
21

Cache Design of SSD-Based Search Engine Architectures:
An Experimental Study

JIANGUO WANG, University of California, San Diego
ERIC LO and MAN LUNG YIU, Hong Kong Polytechnic University
JIANCONG TONG, GANG WANG, and XIAOGUANG LIU, Nankai University

Caching is an important optimization in search engine architectures. Existing caching techniques for search
engine optimization are mostly biased towards the reduction of random accesses to disks, because random
accesses are known to be much more expensive than sequential accesses in traditional magnetic hard disk
drive (HDD). Recently, solid-state drive (SSD) has emerged as a new kind of secondary storage medium, and
some search engines like Baidu have already used SSD to completely replace HDD in their infrastructure.
One notable property of SSD is that its random access latency is comparable to its sequential access latency.
Therefore, the use of SSDs to replace HDDs in a search engine infrastructure may void the cache management
of existing search engines. In this article, we carry out a series of empirical experiments to study the impact
of SSD on search engine cache management. Based on the results, we give insights to practitioners and
researchers on how to adapt the infrastructure and caching policies for SSD-based search engines.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and
Retrieval—Search process

General Terms: Experimentation, Measurement, Performance

Additional Key Words and Phrases: Search engine, solid-state drive, cache, query processing

ACM Reference Format:
Jianguo Wang, Eric Lo, Man Lung Yiu, Jiancong Tong, Gang Wang, Xiaoguang Liu. 2014. Cache design
of SSD-based search engine architectures: An experimental study. ACM Trans. Inf. Syst. 32, 4, Article 21
(October 2014), 26 pages.
DOI: http://dx.doi.org/10.1145/2661629

1. INTRODUCTION

Caching is an important optimization in search engine architectures. Over the years,
many caching techniques have been developed and used in search engines [Markatos
2001; Baeza-Yates and Saint-Jean 2003; Baeza-Yates et al. 2007b, 2008; Turpin et al.
2007; Gan and Suel 2009; Altingovde et al. 2009; Ozcan et al. 2008, 2011a, 2011b;
Saraiva et al. 2001; Ceccarelli et al. 2011]. The primary goal of caching is to reduce
query latency. To that end, search engines commonly dedicate portions of servers’
memory to cache certain query results [Markatos 2001; Ozcan et al. 2008; Gan and

This article is a substantially enhanced version of a paper presented in Proceedings of the 36th Annual ACM
Conference on Research and Development in Information Retrieval (SIGIR’13) [Wang et al. 2013].
This work is partially supported by the Research Grants Council of Hong Kong (GRF PolyU 525009, 521012,
520413, 530212), NSFC of China (60903028, 61070014), and Key Projects in the Tianjin Science & Technology
Pillar Program (11ZCKFGX01100).
Authors’ addresses: J. Wang (corresponding author), Department of Computer Science and Engineering,
University of California, San Diego, CA; email: csjgwang@cs.ucsd.edu; E. Lo and M. L. Yiu, Department
of Computing, The Hong Kong Polytechnic University; emails: {ericlo, csmlyiu}@comp.polyu.edu.hk; J.
Tong, G. Wang, and X. Liu, Nankai-Baidu Joint Lab, Nan Kai University; emails: {lingfenghx, wgzwpzy,
liuxguang}@gmail.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2014 ACM 1046-8188/2014/10-ART21 $15.00

DOI: http://dx.doi.org/10.1145/2661629

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

21:2 J. Wang et al.

Suel 2009], posting lists [Baeza-Yates and Saint-Jean 2003, Baeza-Yates et al. 2007b,
2008], documents [Turpin et al. 2007], and snippets [Ceccarelli et al. 2011] in order to
avoid the excessive disk access and computation.

Recently, solid-state drive (SSD) has emerged as a new kind of secondary storage
medium. SSD offers a number of benefits over magnetic hard disk drive (HDD). For
example, random reads in SSD are one to two orders of magnitude faster than in HDD
[Graefe 2009; Lee et al. 2008; Chen et al. 2009; Narayanan et al. 2009]. In addition, SSD
is much more energy efficient than HDD (around 2.5% of HDD energy consumption
[Seo et al. 2008; Chen et al. 2011]). Now, SSD is getting cheaper and cheaper (e.g., it
dropped from $40/GB in 2007 to $1/GB in 2012 [Flexstar Technology 2012]). Therefore,
SSD has been employed in many industrial settings including MySpace1, Facebook2,
and Microsoft Azure.3 Baidu, the largest search engine in China, has used SSD to
completely replace HDD as its main storage as of 2011 [Ma 2010].

The growing trend of using SSD to replace HDD has raised an interesting research
question specific to the information retrieval community: what is the impact of SSD on
the cache management of a search engine? Figure 1 shows the average cost (latency) of
a random read and a sequential read on two brands of SSDs and two brands of HDDs.
It shows that the cost of a random read is 100 to 130 times of a sequential read in
HDD. Due to the wide speed gap between random read and sequential read in, HDD,
the benefit of a cache hit, traditionally, has been largely attributed to the saving of the
expensive random read operations. In other words, although a cache hit of a data item
could save the random read of seeking the item and the subsequent sequential reads
of the data when the item spans more than one block [Trotman 2003], the saving of
those sequential reads has been traditionally regarded as less noticeable, because the
random seek operation usually dominates the data retrieval time.

Since a random read is much more expensive than a sequential read in HDD, most
traditional caching techniques have been designed to minimize random reads. The
technology landscape, however, changes if SSD is used to replace HDD. Specifically,
Figure 1 shows that the cost of a random read is only about twice that of a sequential
read in SSD. As such, in an SSD-based search engine infrastructure, the benefit of
a cache hit should now attribute to the saving of both random read and subsequent
sequential reads for data items that are larger than one block. Furthermore, since
both random reads and sequential reads are fast on SSD while query processing in
modern search engines involves several CPU-intensive steps (e.g., query result ranking
[Turtle and Flood 1995; Broder et al. 2003] and snippet generations [Turpin et al. 2007;
Tombros and Sanderson 1998]), we expect that SSD would yield the following impacts
on the cache management of search engines.

(1) Caching techniques should now target to minimize both random reads and sequen-
tial reads.

(2) The size of the data item and the CPU cost of the other computational components
(e.g., snippet generation) play a more important role in the effectiveness of various
types of caching policies.

Therefore, the first part of this article (Section 4) is devoted to carrying out a large-
scale experimental study that evaluates the impact of SSD on the effectiveness of
various caching policies on prominent cache types found in a typical search engine
architecture. We note that the traditional metric cache hit ratio for evaluating caching
effectiveness is inadequate in this study—in the past, the effectiveness of a caching

1http://www.fusionio.com/press/MySpace-Uses-Fusion.
2http://www.facebook.com/note.php?note id=388112370932.
3http://www.storagelook.com/microsoft-azure-ocz-ssds.

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

Cache Design of SSD-Based Search Engine Architectures 21:3

Fig. 1. Read latency on two HDDs and two SSDs. Each read fetches 4KB. The OS buffer is bypassed. Both
HDDs are 7200rpm, with seek time ranging from 8ms to 10ms, maximum data transfer around 200MB/s.
Both SSDs have maximum data transfer rates of 550MB/s (sequential read) and 160MB/s (random read).

policy could be measured by the cache hit ratio because it is a reliable reflection of the
actual query latency: a cache hit can save the retrieval of a data item from disk, and
the latency improvement is roughly the same for a large data item and a small data
item because both require one random read, which dominates the time of retrieving the
whole data item from disk. With SSD replacing HDD, the cache hit ratio is no longer a
reliable reflection of the actual query latency because a larger data item being found in
the cache yields a higher query latency improvement over a smaller data item (a cache
hit for a larger item can save a number of time-significant sequential reads). In fact,
the cache hit ratio is not an adequate measure whenever the cache-miss costs are not
uniform [Altingovde et al. 2009; Gan and Suel 2009; Ozcan et al. 2011a; Marin et al.
2010]. In our study, therefore, one caching policy may be more effective than another
even though they achieve the same cache hit ratio if one generally caches some larger
data items. To complement the inadequacy of cache hit ratio as the metric, our study
is based on the real replays of a million queries on an SSD-enabled search engine
architecture, and our reported findings are mainly based on the actual query latency.

As we will present later, the empirical results in the first part of this article do
suggest that practitioners who have used or are planning to use SSD to replace HDD
in their search engine infrastructures should revise their caching policies. Therefore,
the second part of this article (Section 5) aims to provide insights for practitioners
and researchers on how to adapt the infrastructure and caching policies for SSD-based
search engines.

To the best of our knowledge, this is the first article to evaluate the impact of SSD
on search engine cache management and provide insights to the redesign of caching
policies for SSD-based search engine infrastructures. A preliminary version of this
article appeared in Wang et al. [2013]. In this version, we have the following new
contributions:

(1) We refresh all empirical results using a new setting. Specifically, in the early version
of this article [Wang et al. 2013], when evaluating a particular type of cache in, say,
web server, caches in other servers (e.g., index server) were disabled. In practice,
however, all cache types in all types of servers should be enabled together. Therefore,
in this version, we repeat all experiments using the all-cache-enabled setting and
present the new results.

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

21:4 J. Wang et al.

(2) We strengthen the results by adding a new dataset to our experiments. Specifically,
in the early version of this article [Wang et al. 2013], our results were based on
replaying Sogou’s (a Chinese commercial search engine) query logs on Sogou’s web
data. In this version, we strengthen our results by replaying the AOL query logs
(Table II) on ClueWeb dataset (Table III).

(3) We add a new empirical study to identify the performance bottleneck when a search
engine infrastructure switches to use SSD as the core storage (Section 5.1). Based
on that result, we then study which type of (new) cache can be incorporated into
an SSD-based search engine infrastructure (Section 5.2) and how to allocate the
memory among the new and existing cache types (Section 5.3) in order to mitigate
the new bottleneck. Empirically results show that our idea can bring 66.7% to
69.9% of query latency speedup.

(4) We expand the discussion of the related work in this version, which gives a more
thorough overview of system research related to SSD (Section 6).

The remainder of this article is organized as follows. Section 2 provides an overview
of contemporary search engine architectures and the prominent types of caches in-
volved. Section 3 details the experimental setting. Section 4 presents our large-scale
experimental study that evaluates the impact of SSD on the effectiveness of various
caching policies. Section 5 presents our new empirical study that identifies the main
latency bottleneck in SSD-based search engine infrastructures and suggests an effec-
tive cache type for such infrastructures. Section 6 discusses the related studies, and
Section 7 summarizes the main findings of this study.

2. BACKGROUND AND PRELIMINARY

In this section, we first give an overview of the architecture of the state-of-the-art
Web search engines and the major cache types involved (Section 2.1). Then we give
a review of the prominent types of caching policies used in Web search engine cache
management (Section 2.2).

2.1. Search Engine Architecture

The architecture of a typical large-scale search engine [Barroso et al. 2003; Dean 2009;
Baeza-Yates et al. 2007a] is shown in Figure 2. A search engine is typically composed of
three sets of servers: Web servers (WS), index servers (IS), and document servers (DS).

Web Servers. Web servers are the front-ends for interacting with end users and for
coordinating the whole process of query evaluation. Upon receiving a user’s query q
with n terms t1, t2, . . . , tn [STEP 1©], the Web server that is in charge of q checks whether
q is in its in-memory query result cache (QRC) [Markatos 2001; Saraiva et al. 2001;
Fagni et al. 2006; Baeza-Yates et al. 2007b; Ozcan et al. 2008, 2011a, 2011b; Gan and
Suel 2009]. The QRC maintains query results of some past queries. If the results of q
are found in the QRC (i.e., a cache hit), the server returns the cached results of q to
the user directly. Generally, query results are roughly of the same size, and a query
result consists of (i) the title, (ii) the URL, and (iii) the snippet [Turpin et al. 2007;
Tombros and Sanderson 1998] (i.e., an extract of the document with terms in q being
highlighted) of the top-k ranked results related to q (where k is a system parameter,
e.g., 10 [Fagni et al. 2006; Altingovde et al. 2011; Ceccarelli et al. 2011; Ozcan et al.
2011a]). If the results of q are not found in the QRC (i.e., a cache miss), the query is
forwarded to an index server [STEP 2©].

Index Servers. Index servers are responsible for the computation of the top-k ranked
results related to a query q. An index server works as follows: [STEP IS1] retrieving the
corresponding posting list PLi = [d1, d2, . . .] of each term ti in q, [STEP IS2] intersecting

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

Cache Design of SSD-Based Search Engine Architectures 21:5

Fig. 2. Web search engine architecture.

all the retrieved posting lists PL1, PL2, . . . , PLn to obtain a list of document identifiers
(IDS) that contain all terms in q, and [STEP IS3] ranking the documents for q according
to a ranking model. After that, the index server sends the ordered list of document IDS
d1, d2, . . . , dk of the top-k most relevant documents of query q back to the Web server
[STEP 3©]. In an index server, an in-memory posting list cache (PLC) [Saraiva et al. 2001;
Baeza-Yates et al. 2007b; Zhang et al. 2008] is employed to cache the posting lists of
some terms. Upon receiving a query q(t1, t2, . . . , tn) from a Web server, an index server
skips STEP IS1 if a posting list is found in the PLC.

Document Servers. Upon receiving the ordered list of document IDs d1, d2, . . . , dk from
the index server, the Web server forwards the list and query q to a document server
for further processing [STEP 4©]. The document server is responsible for generating the
final result. The final result is a webpage that includes the title, URL, and a snippet
for each of the top-k documents. The snippet si of a document di is query-specific, that
is, it is a portion of a document which can best match the terms in q. The generation
process is as follows: [STEP DS1] First, the original documents that the list of document
IDs referred to are retrieved. [STEP DS2] Then, the snippet of each document for query q
is generated. There are two levels of caches in the document servers: snippet cache (SC)
[Ceccarelli et al. 2011] and document cache (DC) [Turpin et al. 2007]. The in-memory
snippet cache (SC) stores some snippets that have been previously generated for some
query-document pairs. If a particular query-document pair is found in the SC, STEP

DS1 and STEP DS2 for that pair can be skipped. The in-memory document cache (DC)
stores some documents that have been previously retrieved. If a particular requested
document is in the DC, STEP DS1 can be skipped. As the output, the document server
returns the final result (in the form of a webpage with a ranked list of snippets of
the k most-relevant documents of query q) to the Web server [STEP 5©], and the Web
server may cache the result in the QRC and then pass the result back to the end user
[STEP 6©].

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

21:6 J. Wang et al.

Table I. Caching Policy

Dynamic Static

Query Result
Cache (QRC)

D-QRC-LRU [Markatos 2001]
D-QRC-LFU [Markatos 2001]
D-QRC-CA [Ozcan et al. 2011a]
D-QRC-FB [Gan and Suel 2009]

S-QRC-Freq [Markatos 2001]
S-QRC-FreqStab [Ozcan et al. 2008]
S-QRC-CA [Altingovde et al. 2009]

Posting List
Cache (PLC)

D-PLC-LRU [Saraiva et al. 2001]
D-PLC-LFU [Baeza-Yates et al. 2007b]
D-PLC-FreqSize [Baeza-Yates et al. 2007b]

S-PLC-Freq [Baeza-Yates and Saint-Jean 2003]
S-PLC-FreqSize [Baeza-Yates et al. 2007b]

Document
Cache (DC)

DC-LRU [Turpin et al. 2007] –

Snippet
Cache (SC)

SC-LRU [Ceccarelli et al. 2011] –

2.2. Caching Policy

Caching is a widely-used optimization technique for improving system performance
[Markatos 2001; Herrero et al. 2008; Fitzpatrick 2009; Elhardt and Bayer 1984]. Web
search engines use caches in different types of servers to reduce the query response
time [Saraiva et al. 2001]. There are two types of caching policies being used in search
engines: (1) dynamic caching and (2) static caching. Dynamic caching is the classic. If
the cache memory is full, dynamic caching follows a replacement policy (a.k.a. eviction
policy) to evict some items in order to admit the new items [Belady 1966; Jiang and
Zhang 2002; Podlipnig and Böszörmenyi 2003]. Static caching is less common but does
exist in search engines [Markatos 2001; Baeza-Yates et al. 2007b, 2008; Altingovde
et al. 2009; Ozcan et al. 2008, 2011a, 2011b]. Initially when the cache is empty, a static
cache follows an admission policy to select data items to fill the cache. Once the cache
has been filled, it does not admit any new item at run-time. The same cache content
continuously serves the requests, and its entire content is refreshed in a periodic
manner [Markatos 2001]. Static caching can avoid the situation of having long-lasting
popular items being evicted by the admission of many momentarily popular items as
in dynamic caching. In the following, we briefly review the prominent cache policies
found in industrial-strength search engine architectures. They may not be exhaustive,
but we believe they are representative. Table I shows the nomenclature for this article.

2.2.1. Cache in Web Servers. Query result cache (QRC) is the cache used in Web servers.
It caches the query results such that the whole stack of query processing can be entirely
skipped if the result of query q is found in the QRC. Both dynamic and static query
result caches exist in the literature.

Dynamic Query Result Cache (D-QRC). Markatos was the first to discuss the use of
dynamic query result cache (D-QRC) in search engines [2001]. By analyzing the query
logs of the Excite search engine, Markatos observed a significant temporal locality in
the queries. Therefore, he proposed the use of query result cache. Two classic replace-
ment policies were used there: least-recently-used (LRU) and least-frequently-used
(LFU). In this article, we refer to them as D-QRC-LRU and D-QRC-LFU, respectively.

Gan and Suel have developed a feature-based replacement policy for dynamic query
result caching [2009]. In this article, we refer to that policy as D-QRC-FB. In addition to
query frequency, the policy considers nine more features (e.g., query recency) to predict
the reoccurrence of a query. More specifically, each of the ten features (dimensions) is
divided into eight intervals, and thus the whole space is divided into 810 buckets. Each
bucket is associated with a weight, which is the cache hit ratio for queries belonging to

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

Cache Design of SSD-Based Search Engine Architectures 21:7

that bucket. Then, queries falling in the buckets with the lowest weights are chosen to
be evicted first.

Recently, Ozcan et al. presented a cost-aware policy for dynamic query result caching
[2011a]. We refer to it as D-QRC-CA. The policy takes a query’s execution cost into
account during eviction. Specifically, each query q is associated with a weight wq =
(fq × cq)/sq + A, where fq is the query frequency, cq is the execution cost of q (including
only the basic execution costs such as list access, list intersection, and ranking cost), sq
is the query result size of q, and A is an aging factor (initially set as 0) that would be
increased along with the time. When eviction takes place, the query with the smallest
weight wmin is chosen and the value of A is updated as wmin. Whenever a cache item is
accessed, its corresponding weight is recalculated using the updated value of A. This
adopted D-QRC-CA policy is referred as the GDSF policy [Ozcan et al. 2011a].

Static Query Result Cache. Markatos discussed the potential use of static caching
in search engines [2001]. In that work, a static query result cache with an admission
policy that analyzes the query logs and fills the cache with the most frequently posed
queries was proposed. In this article, we refer to this policy as S-QRC-Freq.

Ozcan et al. reported that some query results cached by the S-QRC-Freq policy are
not useful because there is a significant number of frequent queries that quickly lose
their popularity but still reside in the static cache before the next periodic cache refresh
[2008]. Consequently, they proposed another admission policy that selects queries with
high frequency stability. More specifically, the query log is first partitioned by time into
n parts. Let f be the total frequency of a query q in the log and and fi be the frequency
of q in the ith part of the log. Then, the frequency stability of q is

∑n
i=1

| fi− f ′|
f ′ , where f ′

is the average frequency of q for a part, that is, f ′ = f/n. Queries with high frequency
stability are those frequent queries, and the logs show that they remain frequent over
a time period. In this article, we refer to this policy as S-QRC-FreqStab.

Later on, Altingovde et al. developed a cost-aware replacement policy for static query
result cache [Altingovde et al. 2009; Ozcan et al. 2011a, 2011b]. In this article, we refer
to that as S-QRC-CA. It is essentially the static version of D-QRC-CA (with the aging
factor A being 0). That is, each query is associated with a weight, which is the product
of its frequency and basic execution costs. That policy admits queries with the highest
weights until the cache is full.

Remark. According to Gan and Suel [2009] and Ozcan et al. [2011a], D-QRC-FB and
D-QRC-CA typically have the highest effectiveness among all other dynamic query
result caching policies. Nonetheless, there is no direct comparison between D-QRC-FB
and D-QRC-CA. The effectiveness of D-QRC-FB, however, is sensitive to the various
parameters (e.g., the number of intervals of each dimension).

According to Altingovde et al. [2009] and Ozcan et al. [2011a, 2011b] S-QRC-CA is
the most stable and effective policy in static query result caching. Dynamic and static
result caching can coexist and share the main memory of a Web server. Fagni et al.
[2006] empirically suggested ratios for D-QRC to S-QRC as 6:4, 2:8, and 7:3 for Tiscali,
AltaVista, and Excite data, respectively.

2.2.2. Cache in Index Servers. Posting list cache (PLC) is the cache used in the index
servers. It caches some posting lists in the memory so that the disk read of a posting
list PL of a term t in query q can possibly be skipped. Both dynamic and static posting
list caches exist in the literature.

Dynamic Posting List Cache. Saraiva et al. were the first to discuss the effectiveness
of dynamic posting list caching in index servers [2001]. In that work, the simple LRU
policy was used. In this article, we refer to this as D-PLC-LRU. Baeza-Yates et al.

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

21:8 J. Wang et al.

[2007b, 2008] also evaluated another commonly used policy, LFU, in dynamic PLC,
which we refer to as D-PLC-LFU. To balance the trade off between term popularity
and the effective use of the cache (to cache more items), the authors developed a
replacement policy that favors terms with a high frequency to posting list length ratio.
In this article, we refer to this policy as D-PLC-FreqSize.

Static Posting List Cache. Static posting list caching was first studied in
Baeza-Yates and Saint-Jean [2003], and the admission policy was based on selecting
posting lists with high access frequency. In this article, we refer to this as S-PLC-Freq.
In Baeza-Yates et al. [2007b, 2008], the static cache version of D-PLC-FreqSize was
also discussed. We refer to that as S-PLC-FreqSize here.

Remark. According to Baeza-Yates et al. [2007b, 2008], S-PLC-FreqSize is the winner
over all static and dynamic posting list caching policies.

2.2.3. Cache in Document Servers. Two types of caches could be used in the document
servers: document cache (DC) and snippet cache (SC). These caches store some doc-
uments and snippets in the memory of the document servers. So far, only dynamic
document cache and dynamic snippet cache have been discussed, and there are no
corresponding static caching techniques yet.

Document Cache. Turpin et al. [2007] observed that the time of reading a document
from disk dominates the snippet generation process, so they proposed caching some
documents in the document server’s memory so as to reduce the snippet generation
time. In that work, the simple LRU replacement policy was used, which we refer to as
DC-LRU. According to Turpin et al. [2007], document caching is able to significantly
reduce the time for generating snippets.

Snippet Cache. Ceccarelli et al. [2011] pointed out that the snippet generation process
is very expensive in terms of both CPU computation and disk access in the document
servers. Therefore, the authors proposed caching some generated snippets in the docu-
ment server’s main memory. In this article, we refer to this as SC-LRU, because it uses
the LRU, policy as replacement policy.

3. EXPERIMENTAL SETTING

In this article, we use a typical search engine architecture (Figure 2) that consists
of index servers, document servers, and Web servers. We focus on a pure SSD-based
architecture like Baidu [Ma 2010]. Many studies predict that SSD will soon completely
replace HDD in all layers [Kerekes 2009; Gray 2006; Hauksson and Smundsson 2007].
The study of using SSD as a layer between main memory and HDD in a search engine
architecture before SSD completely replaces HDD has been studied elsewhere in Li
et al. [2012a].

We deploy the Lucene4 search engine on a sandbox infrastructure consisting of one
index server, one document server, and one Web server. All servers are Intel commodity
machines (2.5GHz CPU, 8GB RAM) with Windows 7 installed. We have carried out our
experiments on two SSDs and two HDDs (evaluated in Figure 1). The experimental
results are largely similar and thus we only present the results of using SSD1 and
HDD1. In the experiments, the OS buffer is disabled. The experiments were carried
out using two datasets.

4http://lucene.apache.org.

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

Cache Design of SSD-Based Search Engine Architectures 21:9

(1) Sogou.
—Sogou Query.5 This is a collection of real queries (in Chinese) found in the Sogou

search engine, a famous commercial search engine in China, in June 2008. The log
contains 51.5 million queries. To ensure that replay can be done in a manageable
time, we draw a random sample of 1 million queries for our experiments (as
a reference, 0.7 million queries were used in Ozcan et al. [2011a]). The query
frequency and term frequency of our sampled query set follow the power-law
distribution with skew-factor α = 0.85 and 1.48, respectively (see Figures 3(a) and
3(b)). As a reference, the query frequencies in some related work (e.g., [Saraiva
et al. 2001; Gan and Suel 2009; Baeza-Yates et al. 2008]) follow the power-law
distribution with α values of 0.59, 0.82, and 0.83, respectively; and the term
frequencies in some recent work (e.g., [Baeza-Yates et al. 2008]) follow the power-
law distribution with α = 1.06.

—Sogou Web Data.6 This is a real collection of webpages (in Chinese) crawled in
the middle of 2008, by Sogou. The entire dataset takes over 5TB. To accommo-
date our experimental setup, we draw a random sample of 100GB data (about
12 million documents). It is a reasonable setting because large-scale Web search
engines shared their indexes and data across clusters of machines [Ma 2010]. As
a reference, the sampled datasets in some recent works are 15GB [Baeza-Yates
et al. 2008], 37GB [Ozcan et al. 2011a], and 2.78 million webpages [Baeza-Yates
et al. 2007b].

(2) AOL Query on ClueWeb Web Data.
—AOL Query [Pass et al. 2006]. This is a collection of 36,389,567 real queries (in

English) submitted to the AOL search engine (search.aol.com) between March 1
and May 31, 2006. We draw a sample of 1 million queries. The query frequency
and term frequency of the sampled AOL query logs follow the power-law dis-
tribution with skew-factor α = 0.55 and 1.48, respectively (see Figures 3(c) and
3(d)).

—ClueWeb Web Data.7 This is a real collection of webpages crawled in January
and February 2009 consisting of 10 languages. To be compatible with the size of
Sogou Web data, we draw a sample of about 12 million English webpages. The
sampled Web data is around 88GB.

Table II shows the characteristics of our query set8, and Table III shows the charac-
teristics of our dataset. In the following, we refer to “Sogou” as replaying Sogou queries
on Sogou Web data, and we refer to “ClueWeb” as replaying AOL queries on ClueWeb
data.

We divide the real query log into two parts: 50% of the queries are used for warming
the cache and the other 50% are for the replay, following the usual settings [Markatos
2001; Altingovde et al. 2009, 2011; Ozcan et al. 2011a, 2011b].

In the experiments, we follow some standard settings found in recent work. Specifi-
cally, we follow these works [Fagni et al. 2006; Altingovde et al. 2011; Ceccarelli et al.
2011; Ozcan et al. 2011a] to retrieve the top-10 mos-relevant documents. We follow
Saraiva et al. [2001] to configure the snippet generator to generate snippets with at
most 250 characters. Posting list compression is enabled. To improve the experimental
repeatability, we use the standard variable-byte compression method [Scholer et al.
2002] in the experiments. The page (block) size in the system is 4KB [Gal and Toledo

5http://www.sogou.com/labs/dl/q-e.html. (2008 version)
6http://www.sogou.com/labs/dl/t-e.html. (2008 version)
7http://lemurproject.org/clueweb09.
8Query logs used are de-identified for privacy reasons.

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

21:10 J. Wang et al.

Fig. 3. Frequency distribution of our query set.

Table II. Statistics of Query Set

Sogou AOL

Number of queries 1,000,000 1,000,000

Number of distinct queries 200,444 495,073

Number of terms 1,940,671 2,007,985

Number of distinct terms 82,503 343,065

Average number of terms per query 3.89 2.05

Total size of the posting lists of the
distinct terms

3.89GB 3.48GB

Power-law skew-factor α for query frequency 0.85 0.55

Power-law skew-factor α for term frequency 1.48 1.48

Table III. Statistics of Web Data

Sogou ClueWeb

Number of documents 11,970,265 12,408,626

Average document size 8KB 7KB

Total data size 100GB 88GB

Inverted index size 10GB 7.5GB

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

Cache Design of SSD-Based Search Engine Architectures 21:11

Table IV. Cache Used to Attain Typical Hit Ratios

Sogou ClueWeb
Cache type Cache size Hit ratio Cache size Hit ratio
Query result cache (QRC) 64MB 50% 8MB 31.3%
Posting list cache (PLC) 512MB 48% 512MB 36.0%
Snippet cache (SC) 1GB 59% 256MB 30.3%
Document cache (DC) 4GB 38% 1024MB 15.6%

2005; Debnath et al. 2010; Tsirogiannis et al. 2009]. As the query latencies differ a lot
between HDD-based and SSD-based architectures, we follow Baeza-Yates et al. [2007b]
and Agrawal et al. [2008] to report the normalized average end-to-end query latency
instead of the absolute query latency. Manning et al. [2008] and Webber and Moffat
[2005] suggested that a posting list would not be fragmented to distant disk blocks but
stored in continuous disk blocks. In this article, we follow that to configure Lucene.

4. THE IMPACT OF SOLID-STATE DRIVE ON SEARCH ENGINE CACHE MANAGEMENT

In this section, we evaluate the impact of SSD on the cache management of the in-
dex servers (Section 4.1), the document servers (Section 4.2), and the Web servers
(Section 4.3).

To show the effectiveness of each individual caching policy in a realistic manner,
when evaluating a particular type of cache, we fill up the other caches to attain a
typical cache hit ratio about 30% to 60%, as reported in several works [Dean 2009;
Baeza-Yates et al. 2007b; Markatos 2001]. Table IV shows the default cache sizes that
are required to fall into the typical hit ratio range in our platform. When replaying
AOL queries over ClueWeb data, the hit ratio of document cache cannot increase beyond
15.6% even when we allocate more than 1024MB memory to the document cache. That
is because many items had already been hit in the query result cache and the snippet
cache. For the setting where all other caches are disabled when evaluating a particular
type of cache, we refer readers to Wang et al. [2013], the preliminary version of this
article.

4.1. The Impact of SSD on Index Servers

We first evaluate the impact of SSD on the posting list cache management in an index
server. As mentioned, on SSD, a long posting list being found in the cache should have
a larger query latency improvement than a short posting list being found because
(i) a cache hit can save more sequential read accesses if the list is a long one and (ii) the
cost of a sequential read is now comparable to the cost of a random read (see Figure 1).

To verify our claim, Figure 4 shows the access latency of fetching from disk the
posting lists of terms found in the Sogou query log. We see that the latency of reading a
list from HDD increases mildly with the list length because the random seek operation
dominates the access time. In contrast, we see the latency of reading a list from SSD
increases with the list length at a faster rate.

Based on that observation, we believe that the effectiveness of some existing posting
list caching policies would change when they are applied to an SSD-based search
engine infrastructure. For example, according to Baeza-Yates et al. [2007b, 2008], S-
PLC-FreqSize has the best caching effectiveness on HDD-based search engines because
it favors popular terms with short posting lists (i.e., a high frequency-to-length ratio)
for the purpose of caching more popular terms. However, on SSD, a short list being
in the cache has a smaller query latency improvement than a long list. As such, we
believe that design principle is void in an SSD-based search engine infrastructure.

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

21:12 J. Wang et al.

Fig. 4. Read access latency of posting lists of varying lengths on Sogou data. We ran experiments five times
to get the average.

To verify our claim, we carried out experiments to reevaluate the static and dynamic
posting list caching policies in our SSD search engine sandbox. In the evaluation, we
focus on the effectiveness of individual caching policy type. The empirical evaluation of
the optimal ratio between static cache and dynamic cache on SSD-based search engine
architectures is beyond the scope of this article.

4.1.1. Reevaluation of Static Posting List Caching Policies on SSD-Based Search Engine Architec-
tures. We begin with presenting the evaluation results of the two existing static posting
list caching policies, (1) S-PLC-Freq and (2) S-PLC-FreqSize, mentioned in Section
2.2.2. Figure 5 shows the cache hit ratio and the average query latency of S-PLC-Freq
and S-PLC-FreqSize under different cache memory sizes.

Echoing the results in Baeza-Yates et al. [2007b, 2008], Figures 5(a) and 5(b) show
that S-PLC-FreqSize, which tends to cache popular terms with short posting lists, has
a higher cache hit ratio than S-PLC-Freq. The two policies have the same cache hit
ratio when the cache size is 4GB, because the cache is large enough to accommodate
all the posting lists of the query terms (see Table II) in the cache warming phase. The
reported cache misses are all attributed to the difference between the terms found in
the training queries and the terms found in the replay queries.

Although it has a higher cache hit ratio, Figures 5(c) and 5(d) show that the average
query latency of S-PLC-FreqSize is actually longer than that of S-PLC-Freq in an
SSD-based search engine architecture. As the caching policy S-PLC-FreqSize tends to
cache terms with short posting lists, the benefit brought by the higher cache hit ratio
is watered down by the fewer sequential read savings caused by short posting lists.
This explains why S-PLC-FreqSize becomes poor in terms of query latency. Apart from
this, the experimental results are real examples that illustrate the cache hit ratio is
not an adequate measure whenever the cache-miss costs are not uniform [Altingovde
et al. 2009; Gan and Suel 2009; Ozcan et al. 2011a; Marin et al. 2010].

Figures 5(e) and 5(f) show the average query latency on HDD. We also observe that
S-PLC-FreqSize’s average query latency is slightly worse than S-PLC-Freq at 512MB
cache memory, even though the former has a much higher cache hit ratio than the
latter. To explain, Figure 6 shows the average sizes of the posting lists participating in
all cache hits (i.e., whenever there is a hit in the PLC, we record its size and report the
average). We see that when the cache memory is small (e.g., 512MB), S-PLC-FreqSize
consistently keeps short lists in the cache. In contrast, S-PLC-Freq keeps relatively
longer posting lists. Take the Sogou case as an example. At 512MB cache memory, a
cache hit under S-PLC-Freq policy can save 693 − 307 = 386 more sequential reads

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

Cache Design of SSD-Based Search Engine Architectures 21:13

Fig. 5. [Index server] effectiveness of static posting list caching policies.

than S-PLC-FreqSize. Even though sequential reads are cheap on HDD, a total of 386
sequential reads are actually as expensive as 3 to 4 random seeks (see Figure 1). In
other words, although Figure 5(a) shows that the cache hit ratio of S-PLC-Freq is
20% lower than S-PLC-FreqSize at 512MB cache, that is outweighed by the 386 extra
sequential reads (equivalent to 3 to 4 extra random seeks) between the two policies.
That explains why S-PLC-Freq slightly outperforms S-PLC-FreqSize at 512MB cache.
Of course, when the cache memory increases, S-PLC-Freq starts to admit more short
lists into the cache memory, which reduces its benefit per cache hit, and that causes
S-PLC-FreqSize to outperform S-PLC-Freq again through the better cache hit ratio.

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

21:14 J. Wang et al.

Fig. 6. Average list size (in blocks) of all hits in static posting list cache.

4.1.2. Reevaluation of Dynamic Posting List Caching Policies on SSD-Based Search Engine Ar-
chitectures. We next present the evaluation results of the three existing dynamic posting
list caching policies, (1) D-PLC-LRU, (2) D-PLC-LFU, and (3) D-PLC-FreqSize, men-
tioned in Section 2.2.2. Figure 7 shows the cache hit ratio and the average query latency
of the three policies under different cache memory sizes.

First, we also see that while D-PLC-FreqSize has a better cache hit ratio than D-
PLC-LFU (Figures 7(a) and 7(b)), its query latency is actually longer than D-PLC-LFU
(Figures 7(c) and 7(d)) in SSD-based architectures. This further supports that the claim
of favoring terms with high frequency over length ratio is no longer sustained in SSD-
based search engine architectures. Also, this gives yet another example of the fact that
cache hit ratio is not a reliable measure in SSD cache management, as the average
length of posting lists that are admitted by D-PLC-FreqSize is much shorter than by
D-PLC-LFU (Figure 8), making the cache-miss costs nonuniform.

Second, comparing D-PLC-LRU and D-PLC-LFU, we see that while D-PLC-LFU
has a poorer cache hit ratio than D-PLC-LRU, their query latencies are quite close
in SSD-based architectures. D-PLC-LFU tends to admit longer lists than D-PLC-LRU
(Figure 8), because there is a small correlation (0.424 in Yahoo! data [Baeza-Yates et al.
2007b] and 0.35 in our Sogou data) between term frequency and posting list length. As
mentioned, on SSD, the benefit of finding a term with a longer list in cache is higher
than that of finding a term with shorter list. This explains why D-PLC-LFU has a
query latency close to D-PLC-LRU, which has a higher cache hit ratio.

Figures 7(e) and 7(f) show the average query latency on HDD. First, we once again
see that cache hit ratio is not reliable even on HDD-based architectures. For example,
while D-PLC-FreqSize has a higher cache hit ratio than D-PLC-LFU (except when the
cache is large enough to hold all posting lists), their query latencies are quite close to
each other in HDD-based architectures. That is due to the same reason we explained
in static caching—Figures 8(a) and 8(b) show that D-PLC-LFU can save hundreds of
sequential reads more than D-PLC-FreqSize per cache hit when the cache memory
is less than 1GB. That outweighs the cache hit ratio difference between the two. In
contrast, while D-PLC-LRU has a better cache hit ratio than D-PLC-LFU, they follow
the tradition that the former outperforms the latter in latency, because Figures 8(a) and
8(b) show that the size difference of the posting lists that participated in the cache hits
(i.e., the benefit gap in terms of query latency) between D-PLC-LRU and D-PLC-LFU
is not as significant as the time of one random seek operation. Therefore, D-PLC-LRU
yields a shorter query latency than D-PLC-LFU based on its higher cache hit ratio.

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

Cache Design of SSD-Based Search Engine Architectures 21:15

Fig. 7. [Index server] effectiveness of dynamic posting list cache policies.

4.2. The Impact of SSD on Document Servers

We next evaluate the impact of SSD on the cache management of the document servers.
A document server is responsible for storing part of the whole document collection and
generating the final query result. It receives a query q and an ordered list of document
IDs {d1, d2, . . . , dk} for the top-k most relevant documents from a Web server, retrieves
the corresponding documents from the disk, and generates the query-specific snippet
for each document and consolidates them as a result page. In the process, k query-
specific snippets have to be generated. If a query-specific snippet 〈q, di〉 is found in the
snippet cache, the retrieval of di from the disk and the generation of that snippet are
skipped. If a query-specific snippet is not found in the snippet cache, but the document

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

21:16 J. Wang et al.

Fig. 8. Average list size (in blocks) of all hits in dynamic posting list cache.

Fig. 9. Document retrieval time vs. snippet generation in a document server.

di is in found the document cache, the retrieval of di from the disk is skipped. In our
data (Table III), a document is about 7KB to 8KB on average. With a 4KB page size,
retrieving a document from the disk thus requires one random seek (read) and a few
more sequential reads.

In traditional search engine architectures using HDD in the document servers, the
latency from receiving the query and document list from the Web server to the return of
the query result is dominated by the k random read operations that seek k documents
from the HDD (see Figures 9(a) and 9(c)). These motivated the use of document cache
to improve the latency. As the random reads are much faster on SSD, we now believe
that the time bottleneck in the document servers will shift from document retrieval
(disk access) to snippet-generation (CPU computation). More specifically, the snippet-
generation process that finds every occurrence of q in di and identifies the best text
synopsis [Turpin et al. 2007; Tombros and Sanderson 1998] according to a specific
ranking function [Tombros and Sanderson 1998] is indeed CPU-intensive. Figures 9(b)
and 9(d) show that the CPU time spent on snippet generation becomes two times that
of the document retrieval time if SSD is used in a document server. Therefore, contrary
to the significant time reduction brought by document cache in traditional HDD-based
search engine architectures [Turpin et al. 2007], we believe the importance of document
cache in SSD-based search engine architectures is significantly diminished.

To verify our claim, we carried out experiments to vary the cache memories allocated
to the document cache, with all the other caches enabled as default in Table IV, in our

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

Cache Design of SSD-Based Search Engine Architectures 21:17

Fig. 10. [Document server] effectiveness of document cache.

SSD- and HDD-based sandbox infrastructure. The caching policies in the document
cache and snippet cache are DC-LRU [Turpin et al. 2007] and SC-LRU [Ceccarelli
et al. 2011], respectively.

Figure 10 shows the query latency when varying the size of the document cache
from 0 to 4GB. We can see on HDD (Figures 10(b) and 10(d)), the document cache is
effective, since it can reduce the overall query latency up to 18.7–20.3%. However, on
SSD (Figures 10(a) and 10(c)), the document cache can reduce only up to 3.2–3.8%
of the overall latency, which is much less effective. That is because of the excellent
random access performance on SSD, making document retrieval on SSD much faster.

In contrast, we believe the snippet cache is still powerful in an SSD-based search
engine architecture for two reasons.

(1) A cache hit in a snippet cache can reduce both the time of snippet generation and
document retrieval.

(2) The memory footprint of a snippet (e.g., 250 characters) is much smaller than the
memory footprint of a document (e.g., an average 7KB to 8KB in our data).

To verify our claim, we carried out experiments to vary the size of snippet cache from
0 to 4GB. Figure 11 shows the results. In HDD-based architectures, the snippet cache
can yield up to 12.1–16.1% query latency reduction. In SSD-based architectures, the
snippet cache can yield up to 12.4–15.3% query latency reduction. These results show
that the effectiveness of snippet cache is not influenced by the change of the storage
model.

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

21:18 J. Wang et al.

Fig. 11. [Document server] effectiveness of snippet cache.

4.3. The Impact of SSD on Web Servers

Clearly, the use of SSD to replace HDD improves the query latency of a search engine
because of the better performance of SSD over HDD. However, we believe the use of
SSD has little impact on the cache management in the Web servers, because the disks
in the Web servers are only for temporary storage (see Figure 2).

Figure 12 shows the query latency of five selected query result caching policies9:
(1) D-QRC-LRU, (2) D-QRC-LFU, (3) D-QRC-CA, (4) S-QRC-Freq, and (5) S-QRC-CA.
We see that if one policy is more effective than the other in terms of query latency on
HDD, the corresponding query latency is also shorter than the other on SSD.

5. CACHE DESIGN OF SSD-BASED SEARCH ENGINE ARCHITECTURE

The previous section points out that SSD indeed brings certain impact to search engine
caching. In this section, we aim to shed some light on how to adapt the search engine
architecture to best embrace SSD. We first identify the latency bottleneck of an SSD-
based search engine architecture (Section 5.1). Based on that result, we explore other
possible cache types to mitigate that bottleneck (Section 5.2). Finally, we give empirical
memory allocation suggestions to those cache types (Section 5.3).

9In this study, we exclude the results of D-QRC-FB and S-QRC-FreqStab. We exclude the result of D-QRC-
FB because its effectiveness heavily relies on the tuning of the various parameter values (e.g., the number
of intervals of each dimension). We exclude the result of S-QRC-FreqStab because its effectiveness is the
same as S-QRC-Freq when the query log cannot be split into intervals, where each interval spans weeks or
months.

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

Cache Design of SSD-Based Search Engine Architectures 21:19

Fig. 12. [Web server] effectiveness of query result caching policies on SSD-based search engine architectures.

5.1. List Intersection—The Latency Bottleneck in SSD-Based Search Engine

We aim to identify the latency bottleneck of an SSD-based search engine. Figure 13
shows the time breakdown of query processing in our sandbox infrastructure with all
caches enabled. The cache sizes follow Table IV in order to attain typical hit ratios found
in real search engines. From Figure 13, we clearly see that posting list intersection in
the index server is the primary bottleneck in SSD-based search engines. The other
time-dominating steps, listed in decreasing order, are as follows: ranking the results in
the index server, snippet generation in the document server, fetching the posting list
from disk in the index sever, and retrieving the document from disk in the document
server. Other steps, such as data transfer among servers through the network, incur
negligible cost.

5.2. Cache Type for List Intersection Saving

Having identified posting list intersection in the index server as the major bottleneck
in an SSD-based search engine, we aim to explore alternate cache types that can be
introduced to the index server in order to mitigate the bottleneck. In this regard, we
consider two cache types, namely, full-term-ranking-cache [Altingovde et al. 2011] and
two-term-intersection-cache [Long and Suel 2005], in addition to the standard posting
list cache, to be put in the index server.

The full-term-ranking-cache (FTRC) aims to reduce the entire query processing step
within the index server, including (i) fetching posting lists from disk, (ii) computing the
list intersection (the new bottleneck), and (iii) ranking and finding the top-k relevant
documents. As such, it takes the whole query q as the key and the top-k document

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

21:20 J. Wang et al.

Fig. 13. Time breakdown of each component in an SSD-based search engine with QRC, PLC, DC, and SC
enabled.

IDs as the cache values. The corresponding caching policy of FTRC in Altingovde et al.
[2011] is LRU. FTRC can be deployed in the Web servers, too. When doing so, a hit
in a Web server’s FTRC can further eliminate the cost of merging individual ranking
results from multiple index servers. In this article, however, we follow an industrial
setting that we found in a local search engine and put FTRC in the index server.

The two-term-intersection-cache (TTIC) aims to reduce the posting list intersection
time. For a query q with terms t1, t2, . . . , tn, it regards every two-term 〈ti, tj〉 of q as
the cache key and the intersection of ti ’s posting list PLi and tj ’s posting list PLj as
the cache value. The corresponding caching policy of TTIC in Long and Suel [2005] is
called Landlord [Cao and Irani 1997]. Its idea is to favor the recently accessed items,
while also taking into account the access latency and the size of an item. Specifically,
whenever a cache item I is inserted to the cache, a weight is assigned to it. The weight
wI of I is computed as (cI/sI) + A, where cI is the access latency of item I, sI is the
size of I, A is an aging factor (initially set as 0) that would be increased along with the
time. When eviction takes place, the item with the smallest weight wmin is chosen, and
the value of A is updated as wmin. Whenever a cache item is accessed, its corresponding
weight is recalculated using the updated value of A.

Table V lists the cache benefit, memory footprint, and cache locality (the α value
in power-law distribution) of FTRC, TTIC, and PLC on the Sogou data. In terms of
cache benefit, that is, reduction of query processing time, FTRC is the highest whilst
the standard PLC is the lowest. FTRC also has the lowest memory footprint whilst
the standard PLC has the highest. However, the cache locality of FTRC is the worst
because its cache items are query specific. TTIC is the middle ground between FTRC
and PLC. We see from Table V that there is no absolute winner in our SSD-based
architecture. The same conclusion is observed from the ClueWeb data. Therefore, we
suggest all three to be integrated in an SSD-based search engine architecture.

5.3. Cache Memory Allocation in Index Server

In this section, we carry out a study to empirically identify the optimal memory allo-
cation to the three different cache types FTRC, TTIC, and PLC in the index servers.
The goal is to give some insights on how to best leverage them to mitigate the latency
bottleneck in an SSD-based search engine architecture.

Figure 14(a) shows the average query latency on Sogou data when we vary the
memory allocation among FTRC, TTIC, and PLC. Figure 14(b) is another view of

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

Cache Design of SSD-Based Search Engine Architectures 21:21

Table V. Cache Benefit, Memory Footprint, and Cache Locality of FTRC, TTIC, and PLC

FTRC TTIC PLC

Cache benefit
(query time
reduction)

list access (I/O time) 25ms 13ms 6.5ms
intersection (CPU time) 25ms 18.7ms –

ranking (CPU time) 9ms – –
∑

59ms (Good) 31.7ms (Median) 6.5ms (Low)
Memory footprint 40 bytes (Low) 44,985 bytes (Median) 266,658 bytes (Large)

Cache locality α = 0.57 (Low) α = 1.03 (Median) α = 1.48 (Good)

Fig. 14. Varying memory allocation between full-term ranking cache, two-term intersection cache, and
posting list cache, in the index server.

Figure 14(a) that shows the cache benefit measured in terms of the reduction of query
processing time under different memory allocation. From the figures, we observe
the optimal memory allocation of FTRC : TTIC : PLC is 40%:20%:40%. Under such
an allocation, it improves the performance by 69.9%, compared with the original
SSD-architecture with PLC only.

Figures 14(c) and 14(d), respectively, show the average query latency and benefit on
ClueWeb data under different memory allocation for FTRC, TTIC, and PLC. We observe
that the optimal performance is achieved when FTRC : TTIC : PLC is 20%:60%:20%—
an improvement of 66.7% compared with the original SSD-architecture with PLC only.

6. RELATED STUDIES

SSD is expected to gradually replace HDD as the primary permanent storage media in
both consumer computing and enterprise computing. Large-scale enterprise computing

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

21:22 J. Wang et al.

architectures such as Facebook10, MySpace11, and Windows Azure12 have incorporated
SSD in their system infrastructure. This trend is mainly attributed to SSD’s outstand-
ing performance, small energy footprint, and increasing capacity. This has led to a
number of studies that aim to better understand the impacts of SSD on different com-
puter systems.

The discussion of the impact of SSD on computer systems had started as early as 1995
[Kawaguchi et al. 1995], in which an SSD-aware file system was proposed. Later on,
more SSD-aware file systems were designed (e.g., JFFS13, YAFFS14. Read operations in
those file systems are fast because of the use of SSD. A log-structure file organization is
then used to alleviate the intrinsic slow random write problem in SSD. After that, the
discussion has extended to other components in computer systems. For example, Park
et al. [2006] studied the impact of SSD on buffer management in general computer
systems. In that work, they developed a new caching policy. Specifically, a list of clean
pages and a list of dirty pages are maintained. During page eviction, pages from the
clean list are evicted first. This policy prefers dirty pages to be in the cache, which
aims to reduce the number of expensive write operations in SSD. Saxena and Swift
[2009] studied the impact of SSD on page swapping. Their goal is to optimize the page
swap operations between RAM and SSD. To achieve that, expensive random writes
operations are buffered so as to turn individual random write operations into groups
of (cheaper) sequential writes.

The discussion of the impact of SSD on database systems had started as early as
in 2007. Lee and Moon [2007] presented a new database design to, again, mitigate
the slow random write problems of SSD. The methodology is to buffer data pages and
then flush them to the log through sequential writes. Since then, SSD has become an
active topic in database research. For example, the impact of SSD on join operations
was first studied in Shah et al. [2008]. In that work, a new hash-join implementation
was proposed. It exploits the property of fast random read on SSD to fetch only the
join attributes from the join tables so that the join can be carried out using much fewer
memory. Later on, a few more SSD-aware index structures were developed [Agrawal
et al. 2009; Li et al. 2010]. They share the same goal—to reduce the expensive random
writes triggered by update, insert, and delete operations. In Agrawal et al. [2009], a
RAM buffer is used to buffer the updates to a B-tree in order to amortize the update
cost. In Li et al. [2010], random writes are restricted to the top level of B-tree. Insertions
are inserted to the top level first. The top level is merged with the next level through
sequential writes. As such, random writes are always limited to a certain area of SSD.
The benefit is that such “dense” random writes could be more efficient than “sparse”
random writes that span the whole disk [Nath and Gibbons 2008]. The recent trend of
SSD-aware data structures exploits the internal parallelism in SSD by issuing multiple
I/Os simultaneously. For example, a parallel B-Tree was designed for SSD such that a
batch of queries can be answered efficiently [Roh et al. 2011].

Baidu first announced their SSD-based search engine infrastructure in 2010 [Ma
2010], but they did not investigate the impact of SSD on their cache management. In
Huang and Xia [2011], a RAM-SSD-HDD search engine architecture was discussed.
The key issue there was to select a subset of posting lists to be stored in SSD, and the
problem was solved as an optimization problem. In [Li et al. 2012b], that issue was
further discussed in the context of incrementally updating the SSD-resident posting

10http://www.facebook.com/note.php?note id=388112370932.
11http://www.fusionio.com/case-studies/myspace-case-study.pdf.
12http://www.storagelook.com/microsoft-azure-ocz-ssds.
13http://sourceware.org/jffs2.
14http://www.yaffs.net.

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

Cache Design of SSD-Based Search Engine Architectures 21:23

list in such architecture. In Li et al. [2012b], a RAM-SSD search engine architecture
was discussed. That work focused on how to update the posting lists in SSD efficiently
when new documents are collected. This article however focuses on cache management
in such an SSD-based search engine architecture. Works that study the optimal cache
allocation ratio between different types of caches (e.g., [Baeza-Yates and Jonassen 2012;
Ozcan et al. 2011b]) on traditional HDD-based search engines are orthogonal to this
article.

7. CONCLUSIONS

In this article, we first present the results of a large-scale experimental study that
evaluates the impact of SSD on the effectiveness of various caching policies, on all
types of cache found in a typical search engine architecture. In addition, we present
an empirical study that gives the preliminary direction to optimize SSD-based search
engine.

This article contributes the following messages to our community.

(1) The previously known best caching policy in the index servers, S-PLC-FreqSize
[Baeza-Yates et al. 2007b, 2008], has the worst effectiveness in terms of query
latency in our SSD-based search engine evaluation platform. Instead, all the other
policies are better than S-PLC-FreqSize in terms of query latency, but no clear
winner is found.

(2) While previous work claims that document caching is very effective and the tech-
nique is able to significantly reduce the time of the snippet-generation process in
the document servers [Turpin et al. 2007], we show that snippet caching is even
more effective than document caching in SSD-based search engines. Therefore,
snippet caching should have a higher priority of using the cache memory of the
document servers in an SSD-based search engine deployment.

(3) While SSD can improve the disk access latency of all servers in Web search engines,
it has no significant impact on the cache management in Web servers. Thus, during
the transition from an HDD-based architecture to an SSD-based architecture, there
is no need to revise the corresponding query result caching policies in the Web
servers.

(4) Posting list intersection is the bottleneck of SSD-based search engines. In addition
to the standard posting list cache (PLC) in the index server, full-term ranking cache
(FTRC) and two-term intersection cache (TTIC) can also be exploited to improve
the whole stack of query processing in SSD-based search engines. Preliminary
empirical results suggest a memory allocation of 40% : 20% : 40% for FTRC : TTIC :
PLC on Sogou data, and 20% : 60% : 20% on the ClueWeb data.

REFERENCES

Devesh Agrawal, Deepak Ganesan, Ramesh Sitaraman, Yanlei Diao, and Shashi Singh. 2009. Lazy-adaptive
tree: An optimized index structure for flash devices. Proc. VLDB Endow. 2, 1 (2009), 361–372.

Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark Manasse, and Rina Panigrahy. 2008.
Design tradeoffs for SSD performance. In Proceedings of the USENIX Conference on Annual Technical
Conference (ATC). 57–70.

Ismail Sengor Altingovde, Rifat Ozcan, B. Barla Cambazoglu, and Özgür Ulusoy. 2011. Second chance: A
hybrid approach for dynamic result caching in search engines. In Proceedings of the European Conference
on Advances in Information Retrieval (ECIR). 510–516.

Ismail Sengor Altingovde, Rifat Ozcan, and Özgür Ulusoy. 2009. A cost-aware strategy for query result
caching in web search engines. In Proceedings of the European Conference on Advances in Information
Retrieval (ECIR). 628–636.

Ricardo Baeza-Yates, Carlos Castillo, Flavio Junqueira, Vassilis Plachouras, and Fabrizio Silvestri. 2007a.
Challenges on distributed web retrieval. In Proceedings of the International Conference on Data Engi-
neering (ICDE). 6–20.

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

21:24 J. Wang et al.

Ricardo Baeza-Yates, Aristides Gionis, Flavio Junqueira, Vanessa Murdock, Vassilis Plachouras, and Fabrizio
Silvestri. 2007b. The impact of caching on search engines. In Proceedings of the ACM Conference on
Research and Development in Information Retrieval (SIGIR). 183–190.

Ricardo Baeza-Yates, Aristides Gionis, Flavio P. Junqueira, Vanessa Murdock, Vassilis Plachouras, and
Fabrizio Silvestri. 2008. Design trade-offs for search engine caching. ACM Trans. Web 2, 4 (2008), 1–28.

Ricardo Baeza-Yates and Simon Jonassen. 2012. Modeling static caching in web search engines. In Proceed-
ings of the European Conference on Advances in Information Retrieval (ECIR). 436–446.

Ricardo Baeza-Yates and Felipe Saint-Jean. 2003. A three level search engine index based in query log
distribution. In Proceedings of the International Symposium on String Processing and Information
Retrieval (SPIRE). 56–65.

Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. 2003. Web search for a planet: The Google cluster
architecture. IEEE Micro Mag. 23, 2 (2003), 22–28.

Laszlo A. Belady. 1966. A study of replacement algorithms for a virtual-storage computer. IBM Syst. J. 5, 2
(1966), 78–101.

Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Zien. 2003. Efficient query eval-
uation using a two-level retrieval process. In Proceedings of the International Conference on Information
and Knowledge Management (CIKM). 426–434.

Pei Cao and Sandy Irani. 1997. Cost-aware WWW proxy caching algorithms. In Proceedings of the USENIX
Symposium on Internet Technologies and Systems.

Diego Ceccarelli, Claudio Lucchese, Salvatore Orlando, Raffaele Perego, and Fabrizio Silvestri. 2011. Caching
query-biased snippets for efficient retrieval. In Proceedings of the International Conference on Extending
Database Technology (EDBT). 93–104.

Feng Chen, David A. Koufaty, and Xiaodong Zhang. 2009. Understanding intrinsic characteristics and system
implications of flash memory based solid state drives. In Proceedings of the International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS). 181–192.

Shimin Chen, Phillip B. Gibbons, and Suman Nath. 2011. Rethinking database algorithms for phase change
memory. In Proceedings of the International Conference on Innovative Data Systems Research (CIDR).
21–31.

Jeffrey Dean. 2009. Challenges in building large-scale information retrieval systems: Invited talk. In Pro-
ceedings of the International Conference on Web Search and Data Mining (WSDM).

Biplob Debnath, Sudipta Sengupta, and Jin Li. 2010. FlashStore: High throughput persistent key-value
store. Proc. VLDB Endow. 3, 1–2 (2010), 1414–1425.

Klaus Elhardt and Rudolf Bayer. 1984. A database cache for high performance and fast restart in database
systems. ACM Trans. Datab. Syst. 9, 4 (1984), 503–525.

Tiziano Fagni, Raffaele Perego, Fabrizio Silvestri, and Salvatore Orlando. 2006. Boosting the performance
of web search engines: Caching and prefetching query results by exploiting historical usage data. ACM
Trans. Inf. Syst. 24, 1 (2006), 51–78.

Brad Fitzpatrick. 2009. Memcached – A distributed memory object caching system. http://memcached.org/.
(2009).

Flexstar Technology. 2012. Flexstar SSD test market analysis. http://info.flexstar.com/Portals/161365/docs/
SSD Testing Market Analysis.pdf. (2012).

Eran Gal and Sivan Toledo. 2005. Algorithms and data structures for flash memories. ACM Comput. Surv.
37, 2 (2005), 138–163.

Qingqing Gan and Torsten Suel. 2009. Improved techniques for result caching in web search engines. In
Proceedings of the International Conference on World Wide Web (WWW). 431–440.

Goetz Graefe. 2009. The five-minute rule 20 years later (and how flash memory changes the rules). Commun.
ACM 52, 7 (2009), 48–59.

Jim Gray. 2006. Tape is dead, disk is tape, flash is disk, ram locality is king. http://research.microsoft.com/en-
us/um/people/gray/talks/Flash is Good. ppt. (2006).

Ari Geir Hauksson and Sverrir Smundsson. 2007. Data storage technologies. http://olafurandri.com/nyti/
papers2007/DST.pdf. (2007).

Enric Herrero, José González, and Ramon Canal. 2008. Distributed cooperative caching. In Proceedings of
the International Conference on Parallel Architectures and Compilation Techniques (PACT). 134–143.

Bojun Huang and Zenglin Xia. 2011. Allocating inverted index into flash memory for search engines. In
Proceedings of the International Conference on World Wide Web (WWW). 61–62.

Song Jiang and Xiaodong Zhang. 2002. LIRS: An efficient low inter-reference recency set replacement policy
to improve buffer cache performance. In Proceedings of the International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS). 31–42.

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

Cache Design of SSD-Based Search Engine Architectures 21:25

Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Motoda. 1995. A flash-memory based file system. In Pro-
ceedings of the USENIX Conference on Annual Technical Conference (ATC). 155–164.

Zsolt Kerekes. 2009. Storage market outlook to 2015. http://www.storagesearch.com/5year-2009.html. (2009).
Sang-Won Lee and Bongki Moon. 2007. Design of flash-based DBMS: An in-page logging approach. In

Proceedings of the ACM Conference on Management of Data (SIGMOD). 55–66.
Sang-Won Lee, Bongki Moon, Chanik Park, Jae-Myung Kim, and Sang-Woo Kim. 2008. A case for flash

memory SSD in enterprise database applications. In Proceedings of the ACM Conference on Management
of Data (SIGMOD). 1075–1086.

Ruixuan Li, Xuefan Chen, Chengzhou Li, Xiwu Gu, and Kunmei Wen. 2012a. Efficient online index main-
tenance for SSD-based information retrieval systems. In Proceedings of the International Conference on
High Performance Computing and Communication (HPCC). 262–269.

Ruixuan Li, Chengzhou Li, Weijun Xiao, Hai Jin, Heng He, Xiwu Gu, Kunmei Wen, and Zhiyong Xu. 2012b.
An efficient SSD-based hybrid storage architecture for large-scale search engines. In Proceedings of the
International Conference on Parallel Processing (ICPP). 450–459.

Yinan Li, Bingsheng He, Robin Jun Yang, Qiong Luo, and Ke Yi. 2010. Tree indexing on solid state drives.
Proc. VLDB Endow. 3, 1–2 (2010), 1195–1206.

Xiaohui Long and Torsten Suel. 2005. Three-level caching for efficient query processing in large web search
engines. In Proceedings of the International Conference on World Wide Web (WWW). 257–266.

Ruyue Ma. 2010. Baidu distributed database. In Proceedings of the System Architect Conference China
(SACC).

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze. 2008. Introduction to Information
Retrieval. Cambridge University Press.

Mauricio Marin, Veronica Gil-Costa, and Carlos Gomez-Pantoja. 2010. New caching techniques for web
search engines. In Proceedings of the ACM International Symposium on High Performance Distributed
Computing (HPDC). 215–226.

Evangelos P. Markatos. 2001. On caching search engine query results. Comput. Commun. 24, 2 (2001),
137–143.

Dushyanth Narayanan, Eno Thereska, Austin Donnelly, Sameh Elnikety, and Antony Rowstron. 2009.
Migrating server storage to SSDs: Analysis of tradeoffs. In Proceedings of the ACM European Conference
on Computer Systems (EuroSys). 145–158.

Suman Nath and Phillip B. Gibbons. 2008. Online maintenance of very large random samples on flash
storage. Proc. VLDB Endow. 1, 1 (2008), 970–983.

Rifat Ozcan, Ismail Sengor Altingovde, B. Barla Cambazoglu, Flavio P. Junqueira, and Özgür Ulusoy. 2011b.
A five-level static cache architecture for web search engines. Inf. Process. Manag. 48, 5 (2011), 828–840.

Rifat Ozcan, Ismail Sengor Altingovde, and Özgür Ulusoy. 2008. Static query result caching revisited. In
Proceedings of the International Conference on World Wide Web (WWW). 1169–1170.

Rifat Ozcan, Ismail Sengor Altingovde, and Özgür Ulusoy. 2011a. Cost-aware strategies for query result
caching in web search engines. ACM Trans. Web 5, 2 (2011), 1–25.

Seon-yeong Park, Dawoon Jung, Jeong-uk Kang, Jin-soo Kim, and Joonwon Lee. 2006. CFLRU: A replace-
ment algorithm for flash memory. In Proceedings of the International Conference on Compilers, Archi-
tecture and Synthesis for Embedded Systems (CASES). 234–241.

Greg Pass, Abdur Chowdhury, and Cayley Torgeson. 2006. A picture of search. In Proceedings of the Inter-
national Conference on Scalable Information Systems (InfoScale).

Stefan Podlipnig and Laszlo Böszörmenyi. 2003. A survey of Web cache replacement strategies. ACM Comput.
Surv. 35, 4 (2003), 374–398.

Hongchan Roh, Sanghyun Park, Sungho Kim, Mincheol Shin, and Sang-Won Lee. 2011. B+-tree index
optimization by exploiting internal parallelism of flash-based solid state drives. Proceedings of the
VLDB Endowment (PVLDB) 5, 4 (2011), 286–297.

Paricia Correia Saraiva, Edleno Silva de Moura, Novio Ziviani, Wagner Meira, Rodrigo Fonseca, and Berthier
Riberio-Neto. 2001. Rank-preserving two-level caching for scalable search engines. In Proceedings of the
ACM Conference on Research and Development in Information Retrieval (SIGIR). 51–58.

Mohit Saxena and Michael M. Swift. 2009. FlashVM: Revisiting the virtual memory hierarchy. In Proceedings
of the International Conference on Hot Topics in Operating Systems (HotOS).

Falk Scholer, Hugh E. Williams, John Yiannis, and Justin Zobel. 2002. Compression of inverted indexes for
fast query evaluation. In Proceedings of the ACM Conference on Research and Development in Informa-
tion Retrieval (SIGIR). 222–229.

Euiseong Seo, Seon Yeong Park, and Bhuvan Urgaonkar. 2008. Empirical analysis on energy efficiency
of flash-based SSDs. In Proceedings of the International Conference on Power Aware Computing and
Systems (HotPower).

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

21:26 J. Wang et al.

Mehul A. Shah, Stavros Harizopoulos, Janet L. Wiener, and Goetz Graefe. 2008. Fast scans and joins using
flash drives. In Proceedings of the International Workshop on Data Management on New Hardware
(DaMoN). 17–24.

Anastasios Tombros and Mark Sanderson. 1998. Advantages of query biased summaries in information
retrieval. In Proceedings of the ACM Conference on Research and Development in Information Retrieval
(SIGIR). 2–10.

Andrew Trotman. 2003. Compressing inverted files. Inf. Retr. 6, 1 (2003), 5–19.
Dimitris Tsirogiannis, Stavros Harizopoulos, Mehul A. Shah, Janet L. Wiener, and Goetz Graefe. 2009. Query

processing techniques for solid state drives. In Proceedings of the ACM Conference on Management of
Data (SIGMOD). 59–72.

Andrew Turpin, Yohannes Tsegay, David Hawking, and Hugh E. Williams. 2007. Fast generation of re-
sult snippets in web search. In Proceedings of the ACM Conference on Research and Development in
Information Retrieval (SIGIR). 127–134.

Howard Turtle and James Flood. 1995. Query evaluation: Strategies and optimizations. Inf. Process. Manag.
31, 6 (1995), 831–850.

Jianguo Wang, Eric Lo, Man Lung Yiu, Jiancong Tong, Gang Wang, and Xiaoguang Liu. 2013. The impact of
solid state drive on search engine cache management. In Proceedings of the ACM Conference on Research
and Development in Information Retrieval (SIGIR). 693–702.

William Webber and Alistair Moffat. 2005. In search of reliable retrieval experiments. In Proceedings of the
Australasian Document Computing Symposium (ADCS). 26–33.

Jiangong Zhang, Xiaohui Long, and Torsten Suel. 2008. Performance of compressed inverted list caching in
search engines. In Proceedings of the International Conference on World Wide Web (WWW). 387–396.

Received September 2013; revised June, August 2014; accepted August 2014

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 21, Publication date: October 2014.

