
The VLDB Journal
DOI 10.1007/s00778-017-0485-2

REGULAR PAPER

Optimal algorithms for selecting top-k combinations of attributes:
theory and applications

Chunbin Lin1 · Jiaheng Lu2 · Zhewei Wei3 · Jianguo Wang1 · Xiaokui Xiao4

Received: 21 February 2017 / Revised: 3 September 2017 / Accepted: 30 September 2017
© Springer-Verlag GmbH Germany 2017

Abstract Traditional top-k algorithms, e.g., TA and NRA,
have been successfully applied in many areas such as
information retrieval, data mining and databases. They are
designed to discover k objects, e.g., top-k restaurants, with
highest overall scores aggregated from different attributes,
e.g., price and location. However, new emerging applications
like query recommendation require providing the best combi-
nations of attributes, instead of objects. The straightforward
extension based on the existing top-k algorithms is pro-
hibitively expensive to answer top-k combinations because
they need to enumerate all the possible combinations, which
is exponential to the number of attributes. In this article, we

This work is partially supported by NSF BIGDATA 1447943,
Academy of Finland (310321), NSF China (61472427,61502503),
DSAIR center in NTU and Grant MOE2015-T2-2-069 Singapore.

B Chunbin Lin
chunbinlin@cs.ucsd.edu

Jiaheng Lu
jiaheng.lu@helsinki.fi

Zhewei Wei
zhewei@ruc.edu.cn

Jianguo Wang
csjgwang@cs.ucsd.edu

Xiaokui Xiao
xkxiao@ntu.edu.sg

1 Department of Computer Science and Engineering,
University of California, San Diego, USA

2 Department of Computer Science, University of Helsinki,
Helsinki, Finland

3 School of Information, Renmin University of China, Beijing,
China

4 School of Computer Science and Engineering, Nanyang
Technological University, Singapore, Singapore

formalize a novel type of top-k query, called top-k,m, which
aims to find top-k combinations of attributes based on the
overall scores of the top-m objects within each combination,
where m is the number of objects forming a combination.
We propose a family of efficient top-k,m algorithms with
different data access methods, i.e., sorted accesses and ran-
dom accesses and different query certainties, i.e., exact query
processing and approximate query processing. Theoretically,
we prove that our algorithms are instance optimal and ana-
lyze the bound of the depth of accesses. We further develop
optimizations for efficient query evaluation to reduce the
computational and the memory costs and the number of
accesses. We provide a case study on the real applications
of top-k,m queries for an online biomedical search engine.
Finally, we perform comprehensive experiments to demon-
strate the scalability and efficiency of top-k,m algorithms on
multiple real-life datasets.

Keywords Top-k query · Top-k,m query · Instance optimal
algorithm

1 Introduction

Efficient processing of top-k queries is a crucial requirement
inmany applications involvingmassive amounts of data. Tra-
ditional top-k algorithms [4,5,9,10,18,22,29,38,39] have
obtained great success in finding k independent objects with
highest overall scores aggregated from different attributes.
For instance, given two ranked lists of prices and locations
for restaurants, existing top-k algorithms are efficient in find-
ing top-k restaurants with highest overall scores of prices and
locations.

However, many applications in recommendation systems
require finding k combinations instead of k independent

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-017-0485-2&domain=pdf
http://orcid.org/0000-0002-7068-9929


C. Lin et al.

objects with highest overall scores. For example, given a col-
lection of clothes, shoes and watches, each item is associated
with a ranked list of (UserID, Score) pairs.1 A recommen-
dation task is to recommend the best (cloth, shoe, watch)
combination to maximize the overall scores of users who
purchased this combination before. Note that the scores from
users who have purchased the whole combination (not only a
single item) are important, as they consider not only the indi-
vidual factors of each item, e.g., price, but also the holistic
factors like visual appearance [16], e.g., best matched colors
and styles. In this paper, we model such combination selec-
tion as top-k,m problems,whichfind top-k combinationswith
the highest overall scores based on the scores of their top-m
objects (e.g., top-m users) by amonotonic aggregate function
(e.g., sum).

Let us consider another example of NBA data in Fig. 1:
There are three groups, i.e., forward, center, and guard, and
each group contains multiple athletes. Each athlete is asso-
ciated with a list of (gameID, score) pairs.2 For example,
(G01, 9.31) in the F1 list means the athlete attended game
G01 and got an overall score 9.31.Assume a basketball coach
plans to select a good (forward, center, guard) combination
to build a mini-team for a competition by considering their
historical performance in games. Suppose the coach consid-
ers the sum of the scores of top-2 games for each possible
combination. We can model this problem as a top-k,m prob-
lem again, i.e., it selects the top-k combinations of athletes
according to their best top-m aggregate scores for games
where they played together. In this example, it is a top-
1, 2 problem. As illustrated in Fig. 1, F2C1G1 is the best
combination of athletes since the top-2 games in which the
three athletes played together are G02 and G05, and 40.27
(= 21.51+ 18.76) is the highest overall score (w.r.t. the sum
of the top-2 scores) among all eight combinations.3 There-
fore, we say that the answer of the top-1, 2 query in Fig. 1 is
the combination “F2C1G1.”

Top-k,m problems have many other real-life applications
such as trip selection and keyword query refinement, which
will be described in details in Sect. 4.

1.1 Challenges

Toanswer a top-k,m query, onemethod (a baseline approach)
is to extend the state-of-the-art top-k algorithms, e.g., the
threshold algorithm (TA) [10] in the following way: (Step 1)
Enumerate all the possible combinations. (Step 2) Obtain the
top-m objects and their associated scores for each combina-
tion basedonTA. (Step3)Calculate the scores by aggregating

1 Lists are sorted by scores decreasingly.
2 The score is computed by an aggregation of various scoring items
provided by the NBA for the corresponding game.
3 The top-2 games of each combination are shown in Fig. 1b.

(a)

(b)

Fig. 1 Example NBA data. The answer for the top-1, 2 query is
F2C1G1. Values in bold font indicate tuples contributing to the score
of this best combination

the scores of the top-m objects for each combination and
return the top-k combinations with highest overall scores.
The main limitation of the baseline method is that it needs to
compute the top-m objects for each combination. The final
results cannot be returned unless all the top-m objects are
obtained for each combination. In this paper, we propose a
new family of efficient top-k,m algorithms which avoid the
expensive computationof top-m objects of each combination.

1.2 Contributions

The key contributions of this article are as follows:

1. We propose a new type of top-k query, called top-k,m
query, targeting at finding best k attribute combinations
according to the overall scores of the corresponding top-
m objects. To demonstrate the applicability of top-k,m
queries, we describe several real-life applications.

2. We study the top-k,m queries in scenarios where both
sorted accesses and random accesses are allowed. We
show that the baseline method ETA, which extends
the state-of-the-art top-k algorithm TA (threshold algo-
rithm), is not instance optimal. Then, we propose two
provably instance optimal algorithms ULA and ULA+,
where ULA avoids the need of computing top-m objects
for each combination by judiciously calculating the upper
bound and lower bound for them, while ULA+ adds a
series of optimization methods into ULA to prune away
useless combinations without reading any tuples in the
associated lists and avoid useless sorted and random
accesses in lists. In addition, we show that the optimality
ratios of ULA and ULA+ are tight. Furthermore, we pro-
vide a deep analysis of the expected depth of accesses for
ULA and ULA+, which can be viewed as a quantitative
analysis result to the instance optimality.

123



Optimal algorithms for selecting top-k combinations of attributes: theory and applications

3. We investigate top-k,m queries where only sorted acc-
esses are allowed, i.e., random accessed are forbidden.
We show that the baseline method ENRA, which extends
the state-of-the-art top-k algorithm NRA, is not instance
optimal. Therefore, we propose two provably instance
optimal algorithms NULA and NULA+ where NULA+
applies new optimizations to NULA in order to avoid
accessing unnecessary lists and computing unnecessary
bounds. Besides the instance optimality, we also prove
that the optimality ratios of NULA andNULA+ are tight.

4. We extend our top-k,m algorithms (ULA,ULA+, NULA
andNULA+) and the baselinemethods (ETAandENRA)
to the approximate environment where the exact top-k,m
answers are not required. We prove that the approxi-
mate algorithms extending from ULA, ULA+, NULA,
NULA+ are instance optimal.

5. We provide a case study on biomedical query refinement
to demonstrate how to apply top-k,m algorithms into
real-life problems.

6. Finally, we verify the efficiency and scalability of our
algorithms using four real-life datasets, including NBA
data, YQL trip-selection data, XML data and biomed-
ical data. We find that our top-k,m algorithms result
in order-of-magnitude performance improvements when
compared to baseline algorithms.

1.3 Paper organization

The rest of this article organized as follows. We describe
the related works in Sect. 2. Section 3 formally defines the
top-k,m problem, and Sect. 4 lists real-life applications of
top-k,m problems.We propose top-k,m algorithms support-
ing sorted access and random access in Sect. 5. In Sect. 6,
we introduce the top-k,m problemswith no random accesses
and propose efficient algorithms. We study the approximate
top-k,m problem in Sect. 7. Section 8 describes an applica-
tion scenario in details. We conduct experiments to evaluate
the performance of all the algorithms in Sect. 9. Finally, we
conclude this article in Sect. 10.

2 Related work

In this section, we review the related works on top-k algo-
rithm with multiple access models and then describe the new
contributions of this journal article compared to our previous
conference version [26].

2.1 Existing top-k algorithms

Top-k queries were studied extensively inmany areas includ-
ing relational databases, XML data and graph data [3,4,7,
8,10–12,17,20,23,24,28,31–34,37,40–43,45,46]. Notably,

Fagin et al. [10] present a comprehensive study of various
methods for top-k aggregation of ranked inputs. They iden-
tify two types of accesses to the ranked lists: sorted accesses
and random accesses. In particular, sorted accesses read the
tuple of lists sequentially and random accesses quickly locate
tuples whose ID has been seen by sorted access.4 For exam-
ple, in Fig. 1, at depth 1 (depth d means the number of tuples
seen under sorted access to a list is d), consider the com-
bination “F2C1G1”; the tuples seen by sorted access are
(G02, 8.91), (G05, 7.21), (G02, 6.59) and we can quickly
locate all tuples (i.e., (G02, 6.01), (G05, 7.54), (G05, 4.01))
whose IDs are G02 or G05 by random accesses.

2.1.1 Top-k algorithms with sorted and random accesses

For the case where both sorted and random accesses are
possible, a threshold algorithm (TA) [10] (independently pro-
posed in [14,31]) retrieves objects from the ranked inputs in
a round-robin fashion and directly computes their aggregate
scores by using random accesses to the lists where the object
has not been seen. Fagin et al. prove that TA is an instance-
optimal algorithm.

In this article, we study the top-k,m problem where both
sorted accesses and random accesses are allowed (Sect. 5).
Note that the straightforward extension of TA is inefficient
because it needs to enumerate all the possible combinations.

2.1.2 Top-k algorithms with no random accesses

There is a rich literature for top-k queries in scenarios where
random accesses are not allowed (e.g., [10,13,30]). The first
algorithm that only allows sorted access is stream-combine
(SC) proposed in [13]. SC reports only objects which have
been seen in all sources. In addition, an object is reported as
soon as it is guaranteed to be in the top-k set. In other words,
the algorithm does not wait until the whole top-k result has
been computed in order to output it, but provides the top-k
objects with their scores on-line.

[10] proposes an algorithm called “no random accesses”
(NRA), which presents stronger stop condition. NRA iter-
atively retrieves objects from the ranked inputs in a round-
robin fashion, and maintains the upper and lower bounds for
those objects, the final results are guaranteed if the lower
bounds of the objects in Wk (a set of k objects with highest
lower bounds) are larger than the upper bounds of the other
objects outsideWk . A difference between SC andNRA is that
SC does not maintainWk , but only the top-k objects with the
highest upper bounds.

[30] proposes a more generic rank aggregation operator
J*, which is appropriate for merging ranked inputs based on
a join condition on attributes other than the scores. J* can

4 Hash indexes can be built to achieve the goal of random accesses.

123



C. Lin et al.

be used as an operator in a query plan which joins multiple
ranked inputs. However, [18] shows that J* is less efficient
than NRA for top-k queries and provides a “partially” non-
blocking version of NRA, called NRA-RJ, which outputs
an object as soon as it is guaranteed to be in the top-k (like
SC), however, without necessarily having computed its exact
aggregate score (like NRA). If exact aggregate scores are
required, [19] proposes another version of NRA that outputs
exact scores on-line (like SC) and can be applied for any join
predicate (like J*). This algorithm uses a threshold which
is inexpensive to compute, appropriate for generic rank join
predicates. However, it incurs more object accesses than nec-
essary in top-k queries.

Another example of no random access top-k algorithms
is LARA proposed by Mamoulis et al. [27], which imposes
two phases (growing and shrinking) that any top-k algorithm
with no random accesses (including NRA, SC, J*, NRA-
RJ) should go through. In the growing phase, the set of top-k
candidates grows andnopruning canbeperformed.However,
in the shrinking phase, new accessed objects would not be
stored anymore, and the set of candidates shrinks until the
top-k result is finalized. The condition to transform from
growing phase to shrinking phase is that the smallest lower
bound in Wk is no less than the current threshold value. In
addition, LARA employs a lattice-based data structure to
keep a leader object for each subset of the ranked inputs, and
leader objects provide upper bound scores for objects that
have not been seen yet on their corresponding inputs.

In this article, we study the problem of top-k,m queries
with no random accesses (Sect. 6), which cannot be effi-
ciently answered by the existing top-k algorithms, say NRA,
SC, J* and LARA.

2.1.3 Other top-k algorithms

There is also a rich literature for top-k queries in other envi-
ronments, such as (1) no sorted access on restricted lists [4,5],
(2) ad hoc top-k queries [22,44] and (3) no need for exact
aggregate score [18,29,39]. For more information about top-
k query evaluation, readers may refer to an excellent survey
paper [21]. In this article, we study the approximate top-
k,m problems where only approximate answers are needed
(Sect. 7). We propose instance optimal algorithms that pro-
duce approximate answers with error guarantees.

2.2 Compared with the previous preliminary version

This article is an extension from our previous conference
version [26]. This work substantially improves the previous
version by adding amount of non-trivial new contributions,
including new top-k,m problems and algorithms (Sects. 6, 7
and 8), theoretical results (Sect. 5.5), and new experiments
(Sect. 9).

3 Problem formulation

Given a set of groups G1,…,Gn where each group Gi con-
tains multiple elements ei1,…,eili , we assume that each
element e is associated with a ranked list Le, where each
tuple τ ∈ Le is composed of an ID ρ(τ) and a score σ(τ).
The list is ranked by the scores in descending order. Let
ε = (e1i , enj ) ∈ G1 × . . . × Gn denote an element of the
cross-product of the n groups, hereafter called combination.
For instance, recall Fig. 1, every three athletes from different
groups form a combination (e.g., {Kevin Durant, Dwight
Howard, Kobe B. Bryant}).

Given a combination ε, a match instance Iε is defined as
a set of tuples based on some arbitrary join condition on IDs
of tuples from lists. Each tuple in a match instance should
come from different groups. As seen in Fig. 1, given a combi-
nation {Kevin Durant, Dwight Howard, Kobe B. Bryant},
{(G01, 9.31), (G01, 3.81), (G01, 3.38)} is a match instance
for the game G01. Further, we define two aggregate scores:
tScore and cScore, that is, the score of each match instance
Iε is calculated by tScore, and the top-m match instances are
aggregated to obtain the overall score, called cScore. More
precisely, given a match instance Iε defined on ε,

tScore(Iε) = F1 (σ (τ1), . . . , σ (τn))

where F1 is a function: Rn → R and τ1, . . . , τn form the
matching instance Iε . Further, given an integerm and a com-
bination ε,

cScore(ε,m) = max
{
F2

(
tScore(Iε

1 ), . . . , tScore(Iε
m)

)}

where F2 is a function R
m → R and Iε

1 ,…, Iε
m are any

m distinct match instances defined on the combination ε.
Intuitively, cScore returns the maximum aggregate scores of
m match instances. Following common practice (e.g., [10]),
we require bothF1 andF2 functions to bemonotonic, i.e., the
greater the individual score, the greater the aggregate score.
This assumption captures most practical scenarios, e.g., if
one athlete has a higher score (and the other scores remain
the same), then the whole team is better.

Definition 1 (top-k,m problem) Given groups G1, . . . , Gn ,
two integers k and m, and two score functions F1 and F2,
the top-k,m problem is an (n + 4)-tuple (G1, . . . ,Gn, k,m,

F1,F2). A solution is an ordered set S containing the top-k
combinations ε = (e1i , . . . , enj ) ∈ G1 × . . . × Gn ordered
by cScore(ε,m).

Example 1 Consider a top-1, 2 query in Fig. 1, and assume
thatF1 andF2 are sum. The final answerS is {F2C1G1}. This
is because the top-1 match instance I1 of F2C1G1 consists
of tuples (G02, 8.91), (G02, 6.01) and (G02, 6.59) of the
game G02 with tScore 21.51 = 8.91+ 6.01+ 6.59. And the

123



Optimal algorithms for selecting top-k combinations of attributes: theory and applications

top second instance I2 consists of tuples whose game ID is
G05 with tScore 18.76 = 7.54+7.21+4.01. Therefore, the
cScore of F2C1G1 is 40.27 = 21.51 + 18.76, which is the
highest score among that of all combinations. ��

3.1 Novelty of top-k,m

It is important to note that top-k,m problems cannot be
reduced to existing top-k problems. The essential difference
between traditional top-k queries and our top-k,m problem
is that the top-k,m problem returns the top-k combinations
of elements, but the top-k problem returns the top-k objects.
Therefore, a top-k,m problem cannot be converted to a top-k
problem through a careful choice of the aggregate function.
In addition, contrarily to the top-k problem, a top-k,m query
also cannot be transformed into a SQL (nested) query, since
SQL queries return tuples, but our goal is to return element
combinations based on ranked inverted lists, which is not
supported in SQL language. Therefore, our top-k,m work,
which focuses on selecting and ranking sets of elements, is a
highly non-trivial extension of the traditional top-k problem.

To have a better understanding of top-k,m queries, we
can treat a top-k,m query as two different top-k join queries
executed in a pipelined way. More precisely, the first join
operation is to find m objects by joining tables with IDs and
tables with (ID, scores). Then, the second join operates self-
join on the result of the first join in order to get scores for
all the combinations, and then the top-k results are added to
the result set. Note that the straightforward implementation
of these two joins to answer a top-k,m query will result in
the problem of efficiency. In Sect. 5, we will propose several
optimized algorithms to solve this problem.

4 Applications

In this section, we provide several real application scenarios
of top-k,m queries to shed some light on the generality and
importance of top-k,m models in practice.

4.1 Application 1

Top-k,m queries have applications in recommendation sys-
tems, e.g., the trip recommendation [25,36] and the dress
collocation recommendation [15,16].

– Trip recommendationConsider a tourist who is interested
in planing a trip by choosing one hotel, one shopping
mall, and one restaurant in a city. Assume that we have
survey data provided by userswhomade trips before. The
data include three groups and each group have multiple
attributes (i.e., names of hotels, malls, or restaurants),
each of which is associated with a list of users’ IDs and

Fig. 2 Motivating example using Amazon data. Our purpose is to
choose one item from each of the three groups. The best combination
is C1S2W1, which achieves the highest overall scores by considering
their visual appearances, prices and ratings

grades. Top-k,m queries recommend top-k trips which
are combinations of hotels, malls, and restaurants based
on the aggregate value of the highestm scores of the users
who had the experience of this exact trip combination.

– Dress collocation recommendation Consider a customer
who wants to find a best (cloth, shoe, watch) combina-
tion. Suppose we have the purchased historical data in
Fig. 2. The recommendation task is to recommend the
best (cloth, shoe, watch) combination based on the over-
all scores of themost significant userswho purchased this
combination before. Top-k,m queries recommend top-k
combinations based on the aggregate value of the highest
m scores of the users who had purchased this combina-
tion. For example, the best combination in Fig. 2 for a
top-1,2 query is C1S2W1.

4.2 Application 2

Top-k,m queries are also useful in keyword query rewrit-
ing for search engines and databases. During the last decade,
there is an emerging trend of using keyword search in rela-
tional and XML databases for better accessibility to novice
users. But in a real application, it is often the case that a user
issues a keyword query Q which does not return the desired
answers due to the mismatch between terms in the query
and in documents. A common strategy for remedying this is
to perform some query rewriting, replacing query terms with
synonyms that provide bettermatches. Interestingly, top-k,m
queries find an application in this scenario. Specifically, for
each keyword (or phrase) q in Q, we generate a group G(q)

that contains the alternative terms of q according to a dictio-
nary which contains synonyms and abbreviations of q. For
example, see Fig. 3 for an example data tree in an XML
database. Given a query Q = 〈DB,UC Irvine,2002〉, we
can generate three groups:G1 = {“DB”, “database”},G2 =
{“UCI”, “UC Irvine”}, and G3 = {“2002”}. We assume that
each term inG(q) is associatedwith a list of document IDs or
node identifiers (e.g., JDewey IDs [6] inXMLdatabases) and
scores (e.g., information-retrieval scores such as tf-idf). The

123



C. Lin et al.

(a)

(b)

Fig. 3 An example illustrating XML query refinement using the top-k,m framework. The original query Q = 〈DB,UC Irvine,2002〉 is refined
into 〈DB,UCI,2002〉. Each term is associated with an inverted list with the IDs and weights of elements. Underlined numbers in the XML tree
denote term scores

goal of top-k,m queries is to find the top-k combinations (of
terms) by considering the corresponding top-m search results
in the database. Therefore, a salient feature of the top-k,m
model for the refinement of keyword queries is that it guaran-
tees that the suggested alternative queries have high-quality
results in the database within the top-m answers.

Remark Generally speaking, top-k,m queries are of use in
any context where one is interested in obtaining combina-
tions of attributes associated with ranked lists. Note that the
model of top-k,m queries offers great flexibility in problem
definitions tomeet the various requirements that applications
may have, in particular in the adjustment of them parameter.
For example, in the application to XML keyword search, a
user is often interested in browsing only the top few results,
say 10, which means we can let m = 10 to guarantee the
search quality of the refined keywords. In another applica-
tion, e.g., trip recommendation, if a tourist wants to consider
the average score of all users, then we can define m to be
large enough to take the scores of all users into accounts. (Of
course, in this case, the number of accesses and the compu-
tational cost are higher.)

5 Top-k,m algorithms with sorted and random
accesses

In this section, we study the top-k,m problems in the sce-
narios where both sorted accesses and random accesses are
allowed.

5.1 The baseline algorithm: ETA

To answer a top-k,m query, one straightforward method
(called extended TA, or ETA for short) is to first compute
all top-m results for each combination by some well-known
algorithms like the threshold algorithmTA [10] and then pick
the top-k combinations. However, this method has one obvi-
ous shortcoming: It needs to compute top-m results for each
combination and reads more inputs than needed. For exam-
ple, in Fig. 1, ETA needs to compute the top-2 scores for all
eight combinations (see Fig. 1b). Indeed, this method is not
an instance-optimal solution in this context. To address this
problem, we develop a set of provably optimal algorithms to
efficiently answer top-k,m queries.

5.2 Top-k,m algorithm: ULA

When designing an efficient top-k,m algorithm, informally,
we observe that a combination ε cannot contribute to the
final answer if there exist k distinct combinations whose
lower bounds are greater than the upper bounds of ε. To
understand this, consider the top-1,2 query in Fig. 1 again.
At depth 1, for the combination “F2C1G1,” we get two
match instances G02 and G05 through sorted and random
accesses. Then, the lower bound of the aggregate score (i.e.,
cScore) of “F2C1G1” is at least 40.27 (i.e., (7.54 + 7.21 +
4.01) + (8.91 + 6.01 + 6.59)). At this point, we can claim
that some combinations are not part of answers. This is the
case of “F2C2G1,” whose cScore is no more than 38.62

123



Optimal algorithms for selecting top-k combinations of attributes: theory and applications

(= 2×(8.91+3.81+6.59)). Since 38.62 < 40.27, F2C2G1

cannot be the top-1 combination. We next formalize this
observation by carefully defining lower and upper bounds of
combinations.We start by presenting threshold values, which
will be used to estimate the upper bounds for the unseen
match instances.

Definition 2 (threshold value) Let ε = (e1i , . . . , enj ) ∈
G1 × . . . × Gn be an arbitrary combination, and τi the
current tuple seen under sorted access in list Li . We
define the threshold value T ε of the combination ε to be
F1(σ (τ1), . . . , σ (τn)), which is the upper bound of tScore
for any unseen match instance of ε.

As an example, in Fig. 1a, consider the combination ε =
“F2C1G1,” at depth 1. The current tuples are (G02, 8.91),
(G05, 7.21), (G02, 6.59). Assume F1 = sum, we have for
threshold value T ε = 8.91 + 7.21 + 6.59 = 22.71.

Definition 3 (lower bound) Assume one combination ε has
seen m′ distinct match instances. Then, the lower bound of
the cScore of ε is computed as follows:

εmin =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F2(tScore(Iε
1 ), . . . , tScore(Iε

m′), 0, . . . , 0︸ ︷︷ ︸
m−m′

) m′ < m

max{F2(tScore(Iε
i ), . . . , tScore(Iε

j )
︸ ︷︷ ︸

m

)} m′ ≥ m

When m′ < m, we use the minimal score (i.e., zero) of
unseen m −m′ match instances to estimate the lower bound
of the cScore. On the other hand, when m′ ≥ m, εmin equals
the maximal aggregate scores of m match instances.

Definition 4 (upper bound) Assume one combination ε has
seen m′ distinct match instances, where there are m′′ match
instances (m′′ ≤ m′) whose scores are greater than or equal
to T ε . Then, the upper bound of the cScore of ε is computed
as follows:

εmax =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

F2(tScore(Iε
1 ), . . . , tScore(Iε

m′′),T ε, . . . ,T ε

︸ ︷︷ ︸
m−m′′

)

m′′ < m
max{F2(tScore(Iε

i ), . . . , tScore(Iε
j )

︸ ︷︷ ︸
m

)}

m′′ ≥ m

If m′′ < m, it means that there is still a chance that we
will see a new match instance whose tScore contributes to
the final cScore. Therefore, the computation of εmax should
be padded with m − m′′ copies of the threshold value (i.e.,
T ε), which is the upper bound of tScore for all unseen match
instances. Otherwise, m′′ ≥ m, meaning that the final top-m
results are already seen and thus εmax = cScore(ε,m) now.

Example 2 This example illustrates the computation of the
upper and lower bounds. See Fig. 1 again. Assume F1 and

F2 are sum, and the query is top-1, 2. At depth 1, the combi-
nation “F2C1G1” read tuples (G02, 8.91), (G05, 7.21), and
(G02, 6.59)by sorted accesses, and (G05, 7.54), (G02, 6.01),
(G05, 4.01) by random accesses. m′ = m = 2. There-
fore, the current lower bound of “F2C1G1” is 40.27 (i.e.,
(7.54+7.21+4.01)+(8.91+6.01+6.59) = 18.76+21.51),
since the two match instances of F2C1G1 are G02 and G05.
The threshold T F2C1G1 = 8.91 + 7.21 + 6.59 = 22.71 and
m′′ = 0, since 18.76 < 22.71 and 21.51 < 22.71. There-
fore, the upper bound is 45.42 (i.e., 22.71 + 22.71). In fact,
the final cScore of “F2C1G1” is exactly 40.27 which equals
the current lower bound. Note that the values of lower and
upper bounds are dependent of the depthwhereweare access-
ing. For example, at depth 2, the upper bound of “F2C1G1”
decreases to 41.78 (i.e., 21.51+ 20.27) and the lower bound
remains the same. ��

The following lemmas show how to use the above bounds
to determine if a combination ε can be pruned safely or con-
firmed to be an answer.

Lemma 1 (drop-condition) One combination ε does not
contribute to the final answers if there are k distinct com-
binations ε1,…,εk such that εmax < min{εmin

i | 1 ≤ i ≤ k}.
Proof The aggregate score of the top-m match instances is
no more than the upper bound of ε, i.e., cScore(ε,m) ≤
εmax. And ∀i ∈ [1, k], cScore(εi ,m) ≥ εmin

i holds, since
the εmin

i is the lower bound of εi . Therefore, cScore(ε,m) <

min{cScore(ε′
i ,m) | 1 ≤ i ≤ k}, which means that ε cannot

be one of the top-k answers, as desired. ��
Lemma 2 (hit-condition) One combination ε should be an
answer if there are at least Ncom−k (Ncom is the total number
of combinations) distinct combinations ε1,…,εNcom−k , such
that εmin ≥ max{εmax

i | 1 ≤ i ≤ Ncom − k}.
Proof The aggregate score of the top-m match instances of ε
is no less than the lower bound of ε, i.e., cScore(ε,m) ≥ εmin.
And ∀i ∈ [1, Ncom − k], εmax

i ≥ cScore(εi ,m). Therefore,
cScore(ε,m) ≥ max{cScore(εi ,m) | 1 ≤ i ≤ Ncom − k},
meaning that the top-m aggregate score of ε is larger than or
equal to that of other Ncom − k combinations. Therefore, ε

must be one of the top-k,m answers. ��
Definition 5 (termination) A combination ε can be termi-
nated if ε meets one of the following conditions: (i) the
drop-condition, (ii) the hit-condition, or (iii) ε has seen m
match instances whose tScores are greater than or equal to
the threshold value T ε .

Intuitively, one combination is terminated if we do not
need to compute its lower or upper bounds any further. The
first two conditions in the above definition are easy to under-
stand. The third condition means that we have found top-m

123



C. Lin et al.

match instances of ε. Note that we may not see top-m match
instances even if ε satisfies the drop- or hit-condition.

We are now ready to present a novel algorithm named
ULA (Upper bound andLower boundAlgorithm), that relies
on the upper and lower bounds of combinations. The ULA
algorithm is shown in Algorithm 1.

Algorithm 1: The ULA algorithm
Consider a top-k,m problem instance with n groups G1, . . . ,Gn ,
where each group has multiple lists Li j ∈ Gi .
(i) Do sorted access in parallel to each of the sorted lists Li j . As
a tuple τ is seen under sorted access in some list, do random
access to all other lists in G j ( j �= i) to find all tuples τ ′ such that
ρ(τ) = ρ(τ ′).
(i i) For each unterminated combination ε (by Definition 5),
compute εmin and εmax, and check if ε can be terminated now.
(i i i) If there are at least k combinations which meet the
hit-condition, then the algorithm halts. Otherwise, go to step (i).
(iv) Let Y be a set containing the k combinations (breaking ties
arbitrarily) when ULA halts. Output Y .

Example 3 Wecontinue the example of Fig. 1 to illustrate the
ULA algorithm. First, in step (i) (at depth 1), ULA performs
sorted accesses on one row for each list and does the cor-
responding random accesses. In step (ii) (at depth 1 again),
it computes the lower and upper bounds for each combi-
nation, and then three combinations F1C2G2, F2C2G1 and
F2C2G2 are safely terminated, since their upper bounds (i.e.,
εmax
F1C2G1

= 39.42, εmax
F2C2G1

= 38.62 and εmax
F2C2G2

= 39.64)

are less than the lower bound of F2C1G1 (εmin
F2C1G1

= 40.27).
Next, we go to step (i) again (at depth 2), as there is no com-
bination satisfying the hit-condition in step (iii). Finally, at
depth 4, F2C1G1 meets the hit-condition and the ULA algo-
rithm halts. To understand the advantage of ULA over ETA,
note that ETA cannot stop at depth 4, since F2C2G1 does
not yet obtain its top-2 match instances. Indeed, ETA stops
at depth 5 with 54 accesses, whereas ULA performs only 50
accesses. ��
Theorem 1 If the aggregation functions F1 and F2 are
monotone, then ULA correctly finds the top-k,m answers.

Proof Let Y be the results set in Step (iv) of ULA, we
claim that the cScore of each combination ε ∈ Y is larger
than that of ξ /∈ Y . In ULA, for each combination, the
score of any unseen match instance is no more than the
threshold value, since F1 is monotone. Thus, the aggregate
score of top-m match instances (i.e., cScore(ε,m)) must be
distributed in [εmin, εmax], since the F2 is required to be
monotone. Combinations would be added into Y only if they
meet hit-condition in Step (iii). Therefore, εmin ≥ ξmax(ε ∈
Y, ξ /∈ Y ). So we have cScore(ε,m) ≥ cScore(ξ,m), since
εmin ≤ cSocre(ε,m) and cScore(ξ,m) ≤ ξmax, as desired.

��

Theorem 2 ULA requires only bounded buffers, whose size
is independent of the size of the database.

Proof Other than a little bit of bookkeeping, all that ULA
must remember are the upper bound and lower bound for
each combination, and (pointers to) the objects seen at each
step. ��

5.2.1 Discussion

Note that in the ULA algorithm the output set Y is unordered
by cScore. This is because we do not compute the exact
cScore of combinations in the algorithm (which is in fact
one advantage of our algorithm). In the case where the out-
put set should be ordered by cScore, we need to extend ULA
in two aspects. First, in step (ii), if a combination meets hit-
condition, then we need to continuously maintain its lower
and upper bounds. Second, we add a new step to sort the
combinations in Y . We continue to access nodes for com-
binations in Y and maintain their upper and lower bounds.
We progressively output one combination ε ∈ Y to be the
exact top-k′ (k′ ≤ k) if εmin is no less than k − k′ upper
bounds of the other combinations in Y . In this way, all com-
binations can be output in order by cScore values. A merit
of this approach is that it still avoids the computation of the
exact cScore of combinations (as we will show later, it is still
an instance optimal algorithm in the class of algorithms with
ordered output).

5.3 Optimized top-k,m algorithm: ULA+

In this subsection, we present several optimizations to
minimize the number of accesses, memory cost, and compu-
tational cost of theULAalgorithmbyproposing an extension,
called ULA+. In a nutshell, we (i) completely avoid the need
of computing bounds for some combinations which are not
be part of final answers; and (ii) reduce the number of random
accesses and sorted accesses in three different levels.

Pruning combinations without computing the bounds The
ULA algorithm has to compute the lower and upper bounds
for each combination, which may be an expensive operation
when the number of combinations is large. We next propose
an approach which prunes away many useless combinations
safely without computing their upper or lower bounds.

We sort all lists in the same group by the scores of their
top tuples. Notice that all lists are sorted by decreasing order.
Intuitively, the combinations with lists containing small top
tuples are guaranteed not to be part of answers, as their scores
are too small. Therefore, we do not need to take time to
compute their accurate upper and lower bounds. We exploit
this intuitive observation by defining the precise condition
under which a combination can be safely pruned without

123



Optimal algorithms for selecting top-k combinations of attributes: theory and applications

computing its bounds. We first define a relationship between
two combinations called dominating.

Given a group G in a top-k,m problem instance, let Le

and Lt be two lists associatedwith attributes e, t ∈ G, we say
Le dominates Lt , denoted Le  Lt if Le.σ (τm) ≥ Lt .σ (τ1),
where τi denote the i th tuple in the list. That is, the score of
themth tuple in Le is greater than or equal to the score of the
first tuple in Lt .

Definition 6 (Dominating) A combination ε = {e1, . . . , en}
is said to dominate another combination ξ = {t1, . . . , tn}
(denoted ε � ξ ) if for every 1 ≥ k ≥ n, either ei = ti or
Lei � Lti holds, where ei and ti are two (possibly identical)
attributes of the same group Gi .

For example, in Fig. 4, there are twogroupsG1 andG2.We
say that the combination “A2B1” dominates “A3B2,” because
in the group G1, 7.1 > 6.3 and in G2, 8.2 > 8.0. In fact,
“A2B1” dominates all combinations of attributes from A3 to
An in G1 and from B2 to Bn in G2. Note that the lists in each
group here are sorted by the scores of the top tuples.

Lemma 3 Given two combinations ε and ξ , if ε dominates
ξ , then the upper bound of ε is greater than or equal to that
of ξ .

Proof If ε dominates ξ , then for every attribute e in ξ , if e /∈ ε,
then there is an attribute t in ε, s.t. the m-th tuple in the list
Le has a larger score than the first tuple in Lt . Therefore,
the upper bound of m match instances of ε is greater than
or equal to that of ξ . More formally, ε � ξ ⇒ ∀i, Lei ·
σ(τm) ≥ Lti · σ(τ1) ⇒ F1(Le1 · σ(τm),. . ., Len · σ(τm)) ≥
F1(Lt1 · σ(τ1), . . ., Ltn · σ(τ1)), since F1 is monotonic. So
m × (F1(Le1 · σ(τm), . . . , Len · σ(τm))) ≥ m × (F1(Lt1 ·
σ(τ1), . . . , Ltn · σ(τ1))). Note that εmax ≥ m × (F1(Le1 ·
σ(τm), . . . , Len · σ(τm))), since the threshold value and the
scores of the unseen match instances of ε are no less than
F1(Le1 · σ(τm), . . . , Len · σ(τm)). In addition, it is easy to
verify that ξmax ≤ m × (F1(Lt1 · σ(τ1), . . . , Ltn · σ(τ1))).
Therefore, εmax ≥ ξmax holds, as desired. ��

According to Lemma 3, if ε meets the drop-condition
(Lemma 1), it means the upper bound of ε is small, then
any combination ξ which is dominated by ε (i.e., ξ ’s upper
bound is even smaller) can be pruned safely and quickly.

To apply Lemma 3 in our algorithm, the lists are sorted in
descending order by the score of the first tuple in each list,
which can be done off-line. We first access m tuples sequen-
tially for each list and perform random accesses to obtain
the corresponding match instances. Then, we consider two
phases. (i) Seed combination selection. As the name indi-
cates, seed combinations are used to trigger the deletion of
other useless combinations. We pick the lists in descending
order and construct the combinations to compute their upper
and lower bounds until we find one combination ε which

Fig. 4 An example for Lemma 3

meets the drop-condition, then ε is selected as the seed com-
bination; (ii) Dropping useless combinations. By Lemma 3,
all combinations which are dominated by ε are also guaran-
teed not to contribute to final answers. For each group Gi ,
assuming that the seed combination ε contains the list Lai in
Gi , then we find all lists Lbi such that Lai � Lbi . This step
can be done efficiently as all lists are sorted by their scores of
first tuples. Therefore, all the combinations which are con-
structed from Lbi can be dropped safely without computing
their upper or lower bounds.

Example 4 See Fig. 4. Assume the query is top-1, 2 and
F1 = F2 = sum. The lists are sorted in descending order
according to the score of the first tuple. We access the lists
in descending order to find the seed combination, which is
ξ = (A2, B1) (ξmax = 2 × (7.1 + 8.2) = 30.6 < εmin,
ε = {A1, B1}). In G1, ∀i ∈ [3, n] L A2  L Ai (e.g.,
L A2 � L A3 , since 7.1 > 6.3). Similarly, in G2, ∀i ∈ [2, n]
LB1  LBi . Therefore, all combinations (Ai , Bj ) (∀i ∈
[3, n], j ∈ [2, n]), as well as (A2, Bj ) and (B1, Ai ), are
dominated by ξ and can be pruned quickly. Therefore, there
are (n − 2)(n − 1) + (n − 1) + (n − 2) = n2 − n − 1 com-
binations pruned without the (explicit) computation of their
bounds, which can significantly save memory and computa-
tional costs. ��

Note that in the ULA+ algorithm (which will be presented
later), we perform the two phases above as a preprocessing
procedure to filter out many useless combinations.

Reducing the number of accesses We now propose some
further optimizations to reduce the number of accesses at
three different levels: (i) avoiding both sorted and random
accesses for specific lists; (ii) reducing random accesses
across two lists; and (iii) eliminating random accesses for
specific tuples.

Lemma 4 During query processing, given a list L, if all the
combinations involving L are terminated, then we do not
need to perform sorted accesses or random accesses upon
the list L any longer.

Proof It is easy to see that when all the combinations involv-
ing L are terminated, we cannot find any new combinations
involving L to become part of final answers. Therefore, the
continuous accesses upon L are useless. ��

123



C. Lin et al.

If all the accesses upon a list L are terminated, then L can
be fan out of the memory, which would save memory cost
and computational cost and reduce the number of accesses.

Lemma 5 During query processing, given two lists Le and
Lt associated with two attributes e and t in different groups,
if all the combinations involving Le and Lt are terminated,
then we do not need to perform random accesses between Le

and Lt any longer.

Proof If all the combinations involving Le and Lt have
been terminated, then we cannot find any new combinations
including Le and Lt to become final answers. Therefore, the
random accesses between Le and Lt are useless. ��

If the random access between lists Le and Lt is proved to
be useless, then all following random accesses between the
two lists could be avoided, which could reduce the number
of accesses.

Lemma 6 During query processing, given two lists Le and
Lt associated with two attributes e and t in different groups,
consider a tuple τ in list Le. We say that the random access
for the tuple τ from Le to Lt is useless, if there exists a
group G (e /∈ G and t /∈ G) such that ∀s ∈ G, either of the
two following conditions is satisfied: (i) the list Ls does not
contain any tuple τ ′, ρ(τ) = ρ(τ ′); or (ii) the combination
ε involving s, e and t is terminated.

It is not hard to see Lemma 4 and 5 hold. To illustrate
Lemma 6, let us consider three groups G1, G2 and G3 in
Fig. 5, where G3 contains only two lists. The list Ls does
not contain any tuple whose ID is x and the combination ε

is terminated. Therefore, according to Lemma 6, the random
access between Le and Lt for tuple x is unnecessary. This is
because no match instances of x can contribute to the com-
putation of final answers. Note that it is common in real life
that some objects are not contained in some list. For example,
think of a player who missed some games in the NBA pre-
season. Furthermore, to maximize the elimination of useless
random accesses implied in Lemma 6, in our algorithm, we
consider the Small First Access (SFA) heuristic to control the
order of random accesses, that is, we first perform random
accesses to the lists in groups with fewer attributes. In this
way, the random access across lists in larger groups may be
avoided if there is no corresponding tuple in the list of smaller
groups. As shown in our experimental results, Lemma 6 and
theSFAheuristic have practical benefits to reduce the number
of random accesses.

Summarizing, Lemmas 4 through 6 imply three levels
of granularity to reduce the number of accesses. In partic-
ular, Lemma 4 eliminates both random accesses and sorted
accesses, Lemma 5 aims at preventing unnecessary random
accesses, while Lemma 6 comes in to avoid random accesses
for some specific tuples.

Fig. 5 Example to illustrate Claim 6. Assume there are two lists in
groupG3. Random access from Le to Lt is useless, since ε is terminated
and Ls does not contain any tuple whose ID is x

Algorithm 2: The ULA+ algorithm
(i) Find the seed combination ε and prune all useless
combinations dominated by ε according to the approach in
Sect. 5.3.
(i i) Initialize a KMG G for the remaining combinations.
(i i i) Do sorted accesses in parallel to each of the lists having
nodes in G.
(iv) Do random accesses according to the existing edges in G
(note that we need to first access the smaller group based on SFA
strategy). In addition, given a tuple τ ∈ Ln , n ∈ G, if there is
another group G ′ such that each node n′ in G ′ (where ∃ edge
(n, n′) ∈ G) does not contain the tuple with the same ID of τ ,
then we can immediately stop all random accesses for τ (implied
by Lemma 6).
(v) Compute εmin and εmax for each unterminated combination ε

and determine if ε is terminated now by Definition 5 using εmin

and εmax. If yes, decrease the weights of all edges involved in ε

by 1. In addition, remove an edge if its weight is zero and remove
a node v ∈ G if the degree of v is zero.
(vi) Add ε to the result set Y if it meets the hit-condition. If there
are at least k combinations which meet the hit-condition, then the
algorithm halts. Otherwise, go to step (iii).
(vi i) Output the result set Y containing top-k combinations.

In order to exploit the three optimizations in the processing
of our algorithm, we carefully design a native data structure
named top-k,m graph (called KMG hereafter). Figure 6a
shows an exampleKMGfor the data inFig. 1. Formally, given
an instance Π of the top-k,m problem, we can construct
a node-labeled, weighted graph G defined as (V, E,W,C),
where (1) V is a set of nodes, each v ∈ V indicating a
list in Π , e.g., in Fig. 6, node F1 refers to the list F1 in
Fig. 1; (2) E ⊆ V × V is a set of edges, in which the exis-
tence of edge (v,v′) means that random accesses between v

and v′ are necessary; (3) for each edge e in E , W (e) is a
positive integer, which is the weight of e. The value is the
total number of unterminated combinations associated with
e; and finally (4) C denotes a collection of subsets of V ,
each of which indicates a group of lists in Π , e.g., in Fig. 6,
C = {{F1, F2}, {C1,C2}, {G1,G2}}. A path of length |C | in
G that spans all subsets of C corresponds to a combination
in Π .

123



Optimal algorithms for selecting top-k combinations of attributes: theory and applications

(a) (b) (c) (d)

Fig. 6 Example top-k,m graphs (KMG)

Based on the above claims, we propose three dynamic
operations in KMG: (i) decreasing the weight of edges by 1
if one of the combinations involving the edge is terminated;
(ii) deleting the edge if its weight is 0, which means that
random accesses between the two lists are useless (implied
by Lemma 5); and (iii) removing the node if its degree is 0,
which indicates that both sorted and random accesses in this
list are useless (implied by Lemma 4).

Optimized top-k,m algorithm We are now ready to present
the ULA+ algorithm based on KMG, which combines all
optimizations implied by Lemma 4 to 6. This algorithm is
shown as Algorithm 2.

Example 5 We present an example with the data of Fig. 1
to illustrate ULA+. Consider a top-1,2 query again. Firstly,
in Step (i), ULA+ performs sorted accesses to two rows
of all lists and finds a seed combination, e.g., F2C1G2, as
εmax
F2C1G2

= 40.18 < εmin
F2C1G1

= 40.27. Because LC1  LC2 ,
the combination εF2C1G2 dominates εF2C2G2 . Therefore, both
εF2C1G2 and εF2C2G2 can be pruned in step (i). Then, ULA

+
constructs a KMG (see Fig. 6a) for non-pruned combinations
in step (ii). Note that there is no edge between F2 and G2,
since both εF2C2G2 and εF2C1G2 have been pruned. By depth
2, ULA+ computes εmin and εmax for each unterminated
combination in Step (iii). Then, εF1C2G1 and εF1C2G2 meet
the drop-condition (e.g., εmax

F1C2G1
= 37.6 < εmin

F2C1G1
), andwe

decrease the weights by 1 for the corresponding edges, e.g.,
w(F1,G1) = 1. In addition, node C2 should be removed,
since all the combinations containing C2 are terminated (see
Fig. 6b) in step (iv). At depth 3, εF1C1G2 is terminated, since
εmax
F1C1G2

= 36.48 < εmin
F2C1G1

, and we decrease the weights of
(F1,C1), (F1,G2) and (C1,G2) by 1 and remove the node
G2 (see Fig. 6c). Finally, ULA+ halts at depth 4 in step (vi)
and F2C1G1 is returned as the final result in step (vii). To
demonstrate the superiority of ULA+, we compare the num-
bers of accessed objects for three algorithms: ETA accesses
54 tuples and ULA accesses 50 tuples, while ULA+ accesses
only 37 tuples.

Theorem 3 If the aggregation functions F1 and F2 are
monotone, then ULA+ correctly finds the top-k,m answers.

Proof Let Y be the result set outputted by ULA+, we claim
that Y is the same to the result set outputted by ULA. This
is because of the correctness of Lemma 3 and Lemma 4, 5
and 6, which prune useless combinations and avoid useless
sorted and random accesses. Therefore, by the validity of
ULA, ULA+ correctly output the answers, as desired. ��

Theorem 4 The algorithmsULA andULA+ halt at the same
depth, and ULA+ never accesses more objects than ULA
does.

Proof Assume ULA and ULA+ halt at depth d and d ′,
respectively.Then,wewould show thatd ′ = d.ULA+ access
no more objects than ULA, and in particular, ULA covers all
the objects thatULA+ accessed.ULAhalts by depthd, which
means that one object in depth d is the key object to identify
the correct top-k combinations, by the correctness of ULA+,
ULA+ needs to see the object in depth d, otherwise, ULA†

errs. So d ′ = d. ��

5.4 Optimality properties

We next consider the optimality of algorithms. We start by
defining the optimality measures and then analyze the opti-
mality in different cases. Some of the proofs are omitted here
due to space limitation; most proofs are non-trivial.

5.4.1 Competing algorithms

Let D be the class of all databases. We define A of all
deterministic correct top-k,m algorithms running on every
database D in class D. Following the access model in [10],
an algorithm A ∈ A can support both sorted accesses and
random accesses.

123



C. Lin et al.

Fig. 7 Sub-optimality of ETA

5.4.2 Cost metrics

We consider the number of tuples seen by sorted access and
random access as the dominant computational factor. Let
cost (A ,D) be the nonnegative performance cost measured
by running algorithm A over database D , which represents
the amount of the tuples accessed.

5.4.3 Instance optimality

We use the notions of instance optimality. We say that an
algorithm A ∈ A is instance optimal if for every A ′ ∈ A

and everyD ∈ D there exist two constants c and c′ such that
cost (A ,D) ≤ c ∗ cost (A ′,D) + c′.

First, we prove that ETA is not instance optimal in top-
k,m problem.

Proof (Sub-optimality of the ETA algorithm) We now
construct a case to demonstrate that the ETA algorithm is not
instance optimal. Assume the query is top-1,1 and the aggre-
gate functions F1 and F2 are sum. Consider the database in
Fig. 7. In order to compute cScore for all the combinations,
ETA needs to get the exact top-1 match instance for each
combination. So ETA needs to access the tuple (n + 1, 5)
at depth n + 1 in lists A2 and B2 (see the red boxes) to
get the top-1 match instance (i.e., (n + 1, 10)) for combina-
tion εA2B2 . However, there exists a deterministic algorithm
A halts after accessing the first tuples of each list by depth
1, that is 4 tuples, as the cScore of εA1B1 (i.e., (x, 20)) is
larger than the upper bound of all the other combinations
(i.e., εmax

A1B2
= 15,εmax

A2B1
= 15 and εmax

A2B2
= 10). Thus, ETA

is not an instance optimal algorithm. ��
Recall that ULA+ always accesses no more objects than

ULA (shown in Theorem 4). In the following proofs, for
brevity, we focus on the optimality of only the ULA algo-
rithm, which can be easily extended for ULA+.

Following [10], we say that an algorithm makes wild
guesses if it does random access to find the score of a tuple
with ID x in some list before the algorithm has seen x under
sorted access. For example, in Fig. 1, we can see tuples
whose IDs are G04 only at depth 3 under sorted and ran-
dom accesses. But wild guesses can magically find G04 in

the first step and obtain the corresponding scores. In other
words, wild guesses can perform random jump on the lists
and locate any tuple they want. In practice, we would not
normally implement algorithms that make wild guesses. We
prove the instance optimality ofULA (andULA+) algorithm,
provided the size of each group is treated as a constant. This
assumption is reasonable as it is mainly about assuming that
the schema of the database is fixed.

Theorem 5 LetD be the class of all databases. Let A be the
class of all algorithms that correctly find top-k,m answers
for every database and that do not make wild guesses. If the
size of each group is treated as a constant, then ULA and
ULA+ are instance optimal over A and D.

The next theorem shows that the upper bound of the
optimality ratio of ULA is tight, provided the aggregation
functions F1 and F2 are strictly monotone.

Theorem 6 Assume that F1 and F2 are strictly monotonic
functions. LetCr andCs denote the cost of one randomaccess
and one sorted access, respectively. There is no deterministic
algorithm that is instance optimal for top-k,m problem, with
optimality ratio less than T + KCr/Cs, (which is the exact
ratio of ULA), where T = ∑n

i=1 gi , K = ∑
i �= j (gi g j ), and

gi denotes the number of lists in group Gi .

The detailed proofs of Theorem 5 and Theorem 6 can be
founded in the conference version [26].

Whenwe consider the scenarioswhen an algorithmmakes
wild guesses, unfortunately, our algorithms are not instance
optimal, butwe can show that in this case no instance-optimal
algorithm exists. Note that this appears a somewhat surpris-
ing finding, because the TA algorithm for top-k problems
can guarantee instance optimality even under wild guesses
for the data that satisfies the distinct property. In contrast, the
ULA algorithm for top-k,m problem is not instance opti-
mal even for distinct data. The intuition for this disparity is
that top-k problem needs to return the exact k objects, forc-
ing all algorithms (including those with wild guesses) to go
through the list to verify the results, but an algorithm for
top-k,m search can correctly return k combinations without
seeing their m objects by quickly locating a match instance
to instantly boost the lower bound.

Theorem 7 Let D be the class of all databases. Let A be
the class of all algorithms (wild guesses are allowed) that
correctly find top-k,m answers for every database. There is
no deterministic algorithm that is instance optimal over A
and D.

Proof Let us consider a family of databases in Fig. 8, assum-
ing that F1 = min and F2 = sum. Let A be an arbitrary
deterministic algorithm in A. Consider the top-1, 1 query. It

123



Optimal algorithms for selecting top-k combinations of attributes: theory and applications

Fig. 8 Database for Theorem 7

is easy to see that the expected number of accesses of algo-
rithmA under this database is n+5 (i.e., n+1 sorted access
to find the tuple (n + 1, n + 1) in list A1 or B2, and 3 sorted
access to see the first tuples of the other lists, and 1 ran-
dom access to find the tuples whose ID is “n + 1” in the
other list). Then, A halts since cScore(εA1B2 , 1) = n + 1 is
larger than the upper bounds of all the other combinations
(i.e., εmax

A1B1
= εmax

A2B1
= εmax

A2B2
= n). However, there exists an

algorithm A ′ that makes only 6 access (2 random accesses
to find tuples (n + 1, n + 1) in list A1 and B2, and 4 sorted
accesses to see the first objects of each list) to prove that
{A1, B2} is the final answer. Therefore, the optimality ratio
may be arbitrarily large and the theorem follows. Note that
the database constructed here satisfies the distinct property.

��
Finally, we consider the case (not so common in practice)

when the number of attributes in each group is treated as a
variable. While our algorithm is not instance optimal in this
case, we can show that no instance-optimal algorithm exists.

Theorem 8 LetD be the class of all databases. LetA be the
class of all algorithms that correctly find top-k,m answers
for every database. If the number of elements in each group
is treated as a variable, there is no deterministic algorithm
that is instance optimal over A and D.

Proof We prove by contradiction. Let us assume the exis-
tence of some optimal algorithm A . Let F1 be max and F2

be sum. To answer a top-1, 1 query, we construct a database
D as follows (see Fig. 9): There are two groups (G1, G2)
and n attributes in each group. In G1, there are n2 distinct
tuples in the first n lines and bi in the depth d ≥ n (see the
red box in G1). In G2, all objects in the first line are distinct
with score 1, among them there is only one tuple whose ID
is bi , but the position of this tuple can be changed unless it
is seen by the algorithm (see the red box in G2). All Other
tuples have score 0. Therefore, In D , only one tuple in G1

has the same IDwith the tuple inG2, that is, there is only one
match instance, which consists of bi . We now show, by an
adversary argument, that the adversary can force A to have
cost at leastO(n2) to see the match instance. But there exists

Fig. 9 Database for Theorem 8

another algorithmA ′ that, when executed overD , runs only
O(n) accesses. There are two cases.

Case 1The algorithmA makes the sorted access on group
G1. The adversary can forceA which tries to find the target
object bi , to access at least n2 objects.

Case 2The algorithmA makes the sorted access on group
G2 and does random access on group G1. WheneverA does
randomaccess in group1 for an object in thefirst line of group
G2, then the adversary assures that only the final random
access find the target object bi . Therefore, the cost is at least
n2 − 1.

So in either case, the cost of A is at least O(n2). But
there exists another algorithmA ′, that accesses group 1 and
directly finds the target object with cost O(n), which con-
cludes the proof. ��

5.5 Theoretical analysis on the depth of accesses

In this subsection, we give a theoretical analysis on the
average depth of accesses for our top-k,m algorithm. This
quantitative analysis reveals the average performance of the
algorithm.

We model our algorithm with the following procedure.
Let L0, L1, . . . , LM denote M + 1 lists, each of which is a
random permutation of set {1, . . . , N }. For each list Li , we
use Li [1, . . . , t] to denote the first t elements of Li . Suppose
we access each list sequentially in parallel, and stop at the
Z -th access when there is a list Li such that the intersection
between the first Z elements of L0 and the first Z elements
of Li has size at least K . We define Z to be the depth of
accesses. In this section, we will prove that, if each Li is
a random permutation, with high probability, the depth of

accesses is no more than (

√
e6NK
M1/K + K ). In addition, we

prove that the expected depth of accesses is O(

√
NK
M1/K +K ).

Theorem 9 Assume lists L0, L1, . . . , LM are random per-
mutations of set {1, . . . , N }.

123



C. Lin et al.

1. The probability that the depth of access is larger than(√
e6NK
M1/K + K

)
is at most e

−Ω
(

eK√
K

)

for M1/K > e6/3,

and at most e−Ω(MK ) for M1/K ≤ e6/3.

2. The expected depth of accesses is O
(√

NK
M1/K + K

)
.

Proof Our basic idea is to derive an approximate distribution
for each Li , and take the minimum of these distributions.
For 1 ≤ i ≤ M , we define random variable Zi to be
the minimum index t such that the intersection between
L0[1, . . . , t] and Li [1, . . . , t] has size at least K , i.e.,
Zi = min1≤t≤N {t | |{1, . . . , t} ∩ Li [1, . . . , t]| ≥ K } . Let
Z = min1≤i≤M {Zi }, and then Z is the depth of accesses.

Let F(t, l) = (tl)(
N−t
t−l )

(Nt )
. The cumulative distribution of

each Zi follows Pr[Zi ≥ t + 1] = ∑k−1
l=0 F(t, l). Conse-

quently, the cumulative distribution of Z follows Pr[Zi ≥
t + 1] =

(∑k−1
l=0 F(t, l)

)M
, and the expected value of Z is

equal to E[Z ] = ∑N−1
t=−1

(∑k−1
l=0 F(t, l)

)M
.

If t is not too close to
√
NK , the two partial sums are dom-

inated by F(t, K ). Therefore, we have (1) for t ≤ √
NK/2,

the summation
∑t

l=K F(t, l) ≤ 2F(t, K ); and (2) for t ≥√
2NK , we have

∑K−1
l=0 F(t, l) ≤ 2F(t, K ).

By using Stirling’s approximation [1], we obtain an
approximation for each individual F(t, K ). In particular,
suppose K ≤ N/20. (1) For t <

√
3NK + K , we can lower

bound F(t, K ) with F(t, K ) ≥ 1
2
√
2πK

(
e−5(t−K )2

NK

)K
; and

(2) For t ≥ √
3NK + K , we can upper bound F(t, K ) with

F(t, K ) ≤ 1√
2πK

e− (t−K )2
16N .

(1) Proof of the high probability results. Suppose M1/K >

e6/3. We define T1 =
√

e6NK
M1/K + K . With the help of

the property of Vandermonde’s identity [35], we have
the following result:

Pr[Z ≥ T1 + 1] ≤ e−M ·F(T1,K ) = exp

(
− eK

2
√
2πK

)

(1)

Now suppose M1/K ≤ e6/3 and define T2 = √
3NK +

K , we have:

Pr[Z ≥ T2 + 1] ≤
(

2√
2πK

e− (T2−K )2

16N

)M

≤ e− 3MK
16

Therefore, the high probability results hold.
(2) Proof of expected results Let x0, x1, . . . , xN denote a

sequence of N + 1 positive numbers. If for any 1 ≤
t − 1 ≤ N , xt−1/xt ≥ e1/s for some s > 0, then∑N

t=1 xt ≤ x0(s + 1). Since xt−1/xt ≥ e1/s holds, we
have xt ≤ e−1/s xt−1 ≤ . . . ≤ (e−1/s)t x0, and thus

N∑

t=0

xt ≤
N∑

t=0

(
e−1/s

)t
x0 ≤ x0

1

1 −
(
1 − 1

s+1

)s/s = x0(s + 1)

According to the fact that e−1 ≤ (1 + 1
s+1 )

s for s > 0.
We have

E[Z ] =
n−1∑

t=−1

Pr[Z ≥ t + 1] =
n−1∑

t=−1

(
K−1∑

l=0

F(t, l)

)M

=
T1−1∑

t=−1

Pr[Z ≥ t + 1]

+
T2−1∑

t=T1

Pr[Z ≥ t + 1] +
T3−1∑

t=T2

Pr[Z ≥ t + 1],

where T1 = √
e3NK/M1/K + K , T2 = √

3NK + K
and T3 = N+K

2 .
The first summation can be bounded as:

T1−1∑

t=−1

Pr[Z ≥ t + 1] ≤ T1 + 1 =
√
e3NK

M1/K + K + 1 (2)

The second summation can be bounded as:

T2−1∑

t=T1

Pr[Z ≥ t + 1] ≤
T2−1∑

t=T1

xt ≤ o

(√
NK

M1/K

)

(3)

The third summation can be bounded as:

T3−1∑

t=T2

Pr[Z ≥ t + 1] ≤
T3−1∑

t=T2

F(t, K )M ≤
T3−1∑

t=T2

e− M(t−K )2
16N

≤
√

64N

3M2K
+ 1 = o

(√
NK

M1/K

)

(4)

Combining Eqs. 2, 3 and 4, we have E[Z ] =
O

(√
NK
M1/K + K

)
. ��

Remark Both the probability bounds and the expectation
results are necessary. For large K , the probability results

ensure that the depth of accesses is O(

√
NK
M1/K + K ) with

extremely high probability. However, when K is a constant
(in particular when K = 1), this probability becomes con-
stant, and the expected result is more useful in this case.
We also notice that when M1/K is a constant, the depth of
accesses is O(

√
NK ), which is the same bound achieved

in [10]. However, when M1/K becomes large, our bound is
superior in both expectation and rate of convergence, since
the probability of the depth of accesses exceeds a constant
times the expectation is double exponentially small.

123



Optimal algorithms for selecting top-k combinations of attributes: theory and applications

Algorithm 3: The ENRA algorithm
(i) Initial an empty set Sε for each combination ε.
(ii) Do sorted access in parallel to each sorted list.
(iii) For combination ε,
(1) [growing phase]: Compute current threshold value T ε , add

seen objects into Sε , and compute Imin and Imax for them;
(2)[shrinking phase]: If there are at least m objects in Sε whose

Imin ≥ T ε , stop adding new objects to Sε but only update the
scores for objects in Sε ;
(3) [scanning phase]: If there are at least m objects in Sε whose

Imin are no less than the Imax of other objects, remove all the
objects except the m objects in Sε and continually updating the
scores for the m objects until they get m match instances.
(iv) For every combination, if the tScore of the top-m match
instance could be calculated, ENRA halts; otherwise, go to step
(v) Let Y be a set containing the k combinations whose cScore is
larger than that of others. Output Y .

6 Top-k,m algorithms with no random access

In real-life scenarios, the cost of random access (RA) might
be one to two order of magnitudes higher than that of sorted
access (SA). More precise, for very large index lists with
millions of entries that spanmultiple disk tracks, the resulting
random access cost is 50–50,000 times higher than the cost
of a sorted access [2]. Furthermore, random accesses are not
allowed due to the property of data sources. For example, (i)
the ranked lists are input as stream data, then tuples could
only be read one by one, and the unseen tuples could not
be randomly accessed by its key; and (ii) the ranked lists
are provided by a search engine, and thus it does not seem
to be a way to ask a major search engine on the Web for its
internal score on some document of our choice under a query.
Therefore, motivated by the previous examples, we proceed
to propose new algorithms that make no random accesses for
the top-k,m problem.

The main challenge brought by no random accesses
is that a seen tuple could not obtain its corresponding
match instance immediately. More precisely, for a com-
bination ε, if random accesses are not allowed, then a
match instance I = {τ1, . . . , τn} could only be obtained
after ∀τi , i ∈ [1, n] has been seen by sorted access.
In the worst case, we need to scan the whole lists to
find the match instance. For example, consider the match
instance {(G09, 2.06), (G09, 1.98), (G09, 7.10)} for com-
bination {F1C1G2} in Fig. 1a. To get the match instance, we
need to scan the whole list in F1 and C1 by sorted accesses.
However, if random accesses are allowed, once we access
the tuple (G09, 7.10) in G2, we could get the match instance
by random accesses immediately.

6.1 Baseline algorithm with no random accesses: ENRA

Thewell-known instance-optimal top-k algorithm, i.e.,NRA,
that does not make random accesses proposed by [10] works

as follows: (i) At each depth, compute the upper and lower
bounds for each seen object (by sorted accesses); and (ii)
NRA halts, if (1) there are at least k objects have been seen,
and (2) there are at least k objects whose lower bounds are
no less than the upper bounds of the other objects.

Further, [27] proposes two phases (i.e., growing phase
and shrinking phase) to optimize NRA by minimizing the
objects stored in memory. In growing phase, all the tuples
seen by sorted accesses must be stored since all of them
have the chance to be a result. If there exist k objects whose
lower bounds are greater than the current threshold value,
then change to shrinking phase, which means unseen objects
can never be answered, so it is not necessary to store those
objects.

To answer top-k,m problem with no random accesses,
one method is to extend NRA (called ENRA) to compute
top-m match instances for each combination. However, this
straightforward extension needs to fix a core problem, that is,
NRA only returns the top-m object IDs without scores, and
thuswe cannot calculate cScore for each combination. There-
fore, we extend NRA by performing an additional phase,
called scanning phase, to do further accesses for those top-m
objects to get their tScore’s. Note that, in the scanning phase,
we only update the scores for those top-m objects.

In the ENRA algorithm (see Algorithm 3), we first define
the upper and lower bounds for a match instance I. Consid-
ering a combination ε={e1, . . . , en}, let xi denote the current
score of the tuple in the list Li at depth d, where Li corre-
sponds to an attribute ei . For a match instance I ∈ ε, assume
we have accessed m tuples τ1, . . . , τm for I, where m < n
and ρ(τ1) = ρ(τ2) =, . . . , ρ(τm). It means that only partial
match instance has been accessed and the tSocre of I could
not be calculated now. However, we define the upper bound
Imax and lower bound Imin for I ∈ ε as follows:

Imax = F1(σ (τ1), . . . , σ (τm), xm+1, . . . , xn)

Imin = F1(σ (τ1), . . . , σ (τm), 0, . . . , 0︸ ︷︷ ︸
n−m

)

We describe the ENRA algorithm in Algorithm 3, which
is naturally extended from the NRA algorithm in [10] by
adding the scanning phase.

Example 6 We employ the data in Fig. 1 to show howENRA
works. Assume thatF1 andF2 are sum, and the query is top-
1, 1. Note that only sorted accesses are allowed. Consider the
combination ε = {F1C2G1}, during the growing phase all
the accessed tuples (e.g., (G01,9.31)) are stored. At depth 4,
ε changes to shrinking phase, since there exists at least one
object whose lower bounds is bigger than the threshold value
T ε (12.06), e.g., Imin

G01 = 13.12 and Imin
G03 = 15.06. Then, at

depth 7, ε transforms to the scanning phase and get the top-

123



C. Lin et al.

Fig. 10 Sub-optimality of ENRA

1 match instance with tScore 16.5. Finally, ENRA halts at
depth 7 and the answer is {F2C1G1} with cScore 21.51. ��

We show that ENRA is not instance optimality using the
following claim.

Lemma 7 Given a class of databases D, and a class of
algorithms A that correctly find top-k,m answers for every
database and do not make random accesses, ENRA is not
instance optimal among A for D.

Proof Consider the example in Fig. 10. Assume bothF1 and
F2 are sum. ENRA halts by depth n + 1, since it needs to
see the object “n + 1” in both lists A2 and B2 to obtain the
top-1 match instance for combination εA2B2 , that is, ENRA
needs to obtain the exact top-m match instances for each
combination. However, there exists one algorithm A ∈ A,
which only access 4 objects (the first object of each list), then
A halts. Because the current score of combination εA1B1
(40 = 20+20) is larger than all the possible maximal scores
of all the other combinations (εmax

A1B2
= 30, εmax

A2B1
= 30,

εmax
A2B2

= 20), as desired. ��

6.2 No random access algorithm: NULA

The ENRA algorithm needs to compute the exact top-
m match instances for each combination, which is time-
consuming and readsmore tuples than needed. Therefore, we
propose a novel efficient top-k,m problem with no random
accesses. We follow the line of ULA algorithm, i.e., calcu-
late the upper and lower bounds for each combination instead
of the exact cScore. However, as we discussed above, with-
out random accesses, some objects only obtain partial match
instances. Therefore, we need to redefine the upper and lower
bounds of the combination by considering the scores of the
partial match instances.

Given a combination ε, assume m′ distinct tuples have
been seen at depth d. Among them, m1 ≤ m′ distinct tuples
have already been match instances (i.e., I1, . . . , Im1 ), and
m2 = m′ − m1 distinct tuples only obtain the partial match
instances (their upper and lower bounds are Imax

i and Imin
i

i ∈ [1,m2]). Then, we define the upper and lower bounds for
combinations in top-k,m problem with no random accesses
as follows:

6.2.1 Upper bound

εmax: The upper bound of ε would be computed as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F2(tScore(Iε
1 ), . . . , tScore(Iε

m1
)

︸ ︷︷ ︸
m1

,Imax
1 , . . . ,Imax

m2︸ ︷︷ ︸
m2

,T ε, . . . ,T ε

︸ ︷︷ ︸
m−m′

)

if m′ < m

F2(max{tScore(Iε
i ), . . . , tScore(Iε

j ),Imax
i , . . . ,Imax

j
︸ ︷︷ ︸

m

})

if m′ ≥ m

If m′ = m1 +m2 < m, εmax is padded with m −m′ T ε’s,
otherwise, meaning that the exact top-m match instances
must be among the m1 + m2 match instances (including the
potential match instances).

6.2.2 Lower bound

εmin: The lower bound would be computed as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F2(tScore(Iε
1 ), · · · , tScore(Iε

m1
)

︸ ︷︷ ︸
m1

,Imax
1 , · · · ,Imax

m2︸ ︷︷ ︸
m2

, 0, · · · , 0︸ ︷︷ ︸
m−m′

)

if m′ < m

F2(max{tScore(Iε
i ), · · · , tScore(Iε

j ),I
max
i , · · · ,Imax

j
︸ ︷︷ ︸

m

})

if m′ ≥ m

If m′ = m1 + m2 < m, εmax is padded with m − m′
0’s, otherwise, meaning that the exact top-m match instances
must be among the m1 + m2 match instances (including the
potential match instances).

Example 7 We employ the data in Fig. 1 again to show
how to compute εmax and εmin. Assume that F1 and F2

are sum, and the query is top-1, 2. Consider combination
ε = {F2C1G1}, at depth 2, the threshold value is 20.27 =
8.07 + 6.01 + 6.19. In addition, we access 4 distinct tuple
IDs, i.e., G02 (tScore(IG02) = 21.51), G08(Imax

G08 = 20.27
and Imin

G08 = 8.07), G05(Imax
G05 = 21.47 and Imin

G05 = 7.21) and
G03(Imax

G03 = 20.27 andImin
G03 = 6.19). Thus, the upper bound

εmax = tScore(IG02) +Imax
G05 = 21.51 + 21.47 = 42.98

and the lower bound is εmin = tScore(IG02) + Imin
G08 =

21.51 + 8.07 = 29.58.

We would show that the cScore of each combination is
distributed in εmin and εmax. (i) For each seen object that
obtains the complete match instance, Imin = tScore = Imax

holds. (ii) For each seen object that only get the partial match
instance, the maximal tScore is no more than Imax, since
the unseen scores in list Li is no more than xi (xi denotes
the current score of the tuple in list Li at depth d), and the
minimal t Socre is no less than Imin. (iii) For the unseen
object, the tScore is no more than T ε and no less than 0.

123



Optimal algorithms for selecting top-k combinations of attributes: theory and applications

By the definition of εmin and εmax, it is easy to see that the
cScore of each combination ε should distribute in the scope
of [εmin,εmax].

We are now ready to show a novel algorithm named
NULA, which would stop earlier than the ENRA algorithm
by exploring the relation of the upper and lower bounds of
combinations. See Algorithm 4. Note that the growing phase
and shrinking phase could be applied here, but the scanning
phase is unnecessary, as we can avoid to compute the exact
scores for top-m instances.

Algorithm 4: The NULA algorithm
(1) Initial an empty set Sε for each combination ε.
(2) Do sorted access in parallel to each of the lists by sorted
accesses.
(3) For each unterminated combination ε, (i) if ε is in growing
phase, then add the current objects into Sε and update Imin for
each object; (ii) check whether ε is in shrinking phase now; (iii)
if ε is in shrinking phase, update Imin and Imax for each object in
Sε and stop adding new objects to Sε ; (iv) compute εmin and
εmax, and (v) check if ε is terminated now (the same terminate
condition as that in ULA algorithm).
(4) If there are k combinations which meet the hit-condition, then
the algorithm halts. Otherwise, go to step 1.
(5) Let Y be a set containing the k combinations when NULA
halts. Output Y .

Theorem 10 If the aggregation functions F1 and F2 are
monotone, then NULA correctly finds the top-k,m answers.

Proof Let Y be the results set, and we claim that the cScore
of each combination ε ∈ Y is larger than that of ξ /∈ Y . In
NULA, the cScore of combination ε ∈ Y is no less than εmin,
and the cScore of combination ξ /∈ Y is no more than ξmax.
Since for each ε ∈ Y and ξ /∈ Y , the εmin ≥ ξmax, Therefore,
cScore(ε,m) ≥ cScore(ξ,m) holds, as desired. ��
Example 8 We continue the example in Fig. 1 again to
present how NULA works. Assume that F1 and F2 are
sum, and the query is top-1, 1. Let E be the collection
of combinations. At depth 4, the lower bound of combi-
nation {F2C1G1} is no less than the upper bound of the
other combinations. More precisely, εmin

F2C1G1
= 21.51 ≥

max{ξmax|ξ ∈ E/ε}. Therefore, NULA outputs {F2C1G1}
as the answer. To demonstrate the efficiency of NULA, we
show the following data: ENRA halts at depth 7 and accesses
42 tuples, while NULA halts at depth 4 and accesses 24
tuples. ��

6.3 Optimized no random access algorithm: NULA+

In the following, we aim to propose an optimized top-k,m
algorithm with no random accesses, named NULA+, which
improves NULA by avoiding sorted access on some lists.

We observe that the optimizations (Lemma 5 and Lemma
6) we proposed above could not be applied in NULA+, since
random accesses are forbidden here. However, Lemma 4
could be utilized with minor modification.

Lemma 8 During query processing, given a list L, if all the
combinations involving L are terminated, then we do not
need to perform sorted accesses upon the list L any longer.

Proof The proof is similar to the proof of Lemma 4. That
is, if a combination ε is terminated, then adding new match
instances is useless to ε. ��

The NULA+ applies Lemma 8 upon NULA algorithm
to reduce the number of sorted accesses. At each depth d, as
shown in Line 2 of Algorithm 4, NULA+ additionally checks
whether a list meets the condition in Lemma 8, if yes, stop
accessing the list.

6.4 Optimality properties of NULA and NULA+

Theorem 11 LetD be the class of all databases. LetA be the
class of all algorithms that correctly find top-k,m answers
for every database and that do not make random accesses.
NULA and NULA+ are instance optimal over A and D.

Proof Let Cs denotes the cost of one sorted access. Assume
thatA ∈ A, andA runs over database D ∈ D. Assume that
each object can be a match instance for each combination.
We claim that if NULA halts at depth d + m, then A could
not halt earlier than d + 1. Then, the cost of A is at least
(d + 1 + ∑n

i=1 gi − 1)Cs , where gi denotes the number
of elements in the group Gi . And the cost of NULA is at
most (d + m)(

∑n
i=1 gi )Cs , which is d(

∑n
i=1 gi )Cs plus an

additive constant of m(
∑n

i=1 gi )Cs . Let T = ∑n
i=1 gi , then

the optimality ratio of NULA is at most dTCs
dCs

= T . Suppose
the contrary. Consider the A halts by depth d; at this time,
NULA does not halt, that is, there are less than k distinct
combinations whose lower bound is larger than the upper
bound of the other combinations. Let Y be the results set
output by A , then there is a combination ε ∈ Y and another
combination ξ /∈ Y , which does not share lists with ε. Then
εmin
(d) < ξmax

(d) at depth d. We construct a database D ′ where
A errs as follows. Database D ′ is just like to D up to depth
d. For each list Li ∈ ε (i.e., the element e associated with
Li belongs to ε), we assign U1,…,Um with score 0 and also
0 to the other objects below Um in Li . And assign V1,…,Vm
with grade xi to each list L j ∈ ξ . Therefore, we would
get the cScore(ε,m) and cScore(ξ,m) at depth d + m. We
have cScore(ε,m) = εmin

(d) and cScore(ξ,m) = ξmax
(d) , then

cScore(ε,m) < cScore(ξ,m), since εmin
(d) < ξmax

(d) ,A errs, as
desired. ��
Theorem 12 Assume that F1 and F2 are strict aggregation
functions. Let D be the class of all databases. Let A be the

123



C. Lin et al.

class of all the deterministic algorithm that correctly finds
the top-k,m combinations for every database and that does
not make random access. There is no deterministic algorithm
that is instance optimal over A and D, with optimality ratio
less than T (which is the exact ratio of NULA), where T =∑n

i=1 gi .

Proof We assume without loss of generality that k = 1 and
m = 1. We restrict our attention to a subfamily D

′ of D, by
making use of a (large) positive integer parameter d (d > T ,
where T = ∑n

i=1 gi ). The familyD′ contains every database
of the following form.

In every list, the top d scores are 1, and the remaining
scores are 0. No match instance is in the top T . There is
only one object τ that has score 1 in all of the lists of one
combination, and it is in the top d of one list and in the top
T of the other lists.

Let A be an arbitrary deterministic algorithm. We now
show, by an adversary argument, that the adversary can force
A to have the cost at least dT on some database in D . The
idea is that the adversary dynamically adjusts the database
as each query comes in from A , in such a way as to evade
allowing A to determine the top element until as late as
possible.

It is clear that the sorted access cost ofA on this resulting
database is at least dTCs . However, there is an algorithm
in A that makes at most d sorted access to one list and T
sorted accesses to each of the remaining lists, that is, at most
d+(T − 1)T sorted accesses and the cost is d+(T − 1)T Cs .
By choosing d sufficiently large, the ratio dTCs

d+(T−1)TCs
can

be made as close as desired to T . Then the theorem follows.
��

7 Approximate Top-k,m algorithms

In some query processing environments, e.g., online ana-
lytical processing (OLAP), obtaining exact top-k,m query
answers may be overwhelming to database engines because
of the interactive nature of such environments, and the large
volume of data they store. Such environments tend to sacri-
fice the accuracy of query answers in favor of performance.
Therefore, it is acceptable for a top-k,m query to return
approximate answers.

In this section, we show how to extend our exact top-k,m
algorithms to accommodate this approximate setting. The
approximate answers should not be arbitrarily far from the
exact answers. They are expected to be associated with guar-
antees indicating how far they are from the exact answers. In
our approximate top-k,m algorithms, the approximate ratio
(i.e., the threshold of the largest distance between approxi-
mate answers and the exact answers) is given byusers in order
tomake the approximate algorithmsmore flexible.More pre-

cisely, given an approximate ratio θ > 1, for any answer
combination ε returned by our approximate top-k,m algo-
rithms and any other combination ξ not in the answer set, the
condition of final scores θ · cScore(ε,m) ≥ cScore(ξ,m) is
always hold.

7.1 Approximate baseline algorithms

To extend the baseline method ETA (Sect. 5.1) and ENRA
(Sect. 6.1) to the corresponding approximate versions,
the only modification is to change the output condition
from cScore(ε,m) ≥ cScore(ξ,m) to θ · cScore(ε,m) ≥
cScore(ξ,m), where ε ∈ Y and ξ /∈ Y andY is the answer set.
The approximate ETA and ENRA are named as ETAθ and
ENRAθ , respectively. The correctness of ETAθ and ENRAθ

is provided in Theorem 13.

7.2 Approximate top-k,m algorithms

To modify the top-k,m algorithms with lower and upper
bounds, i.e., ULA (Sect. 5.2), ULA+ (Sect. 5.3), NULA
(Sect. 6.2) and NULA+ (Sect. 6.3), to accommodate the
approximate environment, we need to change the hit-
condition and the drop-condition as follows:

– The condition of hit-condition is changed from εmin ≥
max(ξmax

i |1 ≤ i ≤ N − k) to εmin ≥ max(
ξmax
i
θ

|1 ≤
i ≤ N − k). It indicates that if a combination ε is an
approximate answer, then its lower bound should be at
least greater than the 1

θ
of the upper bounds of otherN−k

combinations.
– The condition of drop-condition ismodified from ξmax <

min(εmin
i |1 ≤ i ≤ k) to ξmax

θ
< min(εmin

i |1 ≤ i ≤ k).
It means that if a combination ξ is not an approximate
answer, then the 1

θ
of its upper bound is smaller than the

lower bounds of k other combinations.

By using the new hit-condition and drop-condition, we are
able to provide approximate top-k,m algorithms with result
guarantees. The corresponding approximate top-k,m algo-
rithms are named as ULAθ , ULA

+
θ , NULAθ and NULA+

θ ,
respectively. The correctness of these algorithms is shown in
Theorem 13.

Theorem 13 Assume θ > 1 and the aggregation functions
F1 andF2 are monotone, and then the family of our top-k,m
approximate algorithms correctly finds the top-k,m answers.

Proof Let Y be the results set, and we claim that the θ cScore
of each combination ε ∈ Y is larger than the cScore of ξ /∈ Y .
We discuss the correctness of our algorithms in two classes,
i.e., baseline methods and ULA-based approaches.

123



Optimal algorithms for selecting top-k combinations of attributes: theory and applications

(1) Baseline methods ETAθ , ENRAθ . They compute the
exact cScore for each combination. Thus, it is easy to
choose the combinations satisfying θ · cScore(ε,m) ≥
cScore(ξ,m) into the result set Y , as desired.

(2) ULA-based approaches ULAθ ,ULA
+
θ , NULAθ and

NULA+
θ . The θ · cScore(ε,m) of combination ε ∈ Y

is no less than θ · εmin, and the cScore(ξ,m) of combi-
nation ξ /∈ Y is no more than ξmax. Since the modified

hit-condition is εmin ≥ max(
ξmax
i
θ

| 1 ≤ i ≤ N − k),
which means the θ · εmin ≥ ξmax holds for the com-
binations ε ∈ Y and ξ /∈ Y . Therefore, we have
θ · cScore(ε,m) ≥ cScore(ξ,m), as desired. ��

Theorem 14 Assume θ > 1 and the aggregation functions
F1 andF2 are monotone. LetD be the class of all databases.
Let A be the class of all algorithms that correctly find a θ -
approximation to the top-k,m answers for every database
and that do not make wild guesses. Then ULAθ and ULA+

θ

(also NULAθ and NULA+
θ ) are instance optimal over A and

D.

Proof We prove this theorem by following the similar way
of Theorem 5. The core task is to show that if an optimal
algorithmA ∈ A over every databaseD ∈ D halts by sorted
access at most up to depth d, then our algorithms halt on D
by sorted access at most up to depth d + m.

If algorithmA meets one of the following two conditions
when it halts: (i)A has seen the exact top-m match instances
for each combination; (ii) A has not seen the exact top-m
match instances for each combination, but θ · εmin ≥ ξmax

holds for any combination ε ∈ Y and combination ξ /∈ Y .
Then, our algorithms also halt by depthd < d+m, as desired.

Otherwise, assume there exists one combination ε ∈ Y
and one combination ξ /∈ Y such that θ · εmin < ξmax. At
this point, our algorithms cannot stop immediately. But since
A is correct without seeing the remaining tuples after depth
d, we can prove that the combinations in Y have an impor-
tant property, i.e., θ · mScore(ε,m) ≥ hScore(ξ,m), where
mScore(ε,m) and hScore(ξ,m) are computed as follows:

mScore(ε,m) = F2(tScore(Iε
1 ), . . . , tScore(Iε

m′), ω, . . . , ω︸ ︷︷ ︸
m−m′

)

where ω = F1(σ
ε
1 , . . . , σ ε|ε|) denotes the possible mini-

mal tScore. (Assume that A has seen m′ (m′ ≤ m) match
instances for ε and let σε

i denote the seen minimal score
(under sorted or random accesses) in Li at depth d)

hScore(ξ,m) = F2(tScore(Iξ
1 ), . . . , tScore(Iξ

m′′), ϕ, . . . , ϕ︸ ︷︷ ︸
m−m′′

)

where ϕ = F1(λ
ξ
1, . . . , λ

ξ
|ξ |) denote the possible maximal

tScore. (Assume that A has seen m′′ (m′′ ≤ m) match

instances for ξ . Let λ
ξ
i denote the unseen possible maximal

score (λξ
i ≤σ(τ )) below τ in list i by depth d+(m−m′′) of ξ )

Then, we construct a databaseD ′ the same to the database
in Theorem 5 to demonstrate that all the combinations in
Y satisfy the condition θ · mScore(ε,m) ≥ hScore(ξ,m).
Therefore by depth d +m, our algorithms would get at least
m match instances, and the θ times of the lower bound of ε

is no less than θ · mScore, and the upper bound of ξ is no
more than hScore. Thus, by depth d + m, θ · εmin ≥ ξmax.
Therefore, our algorithms halt by depth d +m, as desired. ��

8 Case studies on real applications

In this section,we introduce a case study for top-k,m queries.
In the preliminary version [26], we have studied how to
rewrite an XML keyword query by answering a top-k,m
query with random access. Here, we show another example
on how to use top-k,m queries with no random accesses to
perform online query rewriting in a biomedical search engine
PubMed.5

Given a search query, PubMed returns a list of documents
containing the keywords in the query. Usually, the size of
answers is large. Returning such big results to users in one
page makes no sense. So PubMed only returns the top-k,
e.g., k = 20, to users. If users want more answers, then users
can issue another request by clicking “Next” button. In this
way, a random access is not supported in PubMed. Therefore,
only no random accesses top-k,m algorithms can be applied
here to provide keyword refinement. Therefore, PubMed is
a typical application for top-k,m queries with no random
accesses.

Given a set of keywords (called terms or words inter-
changeably), we study how to automatically rewrite the
keywords to provide users better and more relevant search
results on PubMed, as in real applications users’ input
may not have answers or the answers are not good. We
assume that there exists a table containing simple rules in
the form of A → B, where A and B are two strings,
which means A and B refer to the same entity. E.g.,
“Achlorhydria”→“Hypochlorhydria,” and
“Hypopotassemia”→“Hypokalemia.” These rules can be
obtained from existing dictionaries, say medical subject
headings (MeSH). 6 In Sect. 9, we will list more example
rules that are collected bydomain experts and can be searched
in MeSH.

Now we illustrate how to perform a top-k,m search
in biomedical citations query refinement. Given a query
q = {q1, . . . , qn}, we scan all keywords sequentially and

5 http://www.ncbi.nlm.nih.gov/pubmed.
6 http://www.nlm.nih.gov/mesh/meshhome.html.

123

http://www.ncbi.nlm.nih.gov/pubmed
http://www.nlm.nih.gov/mesh/meshhome.html


C. Lin et al.

Fig. 11 Example for query q=“Achlorhydria, Hypopotassemia.”
There are two groups {Achlorhydria, Hypochlorhydria}
and {Hypopotassemia, Hypokalemia}. The top-1,2 result is
q ′=“Achlorhydria, Hypokalemia”

perform substringmatch by rules to generate groups. Assum-
ing q=“Achlorhydria, Hypopotassemia,” we have two
groups, i.e., G1={Achlorhydria, Hypochlorhydria} and
G2= {Hypopotassemia,Hypokalemia} by using the rules.

Further, to construct sorted lists for each element in
groups, note that, here only sorted accesses are supported
by PubMed. For each keyword w, PubMed returns a sorted
list including all the citations containing w. We use the fol-
lowing example to illustrate how the NULA algorithmworks
for query rewriting on an online biomedical database.

Example 9 Consider the example in Fig. 11 in order to illus-
trate how NULA (our top-k,m algorithms with only sorted
accesses) find the top-1 refined query according to top-2
highest scores of a citation, i.e., top-1, 2 query. Here, we
perform sorted accesses to the first tuple in each list and
then compute their upper and lower bounds according to the
formulas in Sect.6. That is εmax

A1B1
= 2.82, εmin

A1B1
= 1.41,

εmax
A1B2

= 3.86, εmin
A1B2

= 1.93, εmax
A2B1

= 1.80, εmin
A2B1

= 0.90,

and also εmax
A2B2

= 2.84, εmin
A2B2

= 1.42. Then, εA2B1 can be

pruned due to the fact that εmax
A2B1

< εmin
A1B2

. Then, we per-
form sorted access to second tuples in each list and update
the upper and lower bounds for remaining combinations.
That is εmax

A1B1
= 2.70, εmin

A1B1
= 1.91, εmax

A1B2
= 3.77,

εmin
A1B2

= 2.85, and also εmax
A2B2

= 2.75, εmin
A2B2

= 1.86.
Then, A1B2 can be guaranteed to be the top-1 combina-
tion with highest top-2 matching instances, because εmin

A1B2
is larger than both εmax

A1B1
and εmax

A2B2
. Therefore, “Achlorhy-

dria, Hypokalemia” is returned as a refined query for the
original query “Hypochlorhydria, Hypokalemia.” ��

9 Experiments

In this section, we report an extensive experimental eval-
uation of our algorithms, using four real-life datasets. Our

experiments were conducted to verify the efficiency and scal-
ability of all our top-k,m algorithms.

Implementation and environmentAll the algorithmswere
implemented in Java, and the experiments were per-
formed on a computer with a 4th generation Intel i7-4770
processor, 16 GB RAM running Ubuntu 14.04.1.
Datasets We use four datasets including NBA,7 Yahoo!
YQL,8 DBLP,9 and PubMed10 to test the efficacy of
top-k,m algorithms in the real world. Table 1 summa-
rizes the characteristics of the four datasets. NBA and
Yahoo! YQL datasets were employed to evaluate the
top-k,m algorithms with and without random accesses,
while DBLP and PubMed datasets were utilized to test
the XML top-k,m algorithm and no random accesses
top-k,m algorithms, respectively.

– NBA datasetWe downloaded the data of 2010–2011 pre-
season in NBA for the ”Point Guard,” ”Shooting Guard,”
”Small Forward,” ”Power Forward” and ”Center” posi-
tions. The original dataset contains thirteen dimensions,
such as opponent team, shots, assists and score. We
normalized the score of the data into [0, 10] by assign-
ing different weights to each dimension. There are five
groups, and the average size of each group is about 6.

– YQL dataset We downloaded data about the hotels,
restaurants and entertainments from Yahoo! YQL3. The
goal of the top-k,m queries is to recommend the top-
k combinations of hotels, restaurants and entertainments
according to users’ feedback. There are three groups, and
the average size of each group is around 12.

– DBLP dataset The size of DBLP is about 127M. In order
to generate meaningful query candidates, we obtained
724 synonym rules about the abbreviations and full
names for computer science conferences anddownloaded
Babel11 data including 9, 136 synonym pairs about com-
puter science abbreviations and acronyms. Regarding to
the real-world user queries, themost recent 1, 000 queries
are selected from the query log of a DBLP online demo,
out of which 219 queries (with an average length of 3.92
keywords) are selected to form a pool of queries that need
refinement. Finally, we randomly picked 186 queries that
have meaningful results to test our algorithms. Here, we
show 5 sample XML keyword refinements as follows.
Q1:{thomason, huang} is refinedby substituting “thomas”
for “thomason.”

7 http://www.nba.com/.
8 http://developer.yahoo.com/yql/console/.
9 http://dblp.uni-trier.de/xml.
10 http://www.ncbi.nlm.nih.gov/pubmed.
11 http://www.wonko.info/ipt/babel.htm.

123

http://www.nba.com/
http://developer.yahoo.com/yql/console/
http://dblp.uni-trier.de/xml
http://www.ncbi.nlm.nih.gov/pubmed
http://www.wonko.info/ipt/babel.htm


Optimal algorithms for selecting top-k combinations of attributes: theory and applications

Table 1 Datasets and their
characteristics

Datasets # of objects # of groups group size # of combinations

Max Avg Max Avg Max Avg

YQL 100,000 3 3 150 12 3,375,000 1,728

NBA 31,200 5 5 32 6 33,554,432 7,776

DBLP 3,736,406 7 2.6 12 5 371,292 327

PubMed 18,232,012 9 4.3 164 7.9 3,340,631,305 7,241

Q2:{philipos, data, base} can be refined as {philipos,
database}.
Q3:{XML, key, word, application, 2008} is refined by
deleting “2008,” followed by a merging of “key” and
“word.”
Q4:{world, wild, web, search, engine, 2007}, which is
refined by either adopting “world, wild, web”→ “www”
or deleting “2007.”
Q5:{object seek} which can be refined to be {object
search}.

– PubMeddataset PubMedhas over 18million citations for
biomedical literature from National Library of Medicine
premier bibliographic database, life science journals and
also online books. PubMed citation includes the fields
of biomedicine and health, covering portions of the life
sciences, behavioral sciences, chemical sciences and bio-
engineering. In addition, all the citations in PubMed are
labeled by different categories, which are descriptors
from MeSH (National Library of Medicine’s controlled
vocabulary thesaurus). MeSH contains about 27, 149
descriptors and over 218, 000 entry terms that assist in
finding the most appropriate MeSH Heading, for exam-
ple, “Vitamin C” is an entry term to “Ascorbic Acid.”
We cluster relevant MeSH Headings together as rules to
build “groups” for keywords. In Table 2, we list some
example rules that are collected by domain experts and
can be searched in MeSH.12

Metrics Our performance metrics are (1) running time: the
cost of the overall time in executing top-k,m queries; (2)
access number: the total number of tuples accessed by
both sorted access and random access; and (3) number of
processed combinations: the total number of combinations
processed in memory.

We inspected the results returned from all tested algo-
rithms and found that their results are all the same, which
verifies the validity of our algorithms. Each experiment was
repeated over 10 times, and the average numbers are reported
here.

12 http://www.nlm.nih.gov/mesh/meshhome.html.

Table 2 Example synonym rules collected in PubMed

Synonym rules

Teeth-disease related rules Odontome→abnormality teeth

Toxoplasmosis→ toxoplasma
gondii infection

Trismus→ lockjaw

Trismus→masseter spasm

Scrofulas related rules Scrofulas→ tuberculous

Scrofulas→cervical
lymphadenitis

Epiloia→ tuberose sclerosis

Cystoliths→Bladder stone

9.1 Experiments of algorithms with random accesses

Here,we illustrate the performance of algorithms (ETA,ULA
andULA+) on NBA andYQL dataset by varying parameters
k and m and the data size. In addition, we also deeply study
the performance of different optimizations.
Scalability with database sizeWe evaluated the scalability of
our algorithms with varying the number of tuples from 10k
to 100k in both datasets. As shown in Fig. 12a, b, both ULA
and ULA+ expose an amazingly stable performance without
any significant fluctuation both in running time and in the
number of accessed tuples, while ETA scales linearly with
the size of the database in NBA dataset. And in general, the
execution time of ULA+ outperforms ETA by 1–2 orders of
magnitude, which verifies the efficiency of the optimizations.
In addition, as we can see in Fig. 12e, f, the results in YQL
datasets are similar to those in NBA dataset.
Performance versus range of k In Fig. 12c, g, we tested the
performance with different k. We fixed m = 15 and varied
k from 5 to 50 in NBA dataset. Similarly, we fixed m = 30
and varied k from 10 to 100 in YQL dataset. We found that
the number of accesses of ETA is the same over all k values
because ETA has to obtain the exact top-m match instances
for each combination independent of k, while the ULA and
ULA+ algorithms significantly outperform theETA.The rea-
son for this improvement is that ULA and ULA+ can stop
earlier without computing the exact top-m match instances
for each combination. One interesting observation is that

123

http://www.nlm.nih.gov/mesh/meshhome.html


C. Lin et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12 Experiments in NBA and Yahoo! YQL datasets

(a) (b)

Fig. 13 Effect of the number of groups for top-k,m algorithms with
random accesses (NBA)

(a) (b)

Fig. 14 Effect of the number of lists for top-k,m algorithms with ran-
dom accesses (NBA)

though the YQL dataset has more number of objects than
NBA dataset, the running time of top-k,m algorithms in
YQL is much smaller than that in NBA (see Fig. 12). This is
because YQL has less number of combinations (see Table 1)
than that of the NBA, which acts as a key factor to impact
the run-time performance.

Pe
rc

en
ta

ge
 o

f a
cc

es
se

d 
nu

m
be

r

0.0

0.2

0.

0.

0.8

1.0

1.2
1.00

0.82

0.62

0.34

0.61

0.30 0.29
0.23

ULA ULA+
(PL)

ULA+
(AR)

ULA+
(RO)

ULA+
(PL&
AR)

ULA+
(PL&
RO)

ULA+
(AR&
RO)

ULA+
(PL&AR

&RO)

Fig. 15 The performance of different optimizations on YQL

Performance versus range of m The results with increasing
m from 3 to 30 in NBA data and from 10 to 50 in YQL data
are shown in Fig. 12d, h, respectively. In general, both ULA
and ULA+ are 1 to 2 orders of magnitude more efficient than
ETAmethod. In addition, ULA+ is more efficient than ULA,
which verifies the effects of our optimizations.
Performance versus number of groups We vary the number
of groups from 2 to 5 while fixing the number of lists in
each group to be 5 in NBA dataset. As shown in Fig. 13,
both ULA and ULA+ achieve very stable performance and
perform better than ETA. Note that ETA scales linearly with
the number of groups, as ETA needs to compute the exact
score for each combination. Instead ULA and ULA+ only
need to compute lower and upper bounds, which makes them
less sensitive to the number of groups than ETA.
Performance versus number of lists In addition to the eval-
uation of the impact of the number of groups, here we vary
the number of lists from 2 to 5 while keeping the number of

123



Optimal algorithms for selecting top-k combinations of attributes: theory and applications

Table 3 The performance of
optimization to reduce
combinations on NBA dataset

# lists 5 10 15 20 25 30

# combinations 3125 100,000 759,375 3,200,000 9,765,625 24,300,000

# pruned combinations 1875 80,000 494,325 2,332,800 7,604,375 19,756,800

Pruning ratio 60.0% 80.0% 65.1% 72.9% 77.9% 81.3%

Varying the size of DBLP(k=3, m=2)

Ti
m

e 
(s

ec
)

0
2
4

8
10

# 
of

 a
cc

es
se

d 
tu

pl
es

(K
)

0

50

100

150

200

250

300

0

50

100

150

200

250

300

Ti
m

e 
(s

ec
)

# 
of

 a
cc

es
se

d 
tu

pl
es

(K
)

6

12
14
16

XETA
XULA
XULA+

20% 40% 60% 80% 100% 1 2 3 4 5 1 2 3 4 520% 40% 60% 80% 100%

XETA
XULA
XULA+

Varying the size of DBLP(k=3, m=2)

XETA
XULA
XULA+

XETA
XULA
XULA+

Varying k (m=2) Varying k (m=2)

0
2
4

8
10

6

12
14
16
18

(a) (b) (c) (d)

Fig. 16 Effect of the number of groups for top-k,m algorithms with no random accesses. a NBA. b PubMed

ENRA
NULA
NULA+

Varying # of tuples (*K) (k=10, m=30)

Ti
m

e(
Se

c)
0

10
20

30
40

50
60

ENRA
NULA
NULA+

Varying # of tuples (*K) (k=10, m=30)

# 
of

 a
cc

es
se

d 
tu

pl
es

 (K
)

0
10

20
30

40
50

60
70

80

Varying k (m=30)

ENRA
NULA
NULA+

Ti
m

e(
Se

c)
0

20
40

60
80

10
0

12
0

# 
of

 a
cc

es
se

d 
tu

pl
es

 (K
)

ENRA
NULA
NULA+

Varying m (k=10)

ENRA
NULA
NULA+

Varying # of tuples (*K) (k=30, m=15)

Ti
m

e(
Se

c)

ENRA
NULA
NULA+

Varying # of tuples (*K) (k=30, m=15)

# 
of

 a
cc

es
se

d 
tu

pl
es

 (K
)

0
5

10
15

20
25

30

Varying k (m=15)

ENRA
NULA
NULA+

Ti
m

e(
Se

c)

# 
of

 a
cc

es
se

d 
tu

pl
es

 (K
)

ENRA
NULA
NULA+

Varying m (k=30)

ENRA
NULA
NULA+

Varying # of tuples (*K) (k=3, m=10)

Ti
m

e(
Se

c)
0

15
30

45
60

75
90

ENRA
NULA
NULA+

Varying # of tuples (*K) (k=3, m=10)

# 
of

 a
cc

es
se

d 
tu

pl
es

 (K
)

0
20

40
60

80
10

0
12

0

Varying k (m=10)

0
20

40
60

80
10

0
12

0

ENRA
NULA
NULA+

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 5 10 15 20 25 30 35 40 45 50

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 5 10 15 20 25 30 35 40 45 50 3 6 9 12 15 18 21 24 27 30

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 1 2 3 4 5 6 7 8 9 10 5 10 15 20 25 30 35 40 45 50

Ti
m

e(
Se

c)

# 
of

 a
cc

es
se

d 
tu

pl
es

 (K
)

ENRA
NULA
NULA+

Varying m (k=3)

0
25

50
75

10
0

12
5

15
0

0
10

20
30

40
50

60
70

80

0
20

40
60

80
10

0
12

0

0
5

10
15

20
25

30

0
10

20
30

40
50

60
70

80

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 17 Experimental results of top-k,m algorithms with no random accesses in NBA, Yahoo! YQL and PubMed datasets

groups to be 5 in NBA dataset in order to study the effect of
the number of lists. Figure 14 shows that ULA and ULA+
again have better performance than ETA and behave very
stably, while ETA scales linearly with the number of lists.
The key reason is that ETA needs to compute the exact score

for each of the combination, while ULA and ULA+ only
calculate the upper and lower bounds of each combination.
Effect of the optimizations in ULA+ We performed experi-
ments to investigate the effects of four different optimizations
in ULA+. We fixed the parameters k = 10 and m = 30, and
the number of tuples is 100k. First, to evaluate the approach

123



C. Lin et al.

of pruning useless combinations introduced in Sect. 5.3, we
plotted Table 3 to show that the number of combinations pro-
cessed in memory by our optimized algorithm is far less than
that of ULA on NBA dataset. More than 60% combinations
are pruned without computing their bounds on NBA dataset,
thus significantly reducing the computational and memory
costs.

To evaluate the effects ofLemma4 to 6, Fig. 15 is plotted to
evaluate the performance of different optimizations in terms
of the number of accessed tuples. In particular, ULA+(PL)
usesLemma4 to prune thewhole lists to avoid useless access;
ULA+(AR) appliesLemma5 to avoid randomaccess in some
lists; and ULA+(RO) employs Lemma 6 to prevent random
access for some tuples. In Fig. 15, the first three pairs of
bars show the results to measure three optimizations individ-
ually, while the others are actually a combination of multiple
optimizations. As shown, the combination of all optimiza-
tions has the most powerful pruning capability, reducing the
accesses for almost 80%. It is similar in NULA+, the combi-
nation of all optimizations (Lemma 4 andLemma 8) achieves
the most powerful pruning power by reducing the accesses
for around 21%. The overall pruning power of ULA+ is
higher than that of NULA+. This is because ULA+ can use
twomore optimizations relying on random accesses, i.e., AR
(Lemma 5) and RO (Lemma 6) optimizations.

9.2 XML keyword refinement

We ran the experiments to test the scalability and efficiency
of XETA, XULA and XULA+ algorithms on DBLP dataset.
In Fig. 16a, b, we varied the size of DBLP dataset from 20 to
100%while keeping k = 3,m = 2.As expected, bothXULA
and XULA+ perform better than XETA and scale well in
both running time and number of accesses. In Fig. 16c, d,
we varied k from 1 to 5 while fixing m = 2 and 100% data
size. As shown, both XULA and XULA+ are far more effi-
cient than XETA, and XULA+ accesses 74.2% fewer objects
than XULA and saves more than 35.1% running time, which
indicates the effects of our optimizations.

9.3 Experiments of algorithms with no random accesses

Here, we illustrate the performance of algorithms (ENRA,
NULA and NULA+) on NBA, YQL and PubMed datasets
by varying parameters k and m and the data size.
Scalability with database sizeWe evaluated the scalability of
our algorithms by varying the number of tuples from 10k to
100k in both datasets. As shown in Fig. 17a, b, e, f, i, j, NULA
andNULA+ scale better thanENRA in terms of both running
time and the number of accessed tuples, since NULA and
NULA+ can stop earlier than ENRA, which needs to com-
pute the exact score for each combination. In addition, the
performance of NULA+ is better than that of NULA in our

(a) (b)

Fig. 18 Effect of the number of groups for top-k,m algorithms with
no random accesses. a NBA. b PubMed

(a) (b)

Fig. 19 Effect of the number of lists for top-k,m algorithms with no
random accesses. a NBA. b PubMed

experiments, since NULA+ adopts one optimization method
(Lemma 8) to reduce the number of the sorted accesses. Note
that the number of accessed tuples is large in PubMed dataset,
because over 50% citations do not cover all the input key-
words, i.e., it is harder to obtain full score for each match
instance (Fig. 17j).
Performance versus range of k In Fig. 17c, g, k we tested the
performance of algorithms by (i) varying k from 10 to 100
when m = 30 in YQL dataset; (ii) varying k from 5 to 50
while fixingm = 15 in NBA dataset; and (iii) varying k from
1 to 10 when m = 10 in PubMed dataset. As shown, NULA
and NULA+ algorithms significantly outperform the ENRA.
In addition, we observe that the number of accesses of ENRA
remains the same over all k values, while that of NULA
and NULA+ fluctuates over different k. The main reason is
that: (i) ENRA has to obtain the exact top-m match instances
for each combination independent of k; and (ii) NULA and
NULA+ find the k combinations whose lower bounds are
larger than the others’ upper bounds, which means that the
top-k,m query possibly requires accessing more tuples than
the top-k′,m (k′ > k) query does. For example, see the points
k = 50, k = 60, and k = 70 in Fig. 17c.
Performance versus range of m The results with increasing
m from 10 to 50 in YQL and PubMed datasets, from 3 to 30
in NBA dataset are shown in Fig. 17d, h, l, respectively. In
general, both NULA and NULA+ are much more efficient
than ENRA method. In addition, NULA+ is more efficient
than NULA, which verifies the effects of our optimizations
(Fig. 15).
Performance versus number of groups To test the effect of
the number of groups for top-k,m algorithms with no ran-

123



Optimal algorithms for selecting top-k combinations of attributes: theory and applications

Varying approximate ratio

Ti
m

e 
(s

ec
)

0

20

ETA
ULA
ULA  +40

60

80

Varying approximate ratio

# 
of

 a
cc

es
se

d 
tu

pl
es

(K
)

0

5

10

15

ETA
ULA20

25

30

Varying approximate ratio

Ti
m

e 
(s

ec
) ENRA

NULA
NULA  +

Varying approximate ratio

ENRA
NULA
NULA  ULA  +

1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0

# 
of

 a
cc

es
se

d 
tu

pl
es

(K
)

0

20

40

60

80

0

20

40

60

80

(a) (b) (c) (d)

Fig. 20 Experiments of approximate algorithms

0.00

17.33

30.42

48.66

60.40

0

20

40

60

Sp
ee

du
p 

 (%
)

Ra�o

0.00

23.20

47.33

64.76
70.55

0

20

40

60

80

1 1.5 2 2.5 3 1 1.5 2 2.5 3

Sp
ee

du
p 

(%
)

Ra�o

(a) (b)

Fig. 21 The speedup of different ratios. a ULAθ . b ULA+
θ

dom accesses, we vary the number of groups from 2 to
5 in NBA (by fixing the number of lists with 5 in each
group) and PubMed (by fixing the number of lists with 10
in each group) datasets. Figure 18 shows that both NULA
and NULA+ achieve stable performance and perform better
than ENRA. Since ENRA needs to compute the exact top-m
match instances for each combination, ENRA scales linearly
with the number of groups.
Performance versus number of lists To study the effect of the
number of lists for the top-k,m algorithms with no random
accesses, we vary the number of lists from 2 to 5 in NBA
and 4 to 10 in PubMed datasets. As shown in Fig. 19, ENRA
scales linearly with the number of lists, while both NULA
and NULA+ achieve stable performance and perform higher
than ENRA.

9.4 Experiments of approximate algorithms

Finally, we evaluate the performance of all the approximate
top-k,m algorithms. Figure 20a, b shows the running time
and the number of accesses on NBA dataset for ETAθ , ULAθ

and ULA+
θ with varying approximate ratios (from 1.0 to

3.0). As shown, ULA+
θ performs the best, which outperforms

ETAθ by around 5 times. In addition, with larger approxi-
mate ratios, ULAθ (resp. ULA+

θ ) accesses fewer tuples and
has higher performance. However, ETAθ remains the same
for different approximate ratios, since it always need to get
all the top-m objects. Figure 20c, d demonstrates the perfor-
mance of ENRAθ , NULAθ and NULA

+
θ on PubMed dataset

with different approximate ratios. The results are similar to
those in Fig. 20a, b.

Table 4 Precision under different ratios

θ 1.0 1.5 2.0 2.5 3.0

NBA (p) 100% 97% 94% 86% 81%

YQL (p) 100% 98% 91% 88% 73%

Improvement versus approximate ratios To evaluate the per-
formance gain from different approximate ratio settings, we
plotted Fig. 21 to show how much speedup is obtained (in
percentage) with different approximate ratios. The speedup
percentage ρ is defined as ρ = t−tθ

t , where t is the running
time of a top-k,m algorithm and tθ is that of its approx-
imate version. As shown in Fig. 21, the higher speed up
is obtained with larger approximate ratios. For example,
ULA achieves 30.43% speed up with θ = 2.0 and 60.40%
improvement with θ = 3.0.We also observed that the perfor-
mance improvement tends to be stable at some points, which
means continuously increasing approximate ratios may not
keep gaining performance benefits.
Accuracy under different ratios To study the result quality of
the approximate top-k,m algorithms, Table 4 shows the pre-
cision of our top-k,m algorithms in NBA and YQL datasets
(k = 100 and m = 10). As shown, our algorithms achieve
high result quality. For example, in NBA dataset, even with
an approximate ratio 3, the precision is still above 80%.

Summary From the experimental results and performance
evaluation, we found the following: (1) Our algorithms (with
and without random accesses) are scalable and robust with
the number of tuples, data size,m and k, the number of groups
and the number of lists. (2) The optimizations in ULA+ and
NULA+ speed up the query processing significantly. (3) Our
algorithmsoutperformbaselines in both accurate and approx-
imate environment.

10 Conclusion and future work

In this article, we proposed a new problem called top-k,m
query evaluation.We developed a family of efficient top-k,m
algorithmsULA,ULA+, NULA andNULA+ with andwith-
out randomaccesses.Weprovided the corresponding approx-

123



C. Lin et al.

imate version for each of them. We theoretically proved the
optimality of each algorithm. To demonstrate the applicabil-
ity of the top-k,m problems, we applied our algorithms to the
query refinement problem in a biomedical database. Finally,
we conducted comprehensive experiments on four real-life
datasets to verify the efficiency of our algorithms.

This is an initial investigation on top-k,m problems, and
we plan to extend this work in several directions. One of them
is to apply top-k,m algorithmsonprobabilistic databases.We
are also interested in studying the impact of modern hard-
ware, e.g., SSD, on top-k,m problems when lists are stored
in secondary storage. For example, the fact that SSD sup-
porting high speed random accesses may allow algorithms
to perform on-disk skip.

References

1. Babcock, B., Datar, M., Motwani, R.: Sampling from a moving
window over streaming data. In: SODA, pp. 633–634 (2002)

2. Bast, H., Majumdar, D., Schenkel, R., Theobald, M., Weikum,
G.: Io-top-k: Index-access optimized top-k query processing. In:
VLDB, pp. 475–486 (2006)

3. Bruno,N., Chaudhuri, S., Gravano, L.: Top-k selection queries over
relational databases: mapping strategies and performance evalua-
tion. ACM TODS 27(2), 153–187 (2002)

4. Bruno, N., Gravano, L., Marian, A.: Evaluating top-k queries over
web-accessible databases. In: ICDE, pp. 369–380 (2002)

5. Chang, K.C.-C., Hwang, S.-W.: Minimal probing: supporting
expensive predicates for top-k queries. In: SIGMOD, pp. 346–357
(2002)

6. Chen, L.J., Papakonstantinou, Y.: Supporting top-k keyword search
in xml databases. In: ICDE, pp. 689–700 (2010)

7. Dylla, M., Miliaraki, I., Theobald, M.: Top-k query processing in
probabilistic databases with non-materialized views. In: ICDE, pp.
122–133 (2013)

8. Fagin, R.: Combining fuzzy information from multiple systems.
In: PODS, pp. 216–226 (1996)

9. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists.
SIDMA 17(1), 134–160 (2003)

10. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms
for middleware. JCSS 66(4), 614–656 (2003)

11. Fan, W., Wang, X., Wu, Y.: Diversified top-k graph pattern match-
ing. PVLDB 6(13), 1510–1521 (2013)

12. Feng, J., Li, G., Wang, J.: Finding top-k answers in keyword search
over relational databases using tuple units. TKDE 23(12), 1781–
1794 (2011)

13. Guntzer, J., Balke, W.-T., Kießling, W.: Towards efficient multi-
feature queries in heterogeneous environments. In: ITCC, pp. 622–
628 (2001)

14. Güntzer, U., Balke, W., Kießling, W.: Optimizing multi-feature
queries for image databases. In: VLDB, pp. 419–428 (2000)

15. He, R., Lin, C., McAuley, J.: Fashionista: A fashion-aware graph-
ical system for exploring visually similar items. In: WWW, pp.
199–202 (2016)

16. He,R., Lin, C.,Wang, J.,McAuley, J.: Sherlock: sparse hierarchical
embeddings for visually-aware one-class collaborative filtering. In:
IJCAI, pp. 3740–3746 (2016)

17. Hua, M., Pei, J., Fu, A.W., Lin, X., Leung, H.: Top-k typicality
queries and efficient query answering methods on large databases.
VLDB J. 18(3), 809–835 (2009)

18. Ilyas, I.F., Aref, W.G., Elmagarmid, A. K.: Joining ranked inputs
in practice. In: VLDB, pp. 950–961 (2002)

19. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join
queries in relational databases. In: VLDB, pp. 754–765 (2003)

20. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join
queries in relational databases. VLDB J. 13(3), 207–221 (2004)

21. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query
processing techniques in relational database systems. CSUR 40(4),
11 (2008)

22. Li, C., Chen-Chuan Chang, K., Ilyas, I.F.: Supporting ad-hoc rank-
ing aggregates. In: SIGMOD, pp. 61–72 (2006)

23. Li, J., Liu, C., Zhou, R., Wang, W.: Top-k keyword search over
probabilistic xml data. In: ICDE, pp. 673–684 (2011)

24. Lian, X., Chen, L.: Shooting top-k stars in uncertain databases.
VLDB J. 20(6), 819–840 (2011)

25. Lu, E.H.-C., Chen,C.-Y., Tseng,V.S.: Personalized trip recommen-
dationwithmultiple constraints bymining user check-in behaviors.
In: SIGSPATIAL GIS, pp. 209–218 (2012)

26. Lu, J., Senellart, P., Lin, C., Du, X., Wang, S., Chen, X.: Optimal
top-k generation of attribute combinations based on ranked lists.
In: SIGMOD, pp. 409–420 (2012)

27. Mamoulis, N., Yiu, M.L., Cheng, K.H., Cheung, D.W.: Efficient
top-k aggregation of ranked inputs. TODS 32(3), 19 (2007)

28. Marian, A., Amer-Yahia, S., Koudas, N., Srivastava, D.: Adaptive
processing of top-k queries in xml. In: ICDE, pp. 162–173 (2005)

29. Michel, S., Triantafillou, P., Weikum, G.: Klee: a framework for
distributed top-k query algorithms. In: VLDB, pp. 637–648 (2005)

30. Natsev, A., Chang, Y.-C., Smith, J.R., Li, C.-S., Vitter, J.S.:
Supporting incremental join queries on ranked inputs. VLDB 1,
281–290 (2001)

31. Nepal, S., Ramakrishna, M.V.: Query processing issues in image
(multimedia) databases. In: ICDE, pp. 22–29 (1999)

32. Qiao, M., Qin, L., Cheng, H., Yu, J.X., Tian, W.: Top-k nearest
keyword search on large graphs. PVLDB 6(10), 901–912 (2013)

33. Ranu, S., Hoang, M.X., Singh, A.K.: Answering top-k represen-
tative queries on graph databases. In: SIGMOD, pp. 1163–1174
(2014)

34. Re, C., Dalvi, N., Suciu, D.: Efficient top-k query evaluation on
probabilistic data. In: ICDE, pp. 886–895 (2007)

35. Schwartz, J.T.: Fast probabilistic algorithms for verification of
polynomial identities. JACM 27(4), 701–717 (1980)

36. Shang, S., Ding, R., Yuan, B., Xie, K., Zheng, K., Kalnis, P.: User
oriented trajectory search for trip recommendation. In: EDBT, pp.
156–167 (2012)

37. Soliman,M.A., Ilyas, I.F., Chang,K.C.-C.: Top-k query processing
in uncertain databases. In: ICDE, pp. 896–905 (2007)

38. Soliman, M.A., Ilyas, I.F., Chang, K.C.-C.: Probabilistic top-k and
ranking-aggregate queries. TODS 33(3), 13 (2008)

39. Theobald,M., Schenkel, R.,Weikum, G.: An efficient and versatile
query engine for topx search. In: VLDB, pp. 625–636 (2005)

40. Theobald, M., Weikum, G., Schenkel, R.: Top-k query evaluation
with probabilistic guarantees. In: VLDB, pp. 648–659 (2004)

41. Varadarajan, R., Farfán, F., Hristidis, V.: Comparing top-k XML
lists. Inf. Syst. 38(6), 820–834 (2013)

42. Yang, S., Han, F., Wu, Y., Yan, X.: Fast top-k search in knowledge
graphs. In: ICDE, pp. 990–1001 (2016)

43. Yang, Z., Fu, A.W., Liu, R.: Diversified top-k subgraph querying
in a large graph. In: SIGMOD, pp. 1167–1182 (2016)

44. Yiu,M.L.,Mamoulis, N., Hristidis, V.: Extracting kmost important
groups from data efficiently. DKE 66(2), 289–310 (2008)

45. Zhang, X., Chomicki, J.: Semantics and evaluation of top-k queries
in probabilistic databases. Distrib. Parallel Databases 26(1), 67–
126 (2009)

46. Zhu, R., Zou, Z., Li, J.: Towards efficient top-k reliability search
on uncertain graphs. KAIS 50(3), 723–750 (2017)

123


	Optimal algorithms for selecting top-k combinations of attributes: theory and applications
	Abstract
	1 Introduction
	1.1 Challenges
	1.2 Contributions
	1.3 Paper organization

	2 Related work
	2.1 Existing top-k algorithms
	2.1.1 Top-k algorithms with sorted and random accesses
	2.1.2 Top-k algorithms with no random accesses
	2.1.3 Other top-k algorithms

	2.2 Compared with the previous preliminary version

	3 Problem formulation
	3.1 Novelty of top-k,m

	4 Applications
	4.1 Application 1
	4.2 Application 2

	5 Top-k,m algorithms with sorted and random accesses
	5.1 The baseline algorithm: ETA
	5.2 Top-k,m algorithm: ULA
	5.2.1 Discussion

	5.3 Optimized top-k,m algorithm: ULA+
	5.4 Optimality properties
	5.4.1 Competing algorithms
	5.4.2 Cost metrics
	5.4.3 Instance optimality

	5.5 Theoretical analysis on the depth of accesses

	6 Top-k,m algorithms with no random access
	6.1 Baseline algorithm with no random accesses: ENRA
	6.2 No random access algorithm: NULA
	6.2.1 Upper bound
	6.2.2 Lower bound

	6.3 Optimized no random access algorithm: NULA+
	6.4 Optimality properties of NULA and NULA+

	7 Approximate Top-k,m algorithms
	7.1 Approximate baseline algorithms
	7.2 Approximate top-k,m algorithms

	8 Case studies on real applications
	9 Experiments
	9.1 Experiments of algorithms with random accesses
	9.2 XML keyword refinement
	9.3 Experiments of algorithms with no random accesses
	9.4 Experiments of approximate algorithms

	10 Conclusion and future work
	References




