching the query string.
Then users can choose one from the list to complete the
query. The challenges are (i) how to efficiently return such
a suggestion list and (ii) how to rank the objects within the
list.

c©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.
WWW 2017 Companion, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4914-7/17/04.
http://dx.doi.org/10.1145/3041021.3054205

.

Contribution. In this paper we study the location-sensitive
(or spatial-aware) query auto-completion problem. We pro-
pose an efficient algorithm, called SQA, running on a na-
tive index structure, which combines a spatial index, e.g.,
R-tree [1] and Trie trees [2]. We also define a new rank-
ing function for the auto-completion answers. We conduct
experiments to evaluate the performance of proposed algo-
rithms, which demonstrate that SQA outperform the base-
lines by one order of magnitude.

2. PROBLEM STATEMENT
Consider a geo-textural database D where each object

o ∈ D is defined as a tuple (o.loc, o.doc), where o.loc is a
location descriptor in multidimensional space (For example,
(longitude, latitude) in a 2-dimensional geographic space)
and o.doc is a text that describes the object (e.g., “Univer-
sity of California, San Diego”). Given a query q={`, s} where
` refers to a spatial point and s refers to a string term typed
by users. The Location Sensitive Auto-Completion prob-
lem (LSAC) is to find a set of ranked objects O = o1, ..., ok,
such that dis(oi.loc, q.`) < τ for any i ∈ [1, k], where dis(a,b)
means the Euclidean distance of spatial points a and b, τ is a
given threshold value, and the prefix of oi.doc matches q.s.
The returned objects are ranked according to the ranking
function defined below.

Ranking function. We derive a ranking function F as
a linear interpolation of normalized factors for ranking an
object o with regard to a query q:

F(o, q) = α
dis(o.loc, q.`)

maxD
+ (1− α)

o.Score

maxS

where α ∈ (0, 1) is a parameter used to balance spatial prox-

imity and the relevancy of other features. dis(o.loc,q.`)
maxD

is the

normalized distance between objects o and q. o.Score
maxS

is the
normalized score aggregated from several features, e.g., user
rating, user feedback, and price. o.Score = 0 if none of the
above features are provided.

3. SQA ALGORITHM
In this section, we first present the index structure, then

describe the SQA algorithm.
Index structure. Consider a geo-textural database D, we
build an efficient index, called RT-tree, to index all the ob-
jects including the spatial information and text information.
RT-tree consists of two components: (1) an R-tree in the top
and (2) a trie tree for each leaf-node of the R-tree.
R-tree. An R-tree is efficient to find close spatial objects to
a query location. During building an R-tree, spatial objects

819

R5 R6R7:

R1 R2R5: R3 R4R6:

O5

O1

O2

O4

O3

O8

O6

O7

R1

R2

R3

R4

R5

R6

R7
(a) Objects and

bounding rectangles

Object
O1

O2

O3

O4

O5

O6

O7

O8

Terms
mnt
mt

abcd
abgh
www
ucsd
ucla

abcek
(b) Text information

a
b

c
d ek

gh

m
t nt

www
u
c

sd la

(c) Index structure

R-tree

Trie index

Figure 1: RT index structure.

are first abstracted as minimum bounding boxes (MBBs).
Spatial objects whose MBBs are closely located are clustered
in leaf nodes. Then leaf nodes with closely located MBBs
are grouped to form non-leaf nodes. This grouping process
propagates until the root node is formed.
Trie-tree. A trie-tree is efficient in obtaining strings match-
ing a query prefix. In particular, in a trie-tree, each string
corresponds to a unique path from the root of the trie to a
leaf node.

Dislike the existing R-tree based spatial indexes, e.g., IR-
tree [3] and WIBR-tree [6], RT-tree maintains a trie tree to
index the textual part for each leaf node of the R-tree while
the existing R-tree based indexes maintain inverted lists for
the texts in the leaf nodes. Figure 1 (c) shows an example
RT-tree for the spatial objects (Figure 1(a)) and the texts
(Figure 1(b)).
SQA algorithm. We design an algorithm SQA to effi-
ciently answer spatial-aware query auto-completion queries.
SQA operates on the following three steps: (Step 1) find the
trie-tree T by traveling the R-tree at R based on q.` and τ ;
(Step 2) find strings in the subtree located at the node at T
that matches the prefix s and store them into O; and (Step
3) sort O based on the ranking function.

Note that, during query formulation, SQA only needs to
execute step 1 once for the first character. For the following
characters, SQA skips step 1 as the location of the user is
almost stable during the query formulation.

4. EXPERIMENTS
Experimental platform. All experiments were done on a
computer with a 4th generation Intel i7-4770 processor, 16
GB RAM, running Ubuntu 14.04.1. All the algorithms were
implemented in C++ using -O3 optimization.
Dataset. Our experiments are conducted on two real datasets:
WW and USA1. WW contains 60, 962 worldwide POIs (points
of interests) with both location and text, while USA has
35, 989 tweets with geo-locations.
Baseline methods. We implement two baseline methods:
(1) IS : Use the IR-tree index to get a list of objects close
to the query location, then check the prefix for each of the
object. (2) TS : Employ the Trie-tree index to get a list of
objects with the prefix matching the query term, then check
the distance to the query location for each object.
Performance evaluation. We first evaluate the perfor-
mance against the number of points within the bounded
distance. As shown in Figure 2, Seen from Figure 2, we
have the following observations:

1http://www.ntu.edu.sg/home/gaocong/datacode.htm

1. SQA outperforms IS and TS. In particular, it is about 5
times faster than IS and 100 times faster than TS.

2. TS stays the same with different distance while fixing
number of characters, since it always need to scan all the
points whose prefixes are matched.

3. The running time of IS increases with the increasing of
points as IS needs to do more prefix matchings with more
points.

 1

 10

 100

 1000

100 500 1000 5000 10000

Ti
m

e
C

os
t(m

s)

of points

SQA
IS

TS

 1

 10

 100

 1000

1000 2000 3000 4000 5000

Ti
m

e
C

os
t(m

s)

of points

SQA
IS

TS

(a) WW (b) USA

Figure 2: Time cost (ms) (log-scale). Varying # of
points within the distance while fixing # of char-
acters to be 2.

5. RELATED WORKS
Auto-completion has been widely used in many applica-

tions such as XML search [4], Graph Search [7] and web
search [5]. However, none of them is location sensitive.
The only relevant previous work providing location sensi-
tive auto-completion is MESA [8]. The goal of MESA is
to support error-tolerant auto-completion over geo-textual
data, which is different from this paper. In this paper we fo-
cus on providing efficient location sensitive auto-completion
with exact prefix matching. In addition, the index structures
are different as well as the ranking functions.

6. CONCLUSION
In this paper we proposed an efficient algorithm to solve

the location-sensitive query auto-completion problem. Ex-
periments demonstrate the high performance of the algo-
rithm.

7. REFERENCES
[1] L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial keyword

query processing: An experimental evaluation. PVLDB,
6(3):217–228, 2013.

[2] S. Ji, G. Li, C. Li, and J. Feng. Efficient interactive fuzzy
keyword search. In WWW, pages 371–380, 2009.

[3] Z. Li, K. C. Lee, B. Zheng, W.-C. Lee, D. Lee, and X. Wang.
Ir-tree: An efficient index for geographic document search.
TKDE, 23(4):585–599, 2011.

[4] C. Lin, J. Lu, T. W. Ling, and B. Cautis. Lotusx: a
position-aware xml graphical search system with
auto-completion. In ICDE, pages 1265–1268, 2012.

[5] B. Mitra, M. Shokouhi, F. Radlinski, and K. Hofmann. On user
interactions with query auto-completion. In SIGIR, pages
1055–1058, 2014.

[6] D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen. Joint top-k spatial
keyword query processing. TKDE, 24(10):1889–1903, 2012.

[7] P. Yi, B. Choi, S. S. Bhowmick, and J. Xu. Autog: A visual
query autocompletion framework for graph databases. PVLDB,
9(13):1505–1508, 2016.

[8] Y. Zheng, Z. Bao, L. Shou, and A. K. H. Tung. MESA: A map
service to support fuzzy type-ahead search over geo-textual data.
PVLDB, 7(13):1545–1548, 2014.

820

