
MILC: Inverted List Compression in Memory

Jianguo Wang Chunbin Lin Ruining He Moojin Chae
Yannis Papakonstantinou Steven Swanson

Department of Computer Science and Engineering
University of California, San Diego

{csjgwang, chunbinlin, r4he, mochae, yannis, swanson}@cs.ucsd.edu

ABSTRACT

Inverted list compression is a topic that has been studied for 50

years due to its fundamental importance in numerous applications

including information retrieval, databases, and graph analytics. Typ-

ically, an inverted list compression algorithm is evaluated on its

space overhead and query processing time, e.g., decompression

time and intersection time. Earlier list compression designs mainly

focused on minimizing the space overhead to reduce expensive disk

I/O time in disk-oriented systems. But the recent trend is towards

reducing query processing time because the underlying systems

tend to be memory-resident. Although there are many highly op-

timized compression approaches in main memory, there is still a

considerable performance gap between query processing over com-

pressed lists and uncompressed lists, which motivates this work.

In this work, we set out to bridge this performance gap for the

first time by proposing a new compression scheme, namely, MILC
(memory inverted list compression). MILC relies on a series of

innovative techniques including fixed-bit encoding, dynamic parti-

tioning, in-block compression, cache-aware optimization, and SIMD

acceleration. We conduct experiments on three real-world datasets

in information retrieval, databases, and graph analytics to demon-

strate the high performance and low space overhead of MILC. We

compare MILC with 14 recent compression algorithms and show

that MILC improves the query performance by up to 16.5× and

reduces the space overhead by up to 3.7×. In particular, com-

pared with uncompressed lists, MILC achieves a similar (or even

higher) query performance but with a 2.4× to 3.7× lower space

overhead. Compared with widely used compression algorithms,

e.g., GroupVInt, PforDelta, MILC is 3× to 8.7× faster and takes

5% to 58.6% less space overhead.

1. INTRODUCTION
An inverted list is a sorted list of integers. Although simple, it is

the standard structure in a wide range of applications. For instance,

search engines usually rely on inverted lists to find relevant docu-

ments. Databases also heavily need inverted lists to accelerate SQL

processing [5].

Inverted list compression is a topic that has been studied for

50 years due to its benefits in disk-oriented systems as well as

recent memory-oriented systems. In disk-centric systems, com-

pression can reduce expensive I/O time by shortening lists’ sizes.

Thus, list compression algorithms designed for disks (e.g., VB [33],

Rice [30], Elias gamma [14]) mainly focus on reducing the space

overhead. The CPU decompression overhead is negligible com-

pared to the saved I/O time due to the giant performance gap be-

tween disk and CPU. In recent memory-oriented systems, compres-

sion is also beneficial because it makes the system accommodate

much more data than the physical memory capacity. For example,

 0

 10

 20

 30

 40

 50

 60

Uncompressed PforDelta PEF GMRun

a
vg

.
ex

ec
.

ti
m

e
(m

s)

compression algorithms

Figure 1: Executing queries over compressed (PforDelta, PEF,

and GMRun) and uncompressed lists

100GB’s raw data can be pushed to a server with 32GB DRAM.

This reduces the total cost of ownership (TCO) since main mem-

ory is still an expensive resource. As a result, many compression

algorithms have been developed for in-memory inverted lists, e.g.,

PforDelta [42], PEF [26], GMRun [41].

Motivation. We observe that there is still a considerable perfor-

mance gap for query processing over compressed lists (with state-

of-the-art compression algorithms) versus uncompressed lists in

memory. For example, Figure 1 shows the (average) execution time

of running 10,000 real-world search engine queries over 300GB

data.1 It shows that the performance gap is 2.6× to 3.3×.

This raises an interesting question: Is it possible to bridge this

performance gap when operating on compressed data? This work

gives a positive answer to this question by proposing a new com-

pression algorithm, namely, MILC (memory inverted list compres-

sion). Compared with uncompressed lists, MILC achieves a com-

pression ratio of 2.4× to 3.7× and executes queries as fast as or

even faster than that on uncompressed lists on three real-world

datasets in information retrieval, databases, and graph analytics.

Before diving into the technical descriptions, we define the prob-

lem first.

Problem statement. Given a sorted list L of n positive integers,

the problem of inverted list compression is to store L with as few as

possible bits (smaller than the original list) while supporting query

processing as fast as possible. We mainly focus on supporting effi-

cient membership testing – checking whether an element appears in

a compressed list – because it is the core of many operations, e.g.,

intersection, union, difference, selection, join, successor finding,

and top-k query processing.

Limitations of previous compression solutions. Existing com-

pression algorithms for inverted lists, e.g., VB [33], Simple8b [2],

GroupVInt [11], and PforDelta [42], usually follow a golden rule

that is to compute the differences (called d-gaps) between two con-

secutive integers (since all integers are sorted), and only encode

1We use the Web data described in Section 9 and report the inter-
section time for each query.

1

the small d-gaps using fewer bits to save space. For example, let

L = {8, 15, 20, 25, 35, 40, 52, 60, 65, 78, 90}, then existing solu-

tions usually convert L to L′ = {8, 7, 5, 5, 10, 5, 12, 8, 5, 13, 12},

where L′[0] = L[0] and L′[i] = L[i]−L[i−1] (i ≥ 1). But this is

exactly why existing approaches cannot support membership test-

ing efficiently: They have to decompress the entire list. Even with

skip pointers as suggested in [25], still, they need to decompress

at least one block of data on the fly. Moreover, the decompression

overhead is high because they need to traverse the data at least twice

in order to recover the original values: (1) decode each individual d-

gap; (2) calculate prefix sums. Some compression algorithms may

need more rounds, e.g., PforDelta requires another round of traver-

sal to recover the exception values. Another important drawback is

that it is unfriendly to SIMD (single instruction multiple data) due

to the inherent data dependencies in computing prefix sums [18].

Those compression algorithms that do not explicitly rely on d-

gaps (such as EF [13, 35], PEF [26], and GMRun [41]) also have

problems in dealing with membership testing efficiently as we ex-

plain more in related work. For example, EF and PEF need to ac-

cess every bit (instead of a word) to recover the original values,

which requires many bit manipulations. GMRun requires to find

the repeating patterns every time on the fly.

Challenges. It is challenging to design a new compression ap-

proach to achieve the same (or even better) query performance as

uncompressed lists while keeping a low space overhead, consid-

ering the problem has been studied for 50 years. The compres-

sion format should also be compliant with CPU cache lines and

SIMD instructions such that membership testing can be executed

even more efficiently. To solve the problem, we need to break

the traditional rule by abandoning d-gaps. This will increase the

space overhead naturally. Therefore, we need to design new ap-

proaches to reduce space overhead while maintaining high query

performance.

Technical overview. To address the above challenges, we develop

a novel compression scheme MILC (memory inverted list compres-

sion) that achieves a similar (or even faster) membership testing

performance with uncompressed lists. The basic idea of MILC is

that it partitions an input list into different blocks and each block

uses the same number of bits (fixed-bit encoding) to encode all the

elements within the block (Section 4). Using the same number of

bits instead of different number of bits as in previous works is cru-

cial to the success of MILC because it enables MILC to support

membership testing directly on compressed data.

To further reduce space overhead and improve query performance,

MILC employs four optimizations: (1) Dynamic partitioning (Sec-

tion 5). It partitions a list into variable-sized blocks based on dy-

namic programming to guarantee less exception values in each block,

i.e., elements in a block have low variance. This effectively reduces

the space overhead because exceptions need more bits to represent,

and all the other elements end up using the same high number of

bits. (2) In-block compression (Section 6). MILC further splits ev-

ery block into sub-blocks by smartly plugging in lightweight skip

pointers to reduce the space overhead. (3) Cache-aware optimiza-

tion (Section 7). MILC reorganizes data in a way by considering

CPU cache line alignment. It improves the performance of mem-

bership testing because CPU cache misses are reduced. (4) SIMD

acceleration (Section 8). MILC also leverages SIMD for fast query

processing. It packs as many elements as possible into a SIMD reg-

ister and organizes the elements in an interleaving way to facilitate

query processing.

Contribution. The main contribution of this work is a new com-

pression scheme MILC that achieves a similar (or even faster) mem-

bership testing performance with uncompressed lists while keep-

MILC

Uncompressed

VB

PforDelta

OptPFD

NewPFD

Simple8b

Simple9

Simple16

GroupVInt

VarintG8IU

SIMD-BP128

SIMD-FastPFD

PEF

GMRun

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45

ti
m

e
(m

s)

space (GB)

our MILC

uncompressed

Figure 2: Experiments overview of MILC vs existing com-

pression approaches on 300GB Web data in executing 10,000

queries

ing a low space overhead. MILC is tailored for modern computing

hardware including big memory, fast CPU caches, and wide SIMD

processing capabilities. To the best of our knowledge, this is the

first inverted list compression algorithm that has such a high query

performance with a low space overhead.

We conduct experiments on three real-life datasets to demon-

strate the advantages of MILC with a spectrum of 14 compression

algorithms in terms of query performance and space overhead. We

also perform a marginal analysis to show the effectiveness of each

optimization technique used in MILC. Figure 2 shows a preview on

300GB Web data in answering 10,000 user queries,2 and Section 9

describes more details.

• Compared with PforDelta (a mature compression algorithm),

MILC is 3× faster and takes 18% less space overhead.

• Compared with the variants of PforDelta (such as OptPFD [40]

and NewPFD [40]), MILC is 15.2× faster than OptPFD while

only taking 25% more space, and MILC is 12.7× faster than

NewPFD with an extra space overhead of 4.8%.

• Compared with Simple9 [1], Simple16 [39], and Simple8b [2],

MILC is 14.2×, 15.8×, and 7.7× faster but only consumes

14%, 20%, and 6.5% more space.

• Compared with PEF [26], MILC is 11.2× faster in decom-

pression, 2.7× faster in query processing, while only con-

suming 4.8% more space.

• Compared with GMRun [41], MILC is 4.1× faster with only

6.5% more space overhead.

• Compared with the other compression algorithms, e.g., VB [33],

GroupVInt [11], VarintG8IU [32], SIMD-BP128 [18], and

SIMD-FastPFD [18], MILC runs 1.7× to 16.5× faster in

query processing and takes 14.5% to 44.7% less space also.

In summary, MILC represents the best tradeoff for inverted list

compression in main memory in terms of time and space (see Fig-

ure 2). In particular,

2We report the list intersection time to measure the effectiveness of
membership testing because list intersection requires many mem-
bership testing operations.

2

1. With similar space overhead, MILC is 2.7× to 16.5× faster.

2. With similar performance, MILC consumes 2.4× to 3.7×
less space.

2. APPLICATIONS
In this section, we provide motivating applications that rely on

inverted lists for efficient query processing. This means that a large

range of applications can benefit from this work on inverted list

compression.

2.1 Information retrieval
Information retrieval (IR) is a killer application of inverted lists

to answer user queries with multiple terms [24]. IR systems store

an inverted list for each term all the documents that contain the

term. Taking the intersection or union of the lists for a set of query

terms identifies those documents that contain all or at least one of

the terms.

2.2 Database query processing
Inverted lists are also useful in evaluating queries in SQL databases.

For instance, in the star schema benchmark [28], one can issue the

following query to compute the profits of products of each cate-

gory for each nation in 1997, where the products are bought by

customers from “AMERICA” with mfgr being “MFGR#1” and sup-

pliers from “AMERICA”:

SELECT d_year, s_nation, p_category,

sum(lo_revenue - lo_supplycost) as profit

FROM date, customer, supplier, part, lineorder

WHERE lo_custkey = c_custkey

AND lo_suppkey = s_suppkey

AND lo_partkey = p_partkey

AND lo_orderdate = d_datekey

AND c_region = ’AMERICA’

AND s_region = ’AMERICA’

AND d_year = 1997

AND p_mfgr = ’MFGR#1’

group by d_year, s_nation, p_category

order by d_year, s_nation, p_category

In order to answer queries efficiently, most databases precom-

pute a list of matching row IDs for each predicate, e.g., L1 =
{lo_orderkey | d_year = 1997} and L2 = {lo_orderkey
| p_mfgr = ‘MFGR#1’}. Then, a query can be executed ef-

ficiently by intersecting the precomputed lists of row IDs for all

predicates involved in the query.

Another example of using inverted lists in a database is B-trees

when the underlying data has duplicated values (i.e., non-primary

key) [4]. In this case, every entry in a leaf node is associated with

a list of row IDs sharing the same key.

2.3 Graph analytics
Graph databases represent another family of advocates of in-

verted lists. There are usually two types of inverted lists in graph

databases: adjacency lists and association lists. An adjacency list

is dedicated for a vertex to maintain all neighborhood vertices con-

nected with it. An association list is dedicated for an object (e.g.,

a Facebook page) to keep all relevant associations where an asso-

ciation is specified by a source object, destination object, and as-

sociation type (e.g., tagged-in, likers) [34]. Many queries

over these graphs can be answered efficiently using inverted lists.

For example, finding “Restaurants in San Francisco liked by Mike’s

friends” reduces to finding the intersection of the adjacency list of

“Mike” and the association lists of “Restaurants” and “San Fran-

cisco”; discovering common friends among a group of people trans-

forms to computing the intersection of several adjacency lists.

2.4 More applications
In addition, there are other applications that heavily use inverted

lists for fast query processing. For example, data integration sys-

tems build inverted lists for q-grams to find the most similar strings [16].

Data mining systems deploy inverted lists for fast data cube opera-

tions such as slicing, dicing, rolling up and drilling down [21, 22].

XML databases depend on inverted lists to find twig patterns ef-

ficiently [6]. Key-value stores also organize data elements falling

into the same bucket (hash collision) with a chained list, which is

essentially an inverted list [12].

3. RELATED WORK
In this section, we review the major inverted list compression

algorithms developed so far. Figure 3 shows a brief history.

As mentioned in Section 1, the common wisdom of a decent in-

verted list compression algorithm is to compute the deltas (a.k.a

d-gaps) between two consecutive integers first and only encode the

d-gaps to save space.3 To prevent from decompressing the entire

list during query processing, it organizes those d-gaps into blocks

(of say 128 elements per block4) and builds a skip pointer per block

such that only a block of data needs to be decompressed. Today,

most excellent compression methods exactly follow this conven-

tion. For example, PforDelta [42] (and its descendants such as

NewPFD [40] and OptPFD [39]), VB [10], GroupVInt [11], Sim-

ple9 [1], Simple16 [39], and Simple8b [2].

Among them, PforDelta is a mature algorithm that is commonly

used because it has a good tradeoff between query execution time

(or decompression speed) and space overhead [39, 40]. The basic

idea is that it compresses a block of 128 d-gaps by choosing the

smallest b in the block such that a majority of elements (say 90%)

can be encoded in b bits (called regular values). It then encodes the

128 values by allocating 128 b-bit slots, plus some extra space at the

end to store the values that cannot be represented in b bits (called

exceptions). Each exception takes 32 bits while each regular value

takes b bits. In order to indicate which slots are exceptions, it uses

the unused b-bit slots from the preallocated 128 b-bit slots to con-

struct a linked list, such that the b-bit slot of one exception stores

the offset to the next exception. In the case where two exceptions

are more than 2b slots apart, it adds additional forced exceptions

between the two slots.

However, PforDelta still takes considerable time to decompress a

block of data, because it usually takes three phases for decompres-

sion: (1) It needs to copy the 128 b-bit values from the slots into

an integer array via bit manipulations; (2) It then walks through

the linked list of exceptions and copies their values into the corre-

sponding array slots; (3) It also goes through the integer array again

to perform prefix sums to recover the original values.

Recently, there is a resurgence of EF encoding [35] which is not

directly based on d-gaps. Actually, EF encoding was originally

proposed in 1974 [13], but it did not attract too much attention until

2013 when Vigna rediscovered that EF encoding can be competi-

tive with PforDelta [35]. It encodes a sequence of integers using

a low-bit array and a high-bit array. The low-bit array stores the

3Early compression algorithms (before 1990) do not follow this
rule and encode each element of a list individually, e.g., Rice [30]
and Elias gamma [14]. However, they are far worse than today’s
compression algorithms, e.g., PforDelta, in terms of both query ex-
ecution time and space overhead. Thus, we ignore them in this
work.
4The block size represents a tradeoff between space and time and
several existing works suggest 128 as the block size [2, 40].

3

1966

U
n

co
m

p
re

ss
ed

[2
3
]

1971

R
ic

e
[3

0
]

1974

E
F

[1
3

]

1975
E

li
as

g
am

m
a

[1
4
]

1990

d
-g

ap
[1

0
]

V
B

[1
0
]

1995

B
B

C
[3

]

1996

S
k

ip
p

in
g

[2
5

]

2005

S
im

p
le

9
[1

]

2006

P
fo

rD
el

ta
[4

2
]

2008

O
p

tP
F

D
[4

0
]

N
ew

P
F

D
[4

0
]

2009

G
ro

u
p

V
In

t
[1

1
]

S
im

p
le

1
6

[3
9
]

2010

S
im

p
le

8
b

[2
]

E
W

A
H

[1
9
]

2011

V
ar

in
tS

U
[3

2
]

V
ar

in
tG

B
[3

2
]

V
ar

in
tG

8
IU

[3
2
]

2013

Q
S

(E
F

)
[3

5
]

2014

P
E

F
[2

6
]

2015

S
IM

D
-B

P
1

2
8

[1
8

]

S
IM

D
-F

as
tP

F
D

[1
8
]

2016

G
M

R
u

n
[4

1
]

Figure 3: A brief history of representative inverted list compression approaches

lower b = log U
n

bits of each element contiguously where U is

the maximum possible element and n is the number of elements

in the list. The high-bit array then stores the remaining higher

bits of each element as a sequence of unary-coded d-gaps. Later

on, Giuseppe and Rossano improved it by leveraging the cluster-

ing property of a list, making it outperform PforDelta for some

intersection queries but not union queries [26]. We call it PEF (par-

titioned EF ǫ-optimal) in this paper. The fundamental problem of

EF encoding (and its descendants including PEF) is that query pro-

cessing is still not as efficient as it can be due to two reasons: (1)

It needs to sequentially go through every bit in the high-bit array

until a match is found, which requires many bit manipulations; (2)

After that, it also needs to sequentially examine 2b possible ties in

the lower-bit array which can be slow if b is large.

Another recent work is GMRun [41] whose idea is to compress

a collection of inverted lists together by replacing the common re-

peated patterns with a grammar, where the grammar itself is en-

coded in d-gaps. Although GMRun may reduce the space overhead

a little compared with EF, it tends to increase the query time due to

the consistent pattern checking.

In the literature, bitmaps are also an alternative for inverted list

compression. As early as in 1972, Thiel and Heaps tried bitmaps

to encode inverted lists [33] but the space overhead was too large.

Over the years, many compression methods for bitmaps have been

proposed, e.g., BBC [3], WAH [37], EWAH [19]. The basic idea is

to compress a sequence of contiguous 0’s or 1’s with run-lengths.

However, bitmaps are inferior to PforDelta in terms of both space

and time [5], which are also verified by our experiments. Actually,

the bitmap run-lengths are equivalent to d-gaps in PforDelta but

(compressed) bitmaps need to maintain extra information to differ-

entiate between 0-fill words, 1-fill words and literal words.

Currently, there is also a trend of leveraging SIMD to accelerate

the decompression speed of existing compression methods, such as

PforDelta [18] and VB [27,32]. The main idea is to reorganize data

elements in a way such as a single SIMD operation processes mul-

tiple elements. However, for d-gap based compression approaches,

computing prefix sums usually cannot leverage SIMD efficiently

because of the intrinsic data dependencies [18].

4. BASIC COMPRESSION STRUCTURE
In this section, we present the basic compression structure as a

starting point of MILC.

Storage structure. MILC’s basic structure follows PforDelta in

partitioning the list L into blocks but different in compressing the

data elements within a block. It splits L into ⌈ n
m+1

⌉ partitions

where (m+ 1) is the size of each partition except the last partition

if n is not divisible by (m+1). The choice of m will be discussed

later on. The first element of each block serves as a skip pointer

and all the skip pointers are stored in a metadata block. Thus, each

partition except the last one contains exactly m elements, called

a data block. The metadata block contains ⌈ n
m+1

⌉ elements (skip

pointers); each element points to a data block.

MILC stores a data block as follows. Suppose the block con-

tains the following m elements: {a0, a1..., am−1} and β is its skip

pointer. MILC stores each element ai as the difference between

ai and the skip pointer, i.e., ai − β, instead of ai − ai−1 as in

PforDelta [42]. So the maximum difference is (am−1 − β), which

can be encoded in b = ⌈log(am−1 − β + 1)⌉ bits. Then every

element in the same data block is represented in b bits. Different

blocks may use different number of bits to represent their values.

To save space, MILC fully utilizes the 32 bits of a word by pack-

ing as many values as possible and padding the residual bits of the

word (if any) with the next value if possible.

MILC stores the metadata block in the same format as PforDelta.

Each entry in the metadata block contains the metadata information

of a data block including the start value (32 bits), offset (32 bits),

and the number of bits b (8 bits) to encode the data block.

Example. As an example, Figure 4 depicts the structure and stor-

age format of L = {120, 200, 270, 420, 820, 860, 1060, 1160,

1220, 1340, 1800, 1980, 2160, 2400} consisting of 14 elements

and m = 4. It stores the list as follows: (1) It divides L into

⌈ 14
4+1

⌉ = 3 partitions where each partition (except the last one) has

5 elements: {120, 200, 270, 420, 820}; {860, 1060, 1160, 1220,

1340}; {1800, 1980, 2160, 2400}. (2) It extracts the first element

from each partition and puts it to the metadata block: {120, 860,

1800}. As a result, the data blocks are: {200, 270, 420, 820} (the

skip pointer is 120), {1060, 1160, 1220, 1340} (the skip pointer

is 860), and {1980, 2160, 2400} (the skip pointer is 1800). (3) It

subtracts the skip pointer from each data block. For example, for

the first data block (B0), since its skip pointer is 120, then it is

stored a sequence of values by subtracting 120, i.e., {80, 150, 300,

700}. (4) It determines the smallest b in each block such that all

the elements can be encoded in b bits, e.g., for block B0, the maxi-

mum number 700 can be encoded in 10 bits, thus, it uses 10 bits to

represent every element in B0. (5) It serializes each data block as

compact as possible (Figure 4). For example, B0 has four 10-bit el-

ements, but only the first three elements can be entirely packed into

a 32-bit word. The fourth 10-bit element needs to span two words:

the lower 2 bits are stored in the current word and the higher 8 bits

are stored in a new word. Then B1 is stored immediately after B0

by sharing the last word in B0 without wasting a single bit as is

shown in Figure 4.

Finally, we discuss the choice of m. If m is large, then it needs

more bits to encode the data blocks because each data block spans

a wide range, thus the overall space tends to be high. On the other

hand, if m is small, then there will be more elements in the meta-

data block, which incurs high space overhead. Following the con-

vention of PforDelta, we set m to 128 but other values are also

possible. Later on in Section 5, we discuss the choice of m dynam-

ically to minimize the overall space.

4

80 150 300 700 200 300 360 480 180 300 600

Word 0 Word 1 Word 2 Word 3

Block B0

120 860 1800Metadata block

Data blocks

10 bits 9 bits 10 bits

Block B1 Block B2

(skip pointers)

10 bits 10 bits 10 bits 9 bits 9 bits 9 bits 10 bits 10 bits

Figure 4: An example of storage format for L = {120, 200, 270,

420, 820, 860, 1060, 1160, 1220, 1340, 1800, 1980, 2160, 2400}
and m = 4

Supporting membership testing. MILC’s storage structure sup-

ports membership testing over a compressed list directly without

decompressing a whole block, because MILC uses fixed-bit encod-

ing to represent each element in the block using the same number

of bits while preserving the order.5 Let e be a search key, then it

performs binary search in the metadata block and jumps to the po-

tential data block and runs another binary search but using a new

key (e− β) where β is the skip pointer of the data block.

Next, we explain how to implement binary search within a data

block (as it is trivial to perform binary search in the metadata block

as it is uncompressed). The problem requires bit manipulations be-

cause each element takes b bits, which are not necessarily 8 bits

– byte type, 16 bits – short type, or 32 bits – int type that

are natively accessible by a programming language. Observe that

the core of binary search is obtaining the k-th value because bi-

nary search needs to consistently compare the search key with the

middle value within a search range. Conventionally on the integer

array, it is A[k] to access the k-th value of an array A. But on the

bit array, it requires a few bit manipulations to convert a b-bit value

to a 32-bit value. For example in Figure 4, assume b = 10 and A

be the compressed data blocks, then the first four values are:
1st: (A[0] & 0X03FF)

2nd: (A[0] >> 10) & 0X03FF

3rd: (A[0] >> 20) & 0X03FF

4th: (A[0] >> 30) | ((A[1] & 0X00FF) << 2)

Space overhead analysis. It is evident that the space overhead of

the storage format is high compared with PforDelta. Let us roughly

analyze how high it is by assuming the elements in a list are equally

apart to facilitate the analysis. Let θ be the gap between two con-

secutive elements in a block, m be the block size (e.g., m = 128),

p be the exception ratio (e.g., p = 10% [39]), then PforDelta re-

quires the following b bits to represent an element:

b = ⌈log(θ + 1)⌉+ 32× p ≈ log θ + 3.2

Then for the basic compression structure, the gap now becomes

m×θ. Thus, it requires the following b′ bits to represent an element

in the block:

b′ = ⌈log(m× θ + 1)⌉ ≈ log(128× θ) = log θ + 7

That means the basic compression incurs 7 − 3.2 = 3.8 more

bits per element compared to PforDelta (but with much higher per-

formance). Thus, in next sections, we present techniques to reduce

the space overhead while keeping fast query performance.

5. DYNAMIC PARTITIONING
In this section, we present a technique of dynamic partitioning to

reduce the space overhead while keeping high query performance.

Why dynamic partitioning? The reason why the basic compres-

sion structure in Section 4 consumes much space is that it evenly

5Another benefit of fixed-bit encoding is that the decompression
performance is much higher than those variable-bit encoding ap-
proaches such as PforDelta, which is verified in our experiments.

partitions an input list into blocks. So, if there are some exceptions6

in the block, then all the elements within the block have to use the

same high number of bits to represent. As an example, if a data

block is {3, 8, 10, 15, 150}, then it requires 8 bits just because of

150 (an exception) while the other values actually only need 4 bits

to represent. Thus, it could save a lot of space if we can dynami-

cally split a list in a way that similar (or close) elements are stored

together to minimize exceptions.7

Thus, the problem is: Given a sorted list L of integers, how to

split L into blocks such that the overall space overhead is mini-

mized? The representation of each individual block still follows

the fixed-bit encoding (Section 4) in order to support membership

testing efficiently.

Dynamic partitioning. We propose a partitioning scheme by con-

verting the problem to a dynamic programming problem for min-

imizing the overall space overhead. Let Ei be the space overhead

of representing L[0 : i], then it splits L[0 : i] at the j-th (j < i)
position: L[0 : j] and L[j + 1 : i]. Therefore, the space overhead

of L[0 : i] is the summation of the space overhead of L[0 : j]
and L[j + 1 : i]. Let c(j, i) (j ≤ i) be the space overhead of

representing L[j : i] and ℓ be the maximal size of a block, then,

Ei =
i−1

min
j=max{0,i−ℓ}

(Ej + c(j + 1, i)) (1)

Next, we analyze c(j, i) used in Equation 1. Since the first ele-

ment of the partition (i.e., L[j]) is stored in the metadata block as

a skip pointer and the remaining values L[j + 1 : i] are stored in

a data block, then we compute the overhead of the two parts sepa-

rately.

First of all, we analyze the space overhead of the skipping in-

formation (metadata block), which requires the following informa-

tion per data block: (1) start value (32 bits), i.e., L[j]; (2) offset

(32 bits) indicating where the data block starts from; (3) number

of elements in the block (8 bits); (4) number of bits to encode the

block (8 bits). Thus, the skipping information per data block needs

32 + 32 + 8 + 8 = 80 bits.

Second, we consider the space overhead of the data block L[j +
1 : i]. Recall that each element in the block is stored as the differ-

ence between it and L[j]. Among them, the maximal gap is L[i]−
L[j], which requires ⌈log(Li−Lj +1)⌉ bits. And there are (i−j)
elements in the block, thus, it requires ⌈log(Li−Lj+1)⌉×(i−j)
bits in total. Therefore, c(j, i) can be computed as follows:

c(j, i) = ⌈log(Li − Lj + 1)⌉ × (i− j) + 80 (2)

Example. Figure 5 shows an example where L contains 256 ele-

ments and L = {4, · · · , 120, 500, · · · , 600, 605, · · · , 900}. Us-

ing the fixed-length partitioning (or static partitioning) with the

block size being 128 (Figure 5a), then L is partitioned into two

blocks and the last element in the first block is 600. For the first

block, each element takes ⌈log(600−4+1)⌉ = 10 bits. While the

dynamic partitioning (Figure 5b) can determine that the first 108 el-

ements are similar and thus group them together. As a result, each

element in the first block requires only ⌈log(120 − 4 + 1)⌉ = 7
bits. For each element in the second block, it takes 9 bits for both

static and dynamic partitioning.

Determining the maximal block size ℓ. The maximal group size

ℓ is very important in MILC’s dynamic partitioning scheme: if it is

6A value is called an exception value if it is obviously larger than
most other values in the block.
7Note that PforDelta does not have this issue because it uses dif-
ferent number of bits to represent regular elements and exceptions,
but PforDelta cannot support membership testing directly on com-
pressed data.

5

4 120

(a) static partitioning

block 0

(128 elements)

900500 600

block 1

(128 elements)

605

4 120

(b) dynamic partitioning

block 0

(108 elements)

900500

block 1

(148 elements)

Figure 5: An example of dynamic partitioning�
�଴ �ଵ ��−ଵ…

�
�଴ �ଵ ��−ଵ…

��
��+ଵ ��−ଵ…

(a) Before partitioning (b) After partitioning

(skip pointer)

Figure 6: An example of illustrating the maximal size of a data

block

too small (say ℓ = 1), then the optimal partitioning can be missed;

if it is too large (say ℓ = |L|), it takes too much time to find the

optimal partitioning. In Theorem 1, we show that the maximal

block size after dynamic partitioning is less than 2λ, where λ is the

number of bits to maintain the skipping information per block (i.e.,

λ = 80). As a result, we set ℓ = 160 in Equation 1. Note that The-

orem 1 is also very useful in Section 6, in determining lightweight

skip pointers.

THEOREM 1. A data block has at most 2λ elements after dy-

namic partitioning, where λ is the number of bits needed to store

the skipping information per block.

PROOF. We show that after partitioning, if a block still has more

than 2λ elements, then we can always find a lower space cost by

splitting the block into two parts, which contradicts with the opti-

mality property achieved by dynamic programming. Without loss

of generality, suppose a block contains m elements (Figure 6):

a0, a1, ..., am−1 and β is the skip pointer of the block. We as-

sume m ≥ 2λ, next, we show that there always exists a lower cost

by splitting the block into two.

Before partitioning, the total number of bits X required is (Fig-

ure 6a):

X = ⌈log(am−1 − β + 1)⌉ ×m

Then we split the block into two parts by picking up the middle

value a[s] (where s = ⌊m
2
⌋) as a skip pointer. Therefore the parti-

tions are [0 : s− 1] and [s+ 1 : m− 1]. Then the total number of

bits X ′ is (Figure 6b):

X ′ = ⌈log(as−1 − β + 1)⌉ × s
︸ ︷︷ ︸

1st block

+ ⌈log(am−1 − as + 1)⌉ × (m− 1− s)
︸ ︷︷ ︸

2nd block

+ λ
︸︷︷︸

skip pointer as

Next we show X ′ ≤ X if m ≥ 2λ in the full version [36] due

to space constraints.

Time complexity. Let n be the list size, then the time complexity

of finding the optimal partitioning is O(ℓn), which can be regarded

as O(n) since ℓ is a small constant (ℓ ≤ 160), as shown by Theo-

rem 1.

Supporting membership testing. With dynamic partitioning, the

structure supports membership testing efficiently in the same way

a0 as-1

SB0

as a2s-1 a(k-2)s a(k-1)s-1 a(k-1)s am-1

mini skip pointers

SB1 SBk-2 SBk-1

...

...

Figure 7: Split a data block into sub-blocks

as presented in Section 4, because a data block is still represented

using fixed-bit encoding.

6. IN-BLOCK COMPRESSION
In this section, we further reduce the space overhead of the com-

pression from another angle while keeping fast query performance.

Why in-block compression? The dynamic partitioning groups

similar elements to the same data block. However, all the elements

in the same block have to use the number of bits based on the max-

imal element (i.e., the rightmost element) in the block in order to

support fast search. But this on the other hand wastes some space

for smaller elements. As an example in Figure 5b, after dynamic

partitioning, the first block needs 7 bits to encode every element be-

cause the maximal value is 120. However, many smaller elements

such as 10 and 20 do not necessarily need 7 bits. Therefore, in-

block compression aims to use fewer bits to encode each element

within a block to reduce the overall space overhead.

In-block compression structure. The main idea of in-block com-

pression is to treat the elements in a data block as a micro inverted

list and compress them using the approaches described in previous

sections (with modifications) by splitting a block into sub-blocks.

Before presenting the partitioning details, we answer the following

question first: If partitioning a block into sub-blocks can reduce the

overall space overhead, why previous dynamic partitioning (Sec-

tion 5) – supposed to return a partitioning scheme with the lowest

space cost – fails to capture such partitioning? That is because the

overhead of maintaining a skip pointer within the block is much

smaller than that outside the block. For example, it needs 80 bits

to maintain a skip pointer outside the block as described in Section

5, but it only needs b (say 10) bits to maintain a skip pointer within

the block (called a mini or lightweight skip pointer) as we explain

below.

In particular, in-block compression applies the static partitioning

method presented in Section 4 to evenly (except the last sub-block)

split the elements into sub-blocks. Notice that the in-block com-

pression does not apply the dynamic partitioning approach (Sec-

tion 5) because that will incur more space as we explain later in

the discussion part at the end of this section. Formally, suppose a

block contains m elements (Figure 7): {a0, a1, · · · , am−1}, and k
be the number of sub-blocks, then the in-block compression parti-

tions the block into the following k sub-blocks: {a0, a1, ..., as−1},

{as, as+1, ..., a2s−1}, ..., {a(k−2)s, a(k−2)s+1, ..., a(k−1)s−1},

{a(k−1)s, a(k−1)s+1, ..., am−1}, where s = ⌊m
k
⌋. The first el-

ement of each sub-block serves as a mini skip pointer and all the

mini skip pointers are stored together. Then, for every mini skip

pointer in the block, it uses ⌈log(am−1 − β + 1)⌉ bits where β is

the skip pointer of the block. For every other element in the block,

it uses the following number of bits b to encode:

b = max{⌈log(as−1−a0+1)⌉, · · · , ⌈log(am−1−a(k−1)s+1)⌉}

Note that without in-block compression, each element originally

takes b′ = ⌈log(am−1 − β + 1)⌉ bits and b′ ≥ b.

Besides that, in-block compression needs to maintain an extra

16-bit global information for all the sub-blocks: number of bits for

6

skip pointers

start value 1

offset 1

#bits 1

start value 0

offset 0

#bits 0

start value 1start value 0

mini skip pointers

Data block B0

sub-block 0

Metadata block

b0 b0 b0 b0 b0 b0 b0 b0

sub-block 1

start value 1start value 0 start value 2

b1 b1 b1 b1 b1 b1 b1 b1 b1

mini skip pointers

sub-block 0 sub-block 1 sub-block 2

Data block B1

b0, #sub-blocks b1, #sub-blocks

(16 bits) (16 bits)

#bits: #bits:

Figure 8: In-block compression

encoding the sub-blocks (8 bits) and number of sub-blocks k (8

bits).

Example. Figure 8 illustrates an example of a list L with two data

blocks B0 and B1. Thus there are two skip pointers (stored in the

format explained in Section 4) in the metadata block. Within each

data block, it is further partitioned into sub-blocks. For example,

the block B0 consists of two sub-blocks and the block B1 contains

three sub-blocks. For all the sub-blocks within B0, it uses the same

b0 bits to encode each element, which it originally requires b′0 bits

(b′0 ≥ b0). For all the sub-blocks within B1, it instead uses b1
bits to represent each element. The figure also highlights the 16-bit

global information.

Determining the optimal number of skip pointers. The next

question is: How many mini skip pointers to add for a data block?

We solve the problem by analyzing the relationship of the overall

space overhead Tk with k in order to find the optimal k.

Tk = max{⌈log(as−1 − a0 + 1)⌉, ⌈log(a2s−1 − as + 1)⌉, · · · ,

⌈log(am−1 − a(k−1)s + 1)⌉} × (m− k)
︸ ︷︷ ︸

sub-blocks

+ ⌈log(am−1 − β + 1)⌉ × k
︸ ︷︷ ︸

mini skip pointers

+ 16
︸︷︷︸

global information

(3)

To find the optimal number k∗, we can enumerate all possible

solutions to find which value leads to the minimal space overhead.

Since we do not want a sub-block contain too few elements, say it

should contain at least 4 elements. Then, we can search k from 2

to m/4. Thus,

k∗ =
m/4

arg min
k=2

Tk (4)

Time complexity. The time complexity of finding the optimal par-

titioning (off-line) is
∑m/4

k=2 k = O(m
2

32
) = O(800) = O(1) since

m ≤ 160 from Theorem 1.

Supporting membership testing. It is a three-level structure where

each level supports membership testing by using a revised key within

a data block or a sub-block.

Space overhead analysis. Let us analyze why in-block compres-

sion can reduce the space overhead of the block that has m ele-

ments: {a0, a1, · · · , am−1} with β as its skip pointer. Without

in-block compression, the space overhead T ′ of the block is:

T ′ = ⌈log(am−1 − β + 1)⌉ ×m (5)

Then T ′ ≥ Tk if and only if (m − k)(b′ − b) ≥ 16, where b is

defined by Equation 6 and b′ = ⌈log(am−1 − β + 1)⌉. Note that

the inequality generally holds especially if k is properly chosen.

That is because, b′ ≥ b always holds and (m− k) is usually bigger

than 16. In our implementation, if the condition of a block does not

hold, we do not apply in-block compression to that block.

Discussion. We close this section by discussing two more ques-

tions: (1) Why not using dynamic partitioning to partition a block?

(2) Can we further reduce the space overhead by partitioning a sub-

block into sub-sub-blocks?

For the first question, it needs to maintain more skipping infor-

mation to dynamically partition a data block into sub-blocks. The

skipping information should at least contain: start value (⌈log(am−1

−β + 1)⌉ bits where β is the skip pointer of the block), number of

elements (8 bits), offset (16 bits), and number of bits used to encode

a sub-block (8 bits). Thus, a skip pointer needs (⌈log(am−1 − β+
1)⌉+32) bits, which is much higher since the current solution only

needs ⌈log(am−1 − β + 1)⌉ bits. On the other hand, it may not

save too much space overhead in the sub-blocks because all data

elements in a data block are very similar.

For the second question, it may not reduce the overall space

anymore. That is because there is an extra space overhead as-

sociated with each split, i.e., 16 bits as highlighted in Figure 8.

However, when there are few elements and each element uses very

few bits, it is extremely difficult to save 16 bits anymore with fur-

ther partitioning because in-block compression works if and only

if (m − k)(b′ − b) ≥ 16. For example, suppose a block contains

8 elements: {10, 20, 30, 40, 50, 60, 70, 80}. Without partition-

ing, it takes 7 × 8 = 56 bits. With two partitions, i.e., 10 and 50

are promoted as mini skip pointers (taking 7 × 2 = 14 bits). The

two sub-blocks become (after subtracting the skip pointer): {10,

20, 30} and {10, 20, 30}. They take 3 × 5 + 3 × 5 = 30 bits.

Together with the mini skip pointers, the overall space overhead is

30+ 14 = 44 bits, saving 56− 44 = 12 bits, which is less than 16

bits. Thus, we do not recommend further partitioning anymore.

7. CACHE-CONSCIOUS COMPRESSION
In this section, we further improve the layout of MILC such that

it is more friendly to CPU cache lines for minimizing cache misses

during membership testing.

What is cache-aware and why? Modern CPUs dedicate several

layers of very fast caches (L1/L2/L3 cache) to alleviate the grow-

ing disparity between CPU clock speed and memory latency (a.k.a

memory wall). Whenever a CPU instruction encounters a mem-

ory access, it first checks whether the accessed data resides in the

caches. If yes, it accesses the data from the caches directly. Other-

wise, a cache line (typically 64 bytes) of data is loaded from main

memory to the caches. This will potentially evict other cache lines

that are in the caches. Thus, the goal of the cache-conscious de-

sign is to reduce cache misses by ensuring that a cache line brought

from memory is fully utilized before it is being evicted.

Note that it makes sense to optimize cache misses for in-memory

systems while it was not so important for disk-based systems be-

cause the disk I/O was the bottleneck.

Cache-aware design. We explain how to turn the compression

structure presented in the previous section (Section 6) into a cache-

aware structure. We classify the membership testing into two cate-

gories: within a metadata block (storing uncompressed skip point-

ers) and within a data block (storing compressed data).

For the membership testing within a metadata block, it is essen-

tially the conventional binary search over an array. Previous studies

have investigated it [17, 29]. The main idea is to organize the ele-

ments into a B-tree structure with the node size being a CPU cache

line (64 bytes). Note that the B-tree is materialized as an array us-

ing a level-order traversal manner without explicit storing any tree

pointers, for saving space overhead. Thus, search can be efficiently

executed by traversing the B-tree. However, there are two unique

challenges in incorporating them into a fully functional compres-

sion structure: (1) The number of elements (i.e., skip pointers) may

7

not form a perfect tree8 but most previous studies made such an as-

sumption to save space overhead by not explicitly storing the tree

pointers. We observe that only a collection of 17h − 1 elements

can be converted to a h-level perfect tree. That is because a cache

line contains 64/4 = 16 elements (i.e., 17 children), then the total

number of elements in a h-level perfect tree is:

16
︸︷︷︸

level 1

+16× 17
︸ ︷︷ ︸

level 2

+16× 172
︸ ︷︷ ︸

level 3

+ · · ·+ 16× 17h−1

︸ ︷︷ ︸

level h

= 17h − 1

However, there are many inverted lists and each inverted list has

a different number of skip pointers that may not be 17h − 1. (2)

Another unique challenge is how to find the corresponding data

block after a skip pointer is located in the metadata block. This

was not an issue for the non-cache-aware structure because the skip

pointers and data blocks are stored in the same order. That is, a skip

pointer and its data block have the same index number. However,

if the skip pointers are stored in a cache-aware manner, the index

numbers become completely different.

To solve the first challenge, we convert an array of sorted ele-

ments (i.e., skip pointers, non-cache-aware) to a complete tree in-

stead of a perfect tree. A h-level complete tree [7] ensures that (1)

only the last level is not full and all the elements in the last level are

stored from left to right; (2) if the last level is removed, then it be-

comes a (h−1)-level perfect tree. For example, let A be a sequence

of skip pointers and |A| = 240. Figure 10a represents a 2-level

complete tree where the root node has 16 entries: A[16], A[33],
A[50], · · · , A[203], A[237], A[238], and A[239]. Among them,

only A[237], A[238], and A[239] do not have child nodes while all

the others have exactly a full 16-entry child node. The key issue

is how to construct such a complete tree from a sorted sequence of

elements. We are not aware of any previous cache-aware designs

having solved the problem, probably because they simply assumed

the number of elements can form a perfect tree. But Schlegel et

al. presented a solution in the SIMD area [31] that can be extended

to cache-aware designs. The main idea is to determine for any el-

ement from the old non-cache-aware array the position in the new

cache-aware array by developing a one-to-one mapping. Formally,

let n be the number of elements (skip pointers), k be the number

of elements that a cache line can accommodate (k = 16), H be the

number of levels (H = ⌈logk(n + 1)⌉), i be the element position

in the old non-cache-aware array, and gn(i) be the position in the

new cache-aware array. Then,

gn(i) =

{
fH(i) if i ≤ f∗

H(n)
fH−1(i− o∗H(n)− 1) otherwise

(6)

where:

fh(i) = kdh(i) + oh(i), dh(i) =

h−1∑

x=1

sgn(i mod kh−x)

oh(i) = ⌊
k − 1

k
·

i

kh−dh(i)−1
⌋, o∗h(j) = j − kd∗

h
(j)

d∗h(j) = ⌊logk j⌋, f∗
h(j) = kh−d∗

h
(j)−1⌊

k

k − 1
o∗h(j) + 1⌋

We omit the proofs of these equations due to space constraints and

refer interested readers to [31].

Next, we discuss how to tackle the second challenge. A simple

solution is to compute a reverse mapping from the (new) position in

the cache-aware array to the (old) position in the non-cache-aware

8A perfect tree (i.e., balanced and full) has three requirements [7]:
(1) every node has precisely k entries where k is the fannout; (2)
every intermediate node has exactly k+1 children nodes; (3) every
leaf node has the same depth.

...

cache line (64 bytes)

Ag (0) Ag (1) ... Ag (15) Ag (16) Ag (17) ... Ag (31)

cache line (64 bytes)

Data blocks

g (0) g (1) g (15) g (16) g (17) g (31)

...

Metadata

blocks

..................

mini skip ptrs

sub-blocks

Figure 9: Cache-aware layout

(cache line 0)

...[0] [1] [2] [15][3] ...[204] [205] [206] [236][207]...

...

(cache line 1) (cache line 2) (cache line 14)

...[18] [19] [32][20][17]

...[16] [33] [239] [0] [1] [15]... [18][17] [204] [205] [236]...[32]... ...

B[16]

...

(cache line 0) (cache line 1) (cache line 14)

B[33] B[239] B[0] B[1] B[15] B[17] B[18] B[32] B[204] B[205] B[236]

(a) Tree structure

(b) Linearized structure

...

...[16] [33] [50] [237] [238] [239][203]

(cache line 2)
...

Figure 10: An example of cache-aware structure

array. However, that will take considerable time as the mapping

has to be computed on the fly. MILC’s solution is to change the

storage of the data blocks such that they have the same order with

their corresponding skip pointers. Figure 9 illustrates the design.

The data blocks (as well as the skip pointers) are stored in the order

of g(0), g(1), g(2) and so on.

Next, we comment on the second type of membership testing that

happens within a data block. It turns out that the existing design

presented in the previous section is actually cache-aware. That is

because each data block is organized as a two-level tree structure

with the mini skip pointers being stored as the root node while the

sub-blocks being stored as children nodes.

Example. Figure 10 shows an example of MILC’s cache-aware

structure consisting of a collection A of 240 skip pointers: A[0 :
239]. Figure 10a shows its complete tree representation while Fig-

ure 10b shows the (linearized) array representation. By Equation 6,

g(16) = 0, meaning that the original A[16] should be placed at the

0-th position in the new array. Also, the data block associated with

A[16] is also stored as the first data block accordingly, similarly for

other skip pointers and data blocks.

Supporting membership testing. The membership testing is exe-

cuted efficiently by traversing an array of cache-aware skip pointers

in the metadata block. Then it goes to the right data block to con-

tinue membership testing by using a revised key.

8. SIMD ACCELERATION
In this section, we further improve the performance of MILC by

leveraging the SIMD capabilities.

What is SIMD-aware and why? A SIMD instruction operates

on a s-bit register where s depends on different processors. Typ-

ically, s is 128, but more recent processors also support 256- or

even 512-bit SIMD operation. In this work, we use 128-bit SIMD

instructions for a fair comparison with existing works. The benefit

of using SIMD instructions is to improve performance by process-

ing multiple elements at a time. For example, if each element is 10

bits after compression, then a 128-bit SIMD instruction can process

12 elements theoretically.

Note that although compilers can automatically optimize some

simple code with SIMD instructions, the optimizations are very

limited, e.g., only for simple loops [15]. Thus, to fully exploit

8

00000011010001011001010000100101

[0] = 13

(10 bits)

[4] = 89

(10 bits)

[8] = 265

(10 bits)

[12] = 409

(low 2 bits)

[13] = 489

(low 2 bits)

00000110010001101010010010110001 00001001010010110100010011010011 00010000010011001110010100011011

soft boundary
32-bit bank

[1] = 25

(10 bits)

[5] = 106

(10 bits)

[9] = 300

(10 bits)

[14] = 587

(low 2 bits)

[2] = 25

(10 bits)

[6] = 180

(10 bits)

[10] = 308

(10 bits)

[15] = 631

(low 2 bits)

[3] = 65

(10 bits)

[7] = 206

(10 bits)

[11] = 326

(10 bits)

32-bit bank 32-bit bank 32-bit bank

SIMD 0

(128-bit)

SIMD 1

(128-bit)

soft boundary
32-bit bank 32-bit bank 32-bit bank 32-bit bank

0110011010101010001110000110xxxx 0111101011000111111110011110xxxx 1001001011010111001111001000xxxx 1001110111100000011111101000xxxx

[12] = 109

(high 8 bits)

[16] = 680

(10 bits)

[20] = 902

(10 bits)

unused

(4 bits)

[13] = 489

(high 8 bits)

[17] = 799

(10 bits)

[21] = 926

(10 bits)

[14] = 587

(high 8 bits)

[18] = 860

(10 bits)

[22] = 968

(10 bits)

[15] = 631

(high 8 bits)

[19] = 897

(10 bits)

[23] = 1000

(10 bits)

Figure 11: An example of SIMD compression

the SIMD instructions, we need to explicitly design a new storage

structure that are amenable to SIMD – the goal of this section.

SIMD-aware design. It is challenging to design an efficient SIMD-

aware structure to support fast random accesses (e.g., binary search)

especially on compressed data. That is because, (1) SIMD is inher-

ently designed for processing multiple data sequentially, instead of

randomly; (2) SIMD interacts with a s-bit SIMD register as a vec-

tor of banks, where a bank is a continuous section of b bits. For ex-

ample, in SSE (Streaming SIMD Extensions) and AVX (Advanced

Vector Extensions), b is 8 (byte type), 16 (short type), or 32

(int type). However, for inverted list compression, each element

can be encoded in arbitrary number of bits (not necessarily 8, 16,

or 32 bits).

Recall in the previous discussions, the framework of MILC has

two categories of blocks: metadata block and data blocks. The data

elements in the metadata block are uncompressed while the data

elements in the data blocks are compressed. Next, we discuss how

to organize the data elements in both types of blocks into a SIMD-

efficient structure.

For the elements (skip pointers) in the metadata block, they are

stored as a contiguous sequence of cache lines. We use the same

storage format as presented in the previous section because we can

directly apply a SIMD operation to a cache line.

For the elements in the data blocks, the storage format becomes

more complicated because the elements are compressed. A data

block is composed of two parts: mini skip pointers and sub-blocks.

Each part is an increasing sequence of b-bit values, where b can be

an arbitrary number between 1 and 32. Thus, we focus on explain-

ing how to store such a sequence of b-bit elements such that SIMD

operations can be easily applied on.

MILC packs as many elements as possible into a SIMD regis-

ter. Since a SIMD operation works on four 32-bit bank, MILC first

packs every ⌊ 32
b
⌋ elements in to a 32-bit banks. MILC also aims

to guarantee that the decompressed values are still sorted because

many operations including membership testing can be executed ef-

ficiently if the underlying data is sorted. To this end, MILC stores

the input elements in an interleaving manner. In particular, let A be

the input sorted sequence where each element takes b bits, S be a

128-bit SIMD register, and S[i] be the i-th 32-bit bank. Then MILC
stores A[0] ∼ A[3] at the lower b bits of S[0] ∼ S[3], respectively.

MILC stores the next four input elements A[4] ∼ A[7] at the next

lower b bits of S[0]∼ S[3], respectively. As a result, a SIMD regis-

ter S is able to accommodate ⌊ 32
b
⌋×4 elements entirely. However,

there may be still spare space in S. More precisely, every bank

in S has (32 mod b) bits unused. Those bits are used to store the

next four input elements partially (32 mod b bits). MILC puts the

remaining (b − (32 mod b)) bits of every input element in another

SIMD register.

Example. Let A = {13, 25, 37, 65, 89, 106, 180, 206, 265, 300,

308, 326, 409, 489, 587, 631, 680, 799, 860, 897, 902, 926, 968,

1000} that contains 24 elements; each of which takes 10 bits. Fig-

ure 11 shows its storage structure. Let S be the SIMD 0. Thus, S[0]
stores A[0], A[4], and A[8]; S[1] stores A[1], A[5], and A[9]; S[2]
stores A[2], A[6], and A[10]; S[3] stores A[3], A[7], and A[11].
That is, all the elements are stored in an interleaving way. Note

that for every 32-bit bank, the elements are stored from right to left

because of the little-endian problem. For every bank, there are 2

more bits left, which are used to store the new input elements. For

example, the lower 2 bits of A[12]∼ A[15] are stored in the higher

2 bits of S[0]∼S[3]. The higher 8 bits of A[12]∼A[15] are stored

in another SIMD register.

Supporting membership testing. The structure supports member-

ship testing efficiently. Given a search element e, it will be wrapped

to a 128-bit SIMD register S by duplicating the key four times us-

ing _mm_set1_epi32. For the membership testing in a cache

line within the metadata block, every four elements are converted

to a SIMD register T using _mm_store_si128. Then S is com-

pared against T by using _mm_cmpgt_epi32 and _mm_movem-

ask_epi8 to determine the successor index of e in T . For the

membership testing within the data block, MILC decompresses the

required SIMD register of a sub-block using _mm_srli_epi32

and executes binary search on it.

9. EXPERIMENTS
In this section, we aim to answer the following questions exper-

imentally:

1. How is MILC compared against state-of-the-art compression

schemes in terms of query processing time and space over-

head? (Section 9.2)

2. How effective is each optimization used in MILC in reducing

query processing time and space overhead? (Section 9.3)

9.1 Experimental setting

Experimental platform. We conduct experiments on a commodity

machine (Intel i7-4770 quad-core 3.40 GHz CPU, 64GB DRAM)

with Ubuntu 14.04 installed. The CPU’s L1, L2, and L3 cache

sizes are 32KB, 256KB, and 8MB. The CPU is based on Haswell

microarchitecture which supports AVX2 instruction set. We use

9

mavx2 optimization flag for the SIMD optimization. We imple-

ment MILC in C++ and compile the code using GCC 4.4.7 with O3

enabled.

Datasets. In this work, we use real datasets from three applications:

information retrieval, database, and graph analytics.

(1) Web data. It is a collection of 41 million Web documents

(around 300GB) crawled in 2012.9 It is a standard benchmark in

the information retrieval community. We parse the documents and

build inverted lists for each term. The query log contains 10,000

real queries from the TREC10 2005 and 2006 (efficiency track).

(2) DB data. It is a star schema benchmark,11 which includes

one fact table (LINEORDER) and four dimension tables (CUS-

TOMER, SUPPLIER, PART, and DATE). We set the scale factor

as 10 so the number of rows in the fact table is around 60 million.

We use the query described in Section 2.2 for evaluation. Each list

is allocated for a predicate. The list sizes are 11916634, 12028431,

9098421, and 11997098.

(3) Graph data. It is the twitter dataset crawled in 2009, which

consists of 52,579,682 vertices and 1,963,263,821 edges. The data

is widely used in graph analytics. Each list is an adjacency list of a

vertex. We follow the methodology in [9] to evaluate the following

query: “find out the common friends between a group of people”.

Note that other queries could also be applied. The list sizes are

423640, 507777, 526292, and 779957, respectively.

Competitors. We compare MILC with a wide range of recent

compression approaches: Uncompressed, VB [33], PforDelta [42],

OptPFD [40], NewPFD [40], Simple8b [2], Simple9 [1], Simple16 [39],

GroupVInt (a.k.a VarintGB) [11], VarintG8IU [32], SIMD-BP128 [18],

SIMD-FastPFD [18], PEF [26], GMRun [41]. Among them, most

of the source codes are provided from [18]. PEF and GMRun are

provided by the authors. Since the PEF source code does not con-

tain a decompression function, we add it following the prior papers

([35] and [26]) for a full comparison. For the uncompressed lists,

we use conventional binary search for membership testing. We do

not consider hash because it takes too much space and also it cannot

support the successor operation while MILC can support it. Note

that we do not compare with some obviously low-performance en-

codings, such as Golomb, Rice, and Elias gamma. We also ignore

those general purpose encoding schemes such as Snappy, LZ, LZ4,

LZO, or gzip, because they are much slower than PforDelta [18].

Evaluation methodology. In this work, we mainly use the follow-

ing measurements for evaluation.

(1) Intersection time. For each compression algorithm, we measure

how fast it supports membership testing. In particular, we report

the intersection time of each query since list intersection heavily

relies on membership testing to find whether an element appears in

a list. We use an efficient intersection algorithm SvS [8] that has

been widely used in practice including Lucene. Assuming there

are k lists L1, L2, · · · , Lk (|L1| ≤ |L2| ≤ · · · |Lk|) that are com-

pressed. SvS decompresses the shortest list L1 first. Then for each

element e ∈ L1, SvS checks whether e appears in L2 (i.e., mem-

bership testing). Note that SvS does not need to decompress the

entire L2 due to skip pointers and it only needs to decompress a

block of data that potentially contains e for membership testing.

Then the results of L1 and L2 will be intersected with L3 and the

process continues until Lk.

(2) Decompression time. Since list intersection does not need to

always decompress the whole lists due to efficient skipping, we

also explicitly measure the performance of decompression.

9http://www.lemurproject.org/clueweb12.php
10http://trec.nist.gov/
11http://www.cs.umb.edu/~poneil/StarSchemaB.PDF

 0

 50

 100

 150

 200

 250

 300

M
ILC

 (our)

U
ncom

pressed

V
B

PforD
elta

O
ptPFD

N
ew

PFD

Sim
ple8b

Sim
ple9

Sim
ple16

G
roupV

Int

V
arintG

8IU

SIM
D

-B
P128

SIM
D

-FastPFD

PEF
G

M
R
un

a
vg

.
ex

ec
.

ti
m

e
(m

s)

compression algorithms

(a) Intersection time

 0

 10

 20

 30

 40

 50

 60

 70

M
ILC

 (our)

V
B

PforD
elta

O
ptPFD

N
ew

PFD

Sim
ple8b

Sim
ple9

Sim
ple16

G
roupV

Int

V
arintG

8IU

SIM
D

-B
P128

SIM
D

-FastPFD

PEF
G

M
R
un

d
ec

o
m

p
re

ss
io

n
 t

im
e

(m
s)

compression algorithms

(b) Decompression time

 0

 5

 10

 15

 20

 25

 30

 35

 40

M
ILC

 (our)

U
ncom

pressed

V
B

PforD
elta

O
ptPFD

N
ew

PFD

Sim
ple8b

Sim
ple9

Sim
ple16

G
roupV

Int

V
arintG

8IU

SIM
D

-B
P128

SIM
D

-FastPFD

PEF
G

M
R
un

sp
a

ce
 (

G
B

)

compression algorithms

(c) Space overhead

Figure 12: Comparing against existing compression ap-

proaches on Web data [Answering question 1]

(3) Space overhead. We also measure the space overhead that a

compression algorithm takes.

Besides that, we also evaluate the throughput in multiple threads

in the full version [36].

9.2 Comparing against existing compression
approaches

In this experiment, we answer the first question by comparing

MILC with existing compression approaches on the three datasets.

Note that MILC incorporates all the optimizations presented in Sec-

tion 4, Section 5, Section 6, Section 7, and Section 8.

Figure 12 compares the average intersection time, decompres-

sion time, and space overhead of on Web data. The intersection

time is measured by the average time (ms) of running those 10,000

queries. The decompression time is measured by randomly se-

lecting a long list of 6.8 million elements. Figure 12 shows that,

(1) Compared with uncompressed lists, MILC achieves almost the

same intersection performance but with a 3.1× lower space over-

head. The high performance is because MILC relies on fixed-bit

encoding (instead of d-gaps as in most other compression algo-

rithms) to support membership testing directly over compressed

10

http://www.lemurproject.org/clueweb12.php
http://trec.nist.gov/
http://www.cs.umb.edu/~poneil/StarSchemaB.PDF

 0

 1000

 2000

 3000

 4000

 5000

 6000

M
ILC

 (our)

U
ncom

pressed

V
B

PforD
elta

O
ptPFD

N
ew

PFD

Sim
ple8b

Sim
ple9

Sim
ple16

G
roupV

Int

V
arintG

8IU

SIM
D

-B
P128

SIM
D

-FastPFD

PEF
G

M
R
un

ex
ec

u
ti

o
n

 t
im

e
(m

s)

compression algorithms

(a) Intersection time

 0

 10

 20

 30

 40

 50

 60

M
ILC

 (our)

V
B

PforD
elta

O
ptPFD

N
ew

PFD

Sim
ple8b

Sim
ple9

Sim
ple16

G
roupV

Int

V
arintG

8IU

SIM
D

-B
P128

SIM
D

-FastPFD

PEF
G

M
R
un

d
ec

o
m

p
re

ss
io

n
 t

im
e

(m
s)

compression algorithms

(b) Decompression time

 0

 50

 100

 150

 200

M
ILC

 (our)

U
ncom

pressed

V
B

PforD
elta

O
ptPFD

N
ew

PFD

Sim
ple8b

Sim
ple9

Sim
ple16

G
roupV

Int

V
arintG

8IU

SIM
D

-B
P128

SIM
D

-FastPFD

PEF
G

M
R
un

sp
a

ce
 (

M
B

)

compression algorithms

(c) Space overhead

Figure 13: Comparing against existing compression ap-

proaches on DB data [Answering question 1]

lists without decompressing even a whole block. MILC also relies

on efficient architectural-aware data organizations such as cache-

aware and SIMD-aware optimizations to achieve high query per-

formance. The small space overhead is that MILC applies dynamic

partitioning to store similar elements together. MILC also lever-

ages the novel in-block compression technique to further reduce

the space overhead. Figure 12 shows that, query processing on

compressed lists can be (sometimes) executed as fast as that on un-

compressed lists while keeping a low space overhead at the same

time. (2) Compared with PforDelta (a mature compression algo-

rithm), MILC is 3× faster in executing list intersection, 3.5× faster

in decompression, and 18% less in space overhead. The intersec-

tion time saving is because PforDelta needs to decompress a whole

block of data during membership testing because it is based on d-

gaps but MILC does not need to do so. The decompression time

saving is because PforDelta needs three rounds of data scan to re-

cover the original values as mentioned in Section 1 while MILC
only requires one round of scan. The space overhead saving is be-

cause PforDelta partitions a list statically while MILC partitions a

list dynamically. And also, MILC applies in-block compression to

further reduce the space overhead. (3) Compared with the vari-

Uncompressed

FP

DP

DP + inSkip

DP + inSkip + Cache

DP + inSkip + Cache + SIMD

 10

 12

 14

 16

 18

 20

 22

 10 15 20 25 30 35 40 45

in
te

rs
ec

ti
o

n
 t

im
e

(m
s)

space (GB)

 400

 450

 500

 550

 600

 650

 700

 0 50 100 150 200

in
te

rs
ec

ti
o

n
 t

im
e

(m
s)

space (MB)

(a) Web data (b) DB data

Figure 14: Evaluating the effectiveness of the optimizations

[Answering question 2]

ants of PforDelta, e.g., OptPFD and NewPFD, MILC has many ad-

vantages too. For example, MILC is 15.2× faster (in list intersec-

tion) than OptPFD while only incurring 25% more space. MILC
is 12.7× faster than NewPFD while only taking 4.8% more space.

(4) Compared with Simple9, Simple16, and Simple8b, MILC is

14.2×, 15.8×, and 7.7× faster but only consumes 14%, 20%, and

6.5% more space. (5) Compared with PEF, MILC is 11.2× faster

in decompression, 2.7× faster in list intersection, while only tak-

ing 4.8% more space. Note that the decompression overhead of

PEF is very high compared with other compression schemes, be-

cause it needs to access every single bit in the high-bit array. But

the intersection algorithm is highly optimized in that PEF does not

need to decompress a whole block with early termination. Also,

PEF uses a highly optimized implementation of popcnt to find

the number of 1’s in a word. (6) Compared with GMRun, MILC is

4.1× faster while taking only 6.5% more space overhead. (7) Com-

pared with the other compression algorithms, e.g., VB, GroupVInt,

VarintG8IU, SIMD-BP128, and SIMD-FastPFD, MILC runs 1.7×
to 16.5× faster in query processing and takes 14.5% to 44.7% less

space also.

Figure 13 shows the results of evaluating MILC on DB data and

we put the results on Graph data in the full version [36]. They

show that MILC can be even faster in executing list intersection

than uncompressed lists. The time saving is attributed to cache-

aware and SIMD-aware optimizations. We omit the descriptions of

the rest results since they are largely similar with Figure 12.

In summary, MILC represents the best tradeoff for inverted list

compression especially in main memory databases compared among

a spectrum of 14 existing compression algorithms.

9.3 Evaluating the effectiveness of the optimiza-
tions

In this experiment, we answer the second question by evaluat-

ing the effectiveness of each optimization in MILC on the three

datasets. We put the results on Graph data to the full version [36]

for space constraints.

Figure 14 shows the results of intersection time and space over-

head. In the figure, “FP” means the fixed-length partitioning (ex-

plained in Section 4), ‘DP” indicates the dynamic partitioning (men-

tioned in Section 5), “DP + inSkip” indicates the combination of

dynamic partitioning and in-block compression (Section 6), “DP +

inSkip + Cache” means the combination of dynamic partitioning,

in-block compression, and cache-aware optimization (Section 7),

and finally “DP + inSkip + Cache + SIMD” (i.e., MILC) repre-

sents the combination of all the optimizations including dynamic

partitioning, in-block compression, cache-aware optimization, and

SIMD optimization (Section 8).

Figure 14 shows that each optimization either reduces the query

execution time or space overhead. In particular, (1) the fixed-length

partitioning (FP) is effective in reducing the space overhead (com-

11

pared with uncompressed lists). More importantly, it does not in-

crease the query processing overhead much because FP can support

membership testing directly in the same approach as uncompressed

lists. Though FP needs to do one or several bit manipulations as

explained in Section 4, that is ultra fast because the element has

already been loaded to the CPU caches or even registers. More-

over, Figure 14b shows that FP performs membership testing even

faster than that on uncompressed lists because of better cache lo-

cality after compression since a cache line now contains more el-

ements. (2) Dynamic partitioning can reduce the space overhead

by 23% to 31% compared with FP. That is because DP reorganizes

the data elements such that similar elements can be grouped to-

gether to reduce the exception overhead. Figure 14 also demon-

strates that DP achieves a similar query performance with FP be-

cause DP also supports membership testing directly within a data

block without decompressing even a whole block. (3) The in-block

compression optimization reduces the space overhead by 22% to

40% when compared with DP. It partitions a data block into sub-

blocks such that the elements within a sub-block can be represented

with fewer bits. But it also adds a little query processing overhead.

(4) The architectural-aware optimizations (including cache-aware

and SIMD-aware optimizations) do not reduce the overall space

overhead but they can reduce the query execution time. Figure 14b

shows that with these optimizations, MILC can be even faster than

native membership testing over compressed lists.

10. ADDITIONAL DISCUSSION
In this section, we discuss more on MILC.

10.1 Extension to non-volatile storage
Although MILC is designed for volatile memory (DRAM), it is

also suitable for non-volatile storage devices including non-volatile

main memory (NVMM) [38], solid state drives (SSDs), and hard

disk drives (HDDs). We discuss more in the full version [36].

10.2 Updates
It is orthogonal to study inverted list updates and compression,

because any compression algorithm works well with a generic log-

arithmic rebuild (LR) update framework [20]. Consider there are

many compressed inverted lists in memory and some new docu-

ments come in. The LR framework does not change the original

compressed structure; instead, it accumulates the new documents

in a buffer pool and builds a new inverted index (compressed) for

them. Upon some conditions, it selectively merges existing indexes

into a bigger one. Thus, MILC can also benefit from this framework

to handle inverted list updates.

11. CONCLUSION
In this work, we proposed a new compression approach MILC

for encoding inverted lists in main memory. MILC is the first com-

pression scheme that achieves a similar (or even faster) query per-

formance compared with uncompressed lists. Also, MILC is signif-

icantly faster than existing compression algorithms while keeping

a low space overhead. In the future, we plan to extend and evaluate

MILC in NVMM, SSDs, and HDDs.

12. REFERENCES
[1] V. N. Anh and A. Moffat. Inverted index compression using word-aligned

binary codes. IR, 8(1):151–166, 2005.
[2] V. N. Anh and A. Moffat. Index compression using 64-bit words. SPE,

40(2):131–147, 2010.
[3] G. Antoshenkov. Byte-aligned bitmap compression. In DCC, page 476, 1995.
[4] B. Bhattacharjee, L. Lim, T. Malkemus, G. Mihaila, K. Ross, S. Lau,

C. McArthur, Z. Toth, and R. Sherkat. Efficient index compression in db2 luw.
PVLDB, 2(2):1462–1473, 2009.

[5] T. A. Bjørklund, N. Grimsmo, J. Gehrke, and O. Torbjørnsen. Inverted indexes
vs. bitmap indexes in decision support systems. In CIKM, pages 1509–1512,
2009.

[6] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: Optimal xml
pattern matching. In SIGMOD, pages 310–321, 2002.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms. The MIT Press, 3rd edition, 2009.
[8] J. S. Culpepper and A. Moffat. Efficient set intersection for inverted indexing.

TOIS, 29(1):1–25, 2010.
[9] M. Curtiss, I. Becker, T. Bosman, S. Doroshenko, L. Grijincu, T. Jackson,

S. Kunnatur, S. Lassen, P. Pronin, S. Sankar, G. Shen, G. Woss, C. Yang, and
N. Zhang. Unicorn: A system for searching the social graph. PVLDB,
6(11):1150–1161, 2013.

[10] D. R. Cutting and J. O. Pedersen. Optimizations for dynamic inverted index
maintenance. In SIGIR, pages 405–411, 1990.

[11] J. Dean. Challenges in building large-scale information retrieval systems:
Invited talk. In WSDM, page 1, 2009.

[12] B. Debnath, S. Sengupta, and J. Li. Skimpystash: Ram space skimpy key-value
store on flash-based storage. In SIGMOD, pages 25–36, 2011.

[13] P. Elias. Efficient storage and retrieval by content and address of static files.
JACM, 21(2):246–260, 1974.

[14] P. Elias. Universal codeword sets and representations of the integers. TOIT,
21(2):194–203, 1975.

[15] Intel Corporation. Intel
R© 64 and IA-32 Architectures Optimization Reference

Manual. 2012.
[16] Y. Jiang, G. Li, J. Feng, and W.-S. Li. String similarity joins: An experimental

evaluation. PVLDB, 7(8):625–636, 2014.
[17] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey, V. W.

Lee, S. A. Brandt, and P. Dubey. Fast: Fast architecture sensitive tree search on
modern cpus and gpus. In SIGMOD, pages 339–350, 2010.

[18] D. Lemire and L. Boytsov. Decoding billions of integers per second through
vectorization. SPE, 45(1):1–29, 2015.

[19] D. Lemire, O. Kaser, and K. Aouiche. Sorting improves word-aligned bitmap
indexes. DKE, 69(1):3–28, 2010.

[20] N. Lester, A. Moffat, and J. Zobel. Fast on-line index construction by geometric
partitioning. In CIKM, pages 776–783, 2005.

[21] X. Li, J. Han, and H. Gonzalez. High-dimensional olap: A minimal cubing
approach. In VLDB, pages 528–539, 2004.

[22] E. Lo, B. Kao, W.-S. Ho, S. D. Lee, C. K. Chui, and D. W. Cheung. Olap on
sequence data. In SIGMOD, pages 649–660, 2008.

[23] T. C. Lowe. Design principles for an on-line information retrieval system.
Technical report, University of Pennsylvania, 1966.

[24] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information

Retrieval. Cambridge University Press, 2008.
[25] A. Moffat and J. Zobel. Self-indexing inverted files for fast text retrieval. TOIS,

14(4):349–379, 1996.
[26] G. Ottaviano and R. Venturini. Partitioned elias-fano indexes. In SIGIR, pages

273–282, 2014.
[27] J. Plaisance, N. Kurz, and D. Lemire. Vectorized vbyte decoding. CoRR, 2015.
[28] V. Raman, L. Qiao, W. Han, I. Narang, Y.-L. Chen, K.-H. Yang, and F.-L. Ling.

Lazy, adaptive rid-list intersection, and its application to index anding. In
SIGMOD, pages 773–784, 2007.

[29] J. Rao and K. A. Ross. Cache conscious indexing for decision-support in main
memory. In VLDB, pages 78–89, 1999.

[30] R. Rice and J. Plaunt. Adaptive variable-length coding for efficient compression
of spacecraft television data. TOCT, 19(6):889–897, 1971.

[31] B. Schlegel, R. Gemulla, and W. Lehner. K-ary search on modern processors. In
DaMoN, pages 52–60, 2009.

[32] A. A. Stepanov, A. R. Gangolli, D. E. Rose, R. J. Ernst, and P. S. Oberoi.
Simd-based decoding of posting lists. In CIKM, pages 317–326, 2011.

[33] L. Thiel and H. Heaps. Program design for retrospective searches on large data
bases. IPM, 8(1):1 – 20, 1972.

[34] V. Venkataramani, Z. Amsden, N. Bronson, G. Cabrera III, P. Chakka,
P. Dimov, H. Ding, J. Ferris, A. Giardullo, J. Hoon, S. Kulkarni, N. Lawrence,
M. Marchukov, D. Petrov, and L. Puzar. Tao: How facebook serves the social
graph. In SIGMOD, pages 791–792, 2012.

[35] S. Vigna. Quasi-succinct indices. In WSDM, pages 83–92, 2013.
[36] J. Wang, C. Lin, R. He, M. Chae, Y. Papakonstantinou, and S. Swanson. MILC:

Inverted list compression in memory.
http://cs.ucsd.edu/~csjgwang/MILCFull.pdf, 2016.

[37] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing bitmap indices with efficient
compression. TODS, 31(1):1–38, 2006.

[38] J. Xu and S. Swanson. NOVA: A log-structured file system for hybrid
volatile/non-volatile main memories. In FAST, pages 323–338, 2016.

[39] H. Yan, S. Ding, and T. Suel. Inverted index compression and query processing
with optimized document ordering. In WWW, pages 401–410, 2009.

[40] J. Zhang, X. Long, and T. Suel. Performance of compressed inverted list
caching in search engines. In WWW, pages 387–396, 2008.

[41] Z. Zhang, J. Tong, H. Huang, J. Liang, T. Li, R. J. Stones, G. Wang, and X. Liu.
Leveraging context-free grammar for efficient inverted index compression. In
SIGIR, pages 275–284, 2016.

[42] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-scalar ram-cpu cache
compression. In ICDE, 2006.

12

http://cs.ucsd.edu/~csjgwang/MILCFull.pdf

	Introduction
	Applications
	Information retrieval
	Database query processing
	Graph analytics
	More applications

	Related Work
	Basic compression structure
	Dynamic Partitioning
	In-block Compression
	Cache-conscious Compression
	SIMD Acceleration
	Experiments
	Experimental setting
	Comparing against existing compression approaches
	Evaluating the effectiveness of the optimizations

	Additional discussion
	Extension to non-volatile storage
	Updates

	Conclusion
	References

