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Abstract Given a database of vectors, a cosine threshold query returns all vectors in
the database having cosine similarity to a query vector above a given threshold θ. These
queries arise naturally in many applications, such as document retrieval, image search,
and mass spectrometry. The paper considers the efficient evaluation of such queries, as
well as of the closely related top-k cosine similarity queries. It provides novel optimality
guarantees that exhibit good performance on real datasets.We take as a starting point
Fagin’s well-known Threshold Algorithm (TA), which can be used to answer cosine
threshold queries as follows: an inverted index is first built from the database vectors
during pre-processing; at query time, the algorithm traverses the index partially to
gather a set of candidate vectors to be later verified for θ-similarity. However, directly
applying TA in its raw form misses significant optimization opportunities. Indeed, we
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first show that one can take advantage of the fact that the vectors can be assumed to
be normalized, to obtain an improved, tight stopping condition for index traversal and
to efficiently compute it incrementally. Then we show that multiple real-world data
sets from mass spectrometry, natural language process, and computer vision exhibit a
certain form of data skewness and we exploit this property to obtain better traversal
strategies. We show that under the skewness assumption, the new traversal strategy
has a strong, near-optimal performance guarantee. The techniques developed in the
paper are quite general since they can be applied to a large class of similarity functions
beyond cosine.

1 Introduction

Cosine Similarity Search (CSS) [72,4,54] is a broad area where querying/search in
vector databases is based on the cosine of two vectors. The cosine similarity search
problem arises naturally in many applications including document retrieval [14], im-
age search [48], recommender systems [54] and mass spectrometry. This work was
motivated by and was applied in mass spectrometry, where billions of spectra are
generated for the purpose of protein analysis [1,49,78]. Each spectrum is a collection
of key-value pairs where the key is the mass-to-charge ratio of an ion contained in
the protein and the value is the intensity of the ion. Essentially, each spectrum is a
high-dimensional, non-negative and sparse vector with∼2000 dimensions where∼100
coordinates are non-zero.

There are two main variants of CSS in the various applications and the literature
[72,73,4]: cosine threshold queries and cosine top-k queries. This work primarily
focuses on processing cosine threshold queries and expands the cosine threshold
queries techniques to cosine top-k queries.

Given a database of vectors, a cosine threshold query asks for all database vectors
with cosine similarity to a query vector above a given threshold. Cosine threshold
queries play an important role in analyzing spectra repositories. Example questions
include “is the given spectrum similar to any spectrum in the database?”, spectrum
identification (matching query spectra against reference spectra), or clustering (match-
ing pairs of unidentified spectra) or metadata queries (searching for public datasets
containing matching spectra, even if obtained from different types of samples). For
such applications with a large vector database, it is critically important to process
cosine threshold queries efficiently – this is the fundamental topic addressed in this
paper.

Definition 1 (Cosine Threshold Query) Let D be a collection of high-dimensional,
non-negative vectors; q be a query vector; θ be a threshold 0 < θ ≤ 1. Then the
cosine threshold query returns the vector setR = {s|s ∈ D, cos(q, s) ≥ θ}. A vector
s is called θ-similar to the query q if cos(q, s) ≥ θ and the score of s is the value
cos(q, s) when q is understood from the context.

The top-k version can be defined similarly:
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Definition 2 (Cosine Top-k Query) Let D be a database of vectors; q be a query
vector; k be a positive integer. The cosine top-k query returns a subset of D with the k
highest cosine similarity with q.

Observe that cosine similarity is insensitive to vector normalization. We will
therefore assume without loss of generality that the database as well as query consist
of unit vectors (otherwise, all vectors can be normalized in a pre-processing step).

Because of the unit-vector assumption, the scoring function cos computes the
dot product q · s. Without the unit-vector assumption, cosine threshold querying is
equivalent to inner product threshold querying, which is of interest in its own right.
We summarize related work on cosine and inner product similarity search in Section 7.

In this paper, we develop novel techniques for the efficient evaluation of cosine
threshold queries and expand the techniques to cosine top-k queries. We take as a
starting point the well-known Threshold Algorithm (TA), by Fagin et al. [30], because
of its simplicity, wide applicability, and optimality guarantees. We begin with a brief
review of the TA algorithm.

Review of TA. On a database D of d-dimensional vectors {s1, . . . , sn}, given a query
monotonic scoring function F : Rd 7→ R and a query parameter k, the Threshold
Algorithm (TA) computes the k database vectors with the highest scoreF (s). A scoring
function F is monotonic if F (s) is a non-decreasing function wrt each dimension of s
(or non-increasing, we assume non-decreasing wlog). A wide range of commonly-used
functions for scoring vectors are monotonic, including the weighted sum (or average)
over s, themin (or max), and the median value of s.

The TA works as follows. First, TA preprocesses the vector database by building
an inverted index {Li}1≤i≤d where each Li is an inverted list that contains pairs of
(ref(s), s[i]) where ref(s) is a reference to the vector s and s[i] is the i-th dimension
s. Each Li is sorted in descending order of s[i]. When a query (F, k) arrives, TA
proceeds as follows. It maintains a pointer b starting from 1 to all the inverted lists and
increments b iteratively. At each iteration:

– Collect the set C of candidates of all references in Li up to position b for all
dimension i. Namely, C =

⋃d
i=1{ref(s)|(ref(s), s[i]) ∈ Li[1, . . . , b]}.

– Compute Fk the k-th highest score F (s) for all ref(s) ∈ C by accessing s in the
database with the reference.

– If the score Fk is no less than F (L1[b], . . . , Ld[b]), return the top-k highest score
vectors in C; otherwise continue to the next iteration with b← b+ 1.

By monotonicity of the function F , once the stopping condition is satisfied, it is
guaranteed that no vector s below the pointer b can have F (s) above the current k-th
highest score. Thus the candidate set C contains the complete set of all the k highest
score vectors in the database.

One nice property of TA is that it guarantees instance optimality. Informally, for
any given database D and query (q, k), TA performs no worse than ANY algorithm
that requires sequential access to the inverted index structure up to a multiplicative
factor of d in terms of the number of data accesses.
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Theorem 1 (Instance Optimality of TA [30,31], Informal) Suppose that OPT is
the minimal number of accesses to the inverted lists to answer the query (q, k), the
number of accesses performed by TA is at most d · OPT.

A TA-like baseline index and algorithm and its shortcomings. The TA algorithm
can be easily adapted to our setting, yielding a first-cut approach to processing cosine
threshold queries. We describe how this is done and refer to the resulting index and
algorithm as theTA-like baseline. Note first that cosine threshold queries use cos(q, s),
which can be viewed as a particular family of functions F (s) = s · q parameterized by
q, that are monotonic in s for unit vectors. However, TA produces the vectors with the
top-k scores according to F (s), whereas cosine threshold queries return all s whose
score exceeds the threshold θ. We will show how this difference can be overcome
straightforwardly.

We construct the baseline index and algorithm for answering cosine threshold
queries as follows. Note that the algorithm is exact, which means that it returns all
vectors no less than the threshold θ.

Identically to the TA, the baseline index consists of one sorted list for each of the d
dimensions. In particular, the i-th sorted list has pairs (ref(s), s[i]), where ref(s) is a
reference to the vector s and s[i] is its value on the i-th dimension. The list is sorted in
descending order of s[i].1

Next, the baseline, like the TA, proceeds into a gathering phase during which it
collects a complete set of references to candidate result vectors. The TA shows that
gathering can be achieved by reading the d sorted lists from top to bottom and termi-
nating early when a stopping condition is finally satisfied. The condition guarantees
that any vector that has not been seen yet has no chance of being in the query result.
The baseline makes a straightforward change to the TA’s stopping condition to adjust
for the difference between the TA’s top-k requirement and the threshold requirement
of the cosine threshold queries. In particular, in each round the baseline algorithm
has read the first b entries of each index. (Initially it is b = 1.) If it is the case that
cos(q, [L1[b], . . . , Ld[b]]) < θ then it is guaranteed that the algorithm has already
read (the references to) all the possible candidates and thus it is safe to terminate the
gathering phase, see Figure 1 for an example. Every vector s that appears in the j-th
entry of a list for j ≤ b is a candidate.

In the next phase, called the verification phase, the baseline algorithm (again like
TA) retrieves the candidate vectors from the database and checks which ones actually
score above the threshold.

For inner product queries, the baseline algorithm’s gathering phase benefits from
the same d ·OPT instance optimality guarantee as the TA. Namely, the gathering phase
will access at most d ·OPT entries, where OPT is the optimal index access cost. More
specifically, the notion of OPT is the minimal number of sequential accesses of the
sorted inverted index during the gathering phase for any TA-like algorithm applied to
the specific query and index instance.

There is an obvious optimization: Only them dimensions that have non-zero values
in the query vector q should participate in query processing – this leads to am · OPT

1 There is no need to include pairs with zero values in the list.
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Figure 1 An example of cosine threshold query with six 10-dimensional vectors. The missing values

concentrated on a few coordinates, the query processing should overweight the respective lists and
may, thus, reach the stopping condition much faster than reading all relevant lists in tandem.

We retain the baseline’s index and the gathering-verification structure which captures the family
of TA-like algorithms. The algorithmic framework, which we refer to as Gathering-Verification, is
reviewed and shown to be appropriate for cosine threshold queries in Section 2. Within the framework,
we reconsider
1. Traversal strategy optimization: A traversal strategy determines the order in which the gathering

phase proceeds in the lists. In particular, we allow the gathering phase to move deeper in some
lists and less deep in others. For example, the gathering phase may have read at some point
b1 = 106 entries from the first list, b2 = 523 entries from the second list, etc. Multiple traversal
strategies are possible and, generally, each traversal strategy will reach the stopping condition with
a different configuration of [b1, b2, . . . , bn]. The traversal strategy optimization problem asks that
we efficiently identify a traversal path that minimizes the access cost

∑d
i=1 bi. To enable such

optimization, we will allow lightweight additions to the baseline index.
2. Stopping condition optimization: We reconsider the stopping condition so that it takes into account

(a) the specifics of the cos function and (b) the unit vector constraint. Moreover, since the stopping
condition is tested frequently during the gathering phase, it has to decide very fast whether the
traversal can stop. Notice that the stopping condition optimization is independent of the traversal
strategy and its optimal solution is not dependent on skewness assumptions about the data.

Contributions and summary of results.
We present a stopping condition for early termination of the index traversal (Section 3). We show
that the stopping condition is complete and tight, informally meaning that (1) for any traversal
strategy, the gathering phase will produce a candidate set containing all the vectors θ-similar to
the query, and (2) the gathering terminates as soon as no more θ-similar vectors can be found

3 Notice, the unit vector constraint enables inference about the collective weight of the yet unseen coordinates of a
vector.

Fig. 1 An example of cosine threshold query with six 10-dimensional vectors. The missing values are 0’s.
We only need to scan the lists L1, L3, and L4 since the query vector has non-zero values in dimension 1, 3
and 4. For θ = 0.6, the gathering phase terminates after each list has examined three entries (highlighted)
because the score for any unseen vector is at most 0.8 × 0.3 + 0.3 × 0.3 + 0.5 × 0.2 = 0.43 < 0.6.
The verification phase only needs to retrieve from the database those vectors obtained during the gathering
phase, i.e., s1, s2, s3 and s5, compute the cosines and produce the final result.

guarantee for inner product queries2. But even this guarantee loses its practical value
whenm is a large number. In the mass spectrometry scenariom is ∼100. In document
similarity and image similarity cases it is even higher.

For cosine threshold queries, them ·OPT guarantee no longer holds. The baseline
fails to utilize the unit vector constraint to reach the stopping condition faster, resulting
in an unbounded gap fromOPT because of the unnecessary accesses (see Section 3.1).3
Furthermore, the baseline fails to utilize the skewing of the values in the vector’s
coordinates (both of the database’s vectors and of the query vector) and the linearity
of the similarity function. Intuitively, if the query’s weight is concentrated on a few
coordinates, the query processing should overweight the respective lists and may, thus,
reach the stopping condition much faster than reading all relevant lists in tandem.

We retain the baseline’s index and the gathering-verification structure which char-
acterizes the family of TA-like algorithms. The decision to keep the gathering and
verification stages separate is discussed in Section 2. We argue that this algorithmic
structure is appropriate for cosine threshold queries, because further optimizations
that would require merging the two phases are only likely to yield marginal benefits.
Within this framework, we reconsider

1. Traversal strategy optimization: A traversal strategy determines the order in which
the gathering phase proceeds in the lists. In particular, we allow the gathering phase
to move deeper in some lists and less deep in others. For example, the gathering
phase may have read at some point b1 = 106 entries from the first list, b2 = 523
entries from the second list, etc. Multiple traversal strategies are possible and,
generally, each traversal strategy will reach the stopping condition with a different
configuration of [b1, b2, . . . , bn]. The traversal strategy optimization problem asks
that we efficiently identify a traversal path that minimizes the access cost

∑d
i=1 bi.

To enable such optimization, we will allow adding a lightweight auxiliary data
structured pre-computed from the baseline index.

2 This optimization is equally applicable to the TA’s problem: Scan only the lists that correspond to
dimensions that actually affect the function F .

3 Notice, the unit vector constraint enables inference about the collective weight of the unseen coordinates
of a vector.
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Table 1 Summary of theoretical results for the near-convex case.

Stopping Condition Traversal Strategy
Baseline This work Baseline This work

Inner Product Tight m · OPT OPT+ c
Cosine Not tight Tight NA OPT(θ − ε) + c

2. Stopping condition optimization: We reconsider the stopping condition so that
it takes into account (a) the specifics of the cos function and (b) the unit vector
constraint. Moreover, since the stopping condition is tested frequently during the
gathering phase, it has to be evaluated very efficiently. Notice that optimizing the
stopping condition is independent of the traversal strategy or skewness assumptions
about the data.

Contributions and summary of results.
– We present a stopping condition for early termination of the index traversal (Sec-
tion 3). We show that the stopping condition is complete and tight, informally
meaning that (1) for any traversal strategy, the gathering phase will produce a
candidate set containing all the vectors θ-similar to the query, and (2) the gath-
ering terminates as soon as no more θ-similar vectors can be found (Theorem 3).
In contrast, the stopping condition of the (TA-inspired) baseline is complete but
not tight (Theorem 2). The proposed stopping condition takes into account that
all database vectors are normalized and reduces the problem to solving a special
quadratic program (Equation 2) that guarantees both completeness and tightness.

– We introduce a hull-based traversal strategy exploiting a common skewness prop-
erty (Section 4). In particular, this skewness property requires that each sorted list
Li is “mostly convex”, meaning that the shape of Li is approximately the lower
convex hull constructed from the set of points of Li. This technique is quite general,
as it can be extended to the class of decomposable functions which have the form
F (s) = f1(s[1])+ . . .+ fd(s[d]) where each fi is non-decreasing.4 Consequently,
we provide the following optimality guarantee for inner product threshold queries:
The number of accesses executed by the gathering phase (i.e.,

∑d
i=1 bi) is at most

OPT+ c (Theorem 6 and Corollary 1), where OPT is the number of accesses by
the optimal strategy and c is the maximal number of points from eachLi in between
two vertices of the lower convex hulls. Experiments show that in the real-world
cases of image search, document search, and mass spectrometry, c is a very small
fraction of OPT (only 1.3%, 7.9%, and 0.4% in the 3 datasets respectively).

– Despite the fact that cosine and its tight stopping condition are not decomposable,
we show that the hull-based strategy can be adapted to cosine threshold queries by
approximating the tight stopping condition with a carefully chosen decomposable
function. We show that when the approximation is at most ε-away from the actual
value, the access cost is at most OPT(θ − ε) + c (Theorem 7), where OPT(θ − ε)
is the optimal access cost on the same query q with the threshold lowered by ε and
c is a constant similar to the above decomposable cases. Experiments show that the

4 The inner product threshold problem is the special case where fi(s[i]) = qi · s[i].
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adjustment ε is very small in practice, e.g., 0.1. We summarize these new results in
Table 1.

This work is the extended version of [56]. In addition to the contributions above
and already presented in [56], this work makes the following additional contributions:

– We provide complete proofs of several main theorems (Theorem 2 on why the
baseline stopping condition is not tight, Theorem 5 and 6 on the (near-)optimality
of the proposed traversal strategies).

– We provide the details of the algorithm (Algorithm 2) for incrementally computing
the tight stopping condition and analyze its running time. While a direct testing
of the tight and complete stopping condition takes at least Ω(d) time each round,
the incremental maintenance algorithm leverages a balanced binary search tree to
reduce the cost per round to O(log(d)) where d is the vector dimension.

– We review the partial verification techniques for checking θ-similarity in Section 5.
Partial verification avoids a full scan of each candidate vector by inspecting only
the dominating dimensions of the vector. As a novel contribution, we show that
partial verification has near-constant performance guarantee under a skewness
assumption. We also verify this assumption in a practical setting. This result makes
the hull-based strategies more attractive as optimizing the gathering phase becomes
the dominating factor.

– Finally, in Section 6, we discuss generalization of the proposed stopping condition
and traversal strategies to top-k cosine queries. We show how the proposed stopping
condition for threshold queries can be applied to top-k queries. We also showed
that the hull-based traversal strategies are applicable for inner product queries but
need a number of adjustments for cosine queries.

The paper is organized as follows. We introduce the algorithmic framework and
basic definitions in Section 2. Section 3 and 4 discuss the technical developments on
optimizing the stopping conditions and traversal strategies. Section 5 and 6 provide
additional details related to verification phase optimization and the generalization of
the proposed techniques to top-k queries. Finally, we discuss related work in Section 7
and conclude in Section 8.

2 Algorithmic Framework

In this section, we present a Gathering-Verification algorithmic framework to facilitate
optimizations in different components of an algorithm with a TA-like structure. We
start with notations summarized in Table 2.

To support fast query processing, we build an index for the database vectors sim-
ilar to the original TA. The basic index structure consists of a set of 1-dimensional
sorted lists (a.k.a inverted lists in web search [14]) where each list corresponds to a
vector dimension and contains vectors having non-zero values on that dimension, as
mentioned earlier in Section 1. Formally, for each dimension i, Li is a list of pairs
{(ref(s), s[i]) | s ∈ D ∧ s[i] > 0} where ref(s) is a reference to the vector s and s[i]
is its value on the i-th dimension. In the interest of brevity, we will often write (s, s[i])
instead of (ref(s), s[i]). As an example in Figure 1, the list L1 is built for the first
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Table 2 Notation

D the vector database ‖s‖ the L2 norm of s
N the number of vectors in D θ the similarity threshold
d the number of dimensions cos(p,q) the cosine of vectors p and q

s (bold font) a data vector Li the inverted list of the i-th dimension
q (bold font) a query vector b = (b1, . . . , bd) a position vector
s[i] or si the i-th dimensional value of s Li[bi] the bi-th value of Li

|s| the L1 norm of s L[b] the vector (L1[b1], . . . , Ld[bd])

dimension and it includes 4 entries: (s1, 0.8), (s5, 0.7), (s3, 0.3), (s4, 0.2) because s1,
s5, s3 and s4 have non-zero values on the first dimension. We denote by Li[j] for j ≥ 1
the j-th pair in the descending order of Li sorted by the values of s[i]. For clarity of
presentation, we assume a special entry Li[0] = (null, 1.0) which corresponds to a
position outside of the inverted list and does not refer to any vector in the database.
When the context is clear, we use Li[j] to denote only the value part stored in the entry.

Next, we show the Gathering-Verification framework (Algorithm 1) that operates
on the index structure. The framework includes two phases: the gathering phase and
the verification phase.

Algorithm 1: Gathering-Verification Framework
input : (D, {Li}1≤i≤d, q, θ)
output : R the set of θ-similar vectors
/* Gathering phase */

1 Initialize b = (b1, . . . , bd) = (0, . . . , 0);
// ϕ(·) is the stopping condition

2 while ϕ(b) = false do
// T (·) is the traversal strategy to determine which list to access

next
3 i← T (b);
4 bi ← bi + 1;
5 Put the vector s in Li[bi] to the candidate pool C;
/* Verification phase */

6 R← {s|s ∈ C ∧ cos(q, s) ≥ θ};
7 returnR;

Gathering phase (line 1 to line 5). The goal of the gathering phase is to collect a
complete set of candidate vectors while minimizing the number of accesses to the
sorted lists. The algorithm maintains a position vector b = (b1, . . . , bd) where each bi
indicates the current position in the inverted list Li. Initially, the position vector b is
(0, . . . , 0). Then it traverses the lists according to a traversal strategy that determines
the list (say Li) to be accessed next (line 3). Then it advances the pointer bi by 1 (line
4) and adds the vector s referenced in the entry Li[bi] to a candidate pool C (line 5).
The traversal strategy is usually stateful, which means that its decision is made based
on information that has been observed up to position b and its past decisions. For
example, a strategy may decide that it will make the next 20 moves along dimension 6
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and thus it needs state in order to remember that it has already committed to 20 moves
on dimension 6.

The gathering phase terminates once a stopping condition is met. Intuitively, based
on the information that has been observed in the index, the stopping condition checks
if a complete set of candidates has already been found.

Next, we formally define stopping conditions and traversal strategies. As mentioned
above, the input of the stopping condition and the traversal strategy is the information
that has been observed up to position b, which is formally defined as follows.

Definition 3 Let b be a position vector on the inverted index {Li}1≤i≤d of a database
D. The partial observation at b, denoted as L(b), is a collection of lists {L̂i}1≤i≤d
where for every 1 ≤ i ≤ d, L̂i = [Li[1], . . . , Li[bi]].

Definition 4 Let L(b) be a partial observation and q be a query with similarity thresh-
old θ. A stopping condition is a boolean function ϕ(L(b),q, θ) and a traversal strat-
egy is a function T (L(b),q, θ) whose domain is [d]5. When clear from the context,
we denote them simply by ϕ(b) and T (b) respectively.

Verification phase (line 6). The verification phase examines each candidate vector s
seen in the gathering phase to verify whether cos(q, s) ≥ θ by accessing the database.
Various techniques [72,5,54] have been proposed to speed up this process. Essentially,
instead of accessing all the d dimensions of each s and q to compute exactly the cosine
similarity, these techniques decide θ-similarity by performing a partial scan of each
candidate vector. We review these techniques, which we refer to as partial verification,
in Section 5. Additionally, as a novel contribution, we show that in the presence of data
skewness, partial verification has a near-constant performance guarantee (Theorem 8)
for verifying each candidate.
Remark on optimizing the gathering phase. Due to these optimization techniques,
the number of sequential accesses performed during the gathering phase becomes the
dominating factor of the overall running time. The reason behind this is that the number
of sequential accesses is strictly greater than the number of candidates that need to
be verified so reducing the sequential access cost also results in better performance
of the verification phase. In practice, we observed that the sequential cost is indeed
dominating: for 1,000 queries on 1.2 billion vectors with similarity threshold 0.6, the
sequential gathering time is 16 seconds and the verification time is only 4.6 seconds.
Such observation justifies our goal of designing a traversal strategy with near-optimal
sequential access cost, as the dominant cost concerns the gathering stage.
Computation models. We consider optimizing the sequential access cost of algo-
rithms that falls into the Gathering-Verification framework. We assume that during
the Gathering phase, the algorithm can only sequentially access the inverted lists
{Li}1≤i≤d and the verification phase can randomly access the whole database D. The
stopping condition ϕ(·) and the traversal strategy T (·) are of the standard Random-
Access Machine (RAM) model ([67], Chapter 3). At a position vector b, these two
functions have access to (1) the entries of {Li}1≤i≤d up to b (i.e., entries that have

5 [d] is the set {1, . . . , d}
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been accessed) and (2) stateful data structures internal toϕ and T . In addition, we allow
the algorithms to preprocess the inverted lists {Li}1≤i≤d into a query-independent
auxiliary data structure which can be accessed by the traversal strategy T . We use the
standard big-O notation for measuring the time/space complexity of ϕ and T .

3 Stopping condition

In this section, we introduce a fine-tuned stopping condition that satisfies the tight and
complete requirements to early terminate the index traversal.

First, the stopping condition has to guarantee completeness (Definition 5), i.e. when
the stopping condition ϕ holds on a position b, the candidate set C must contain all
the true results. Note that since the input of ϕ is the partial observation at b, we must
guarantee that for all possible databasesD consistent with the partial observation L(b),
the candidate set C contains all vectors in D that are θ-similar to the query q. This is
equivalent to require that if a unit vector s is found below position b (i.e. s does not
appear above b), then s is NOT θ-similar to q. We formulate this as follows.

Definition 5 (Completeness) Given a query q with threshold θ, a position vector b
on index {Li}1≤i≤d is complete iff for every unit vector s, s < L[b] implies s · q < θ.
A stopping condition ϕ(·) is complete iff for every b, ϕ(b) = True implies that b is
complete.

The second requirement of the stopping condition is tightness. It is desirable that
the algorithm terminates immediately once the candidate set C contains a complete set
of candidates, such that no additional unnecessary access is made. This can reduce
not only the number of index accesses but also the candidate set size, which in turn
reduces the verification cost. Formally,

Definition 6 (Tightness) A stopping condition ϕ(·) is tight iff for every complete
position vector b, ϕ(b) = True.

3.1 The baseline stopping condition is not tight

It is desirable that a stopping condition is both complete and tight. However, as we will
show next, the baseline stopping condition ϕBL =

(
q · L[b] < θ

)
is complete but not

tight as it does not capture the unit vector constraint to terminate as soon as no unseen
unit vector can satisfy s · q ≥ θ.

Theorem 2 The baseline stopping condition

ϕBL(b) =

(
d∑
i=1

qi · Li[bi] < θ

)
(1)

is complete but not tight.
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Proof For every position vector b, ϕBL(b) = True implies q ·L[b] < θ. So for every
s < L[b], we also have q · s < θ so ϕBL is complete.

To show the non-tightness, it is sufficient to show that for some position vector b
where b is complete, ϕBL(b) is False so the traversal continues.

We illustrate a counterexample in Figure 2 with two dimensions (i.e., d = 2).
Given a query q, all possible θ-similar vectors form a hyper-surface defining the set
ans = {s| ‖s‖ = 1,

∑d
i=1 qi · si ≥ θ}. In Figure 2, ‖s‖ = 1 is the circular surface and∑d

i=1 qi · si ≥ θ is a half-plane so the set of points ans is the arc ÂB.

෍

𝑖=1

𝑑

𝒒[𝑖] ∗ 𝒔[𝑖] = 𝜃

s[1]

s[2]

A

B C

D

O

Fig. 2 A 2-d example of ϕBL’s non-tightness

By definition, a position vector b is complete if the set {s|s < L[b]} contains no
point in ans. A position vector b satisfies ϕBL iff the point L[b] is above the hyper-
plane

∑d
i=1 qi · si = θ. It is clear from Figure 2 that if the point L[b] locates at the

region BCD, then {s|s < L[b]} contains no point in ÂB and is above the half-plane∑d
i=1 qi · si = θ. There exists a database of 2-d vectors such that L[b] resides in the

BCD region for some position b, so the stopping condition ϕBL is not tight. ut

Example. The example in Fig. 1 also illustrates why the baseline condition ϕBL is not
tight. Assume that we use the baseline lockstep traversal strategy. The condition ϕBL

is satisfied at b = 3 (i.e., b1 = b3 = b4 = 3) where q · L[b] = 0.43 < θ (recall that
θ = 0.8). At b = 2, since q · L[b] = 0.7 ∗ 0.8 + 0.5 ∗ 0.3 + 0.4 ∗ 0.5 = 0.91 > θ,
ϕBL is not satisfied. However, since L[b]2 = 0.72 + 0.52 + 0.42 = 0.9 < 1, we can
be sure that all unit vectors have been scanned. Thus, the traversal can stop at b = 2
instead of 3 confirming that ϕBL is not tight.
Remark. The baseline stopping condition ϕBL is not tight because it does not take into
account that all vectors in the database are unit vectors. In fact, one can show that ϕBL

is tight and complete for inner product queries where the unit vector assumption is
lifted. In addition, since ϕBL is not tight, any traversal strategy that works with ϕBL has
no optimality guarantee in general since there can be a gap of arbitrary size between
the stopping position by ϕBL and the one that is tight (i.e. there can be arbitrarily many
points in the region BCD).

Next, we present a new stopping condition that is both complete and tight. To
guarantee tightness, one can check at every snapshot during the traversal whether the
current position vector b is complete and stop once the condition is true. However,
directly testing the completeness is impractical since it is equivalent to testing whether
there exists a real vector s = (s1, . . . , sd) that satisfies the following following set of
quadratic constraints:
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(a)

d∑
i=1

si · qi ≥ θ, (b) si ≤ Li[bi], ∀ i ∈ [d], and (c)

d∑
i=1

s2i = 1. (2)

We denote byC(b) (or simplyC) the set of Rd points defined by the above constraints.
The set C(b) is infeasible (i.e. there is no satisfying s) if and only if b is complete,
but directly testing the feasibility of C(b) requires an expensive call to a quadratic
programming solver. Depending on the implementation, the running time can be
exponential or of high-degree polynomial [13]. We address this challenge by deriving
an equivalently strong stopping condition that guarantees tightness and is efficiently
testable:

Theorem 3 Let τ be the solution of the equation
∑d
i=1 min{qi ·τ, Li[bi]}2 = 1 where

‖L[b]‖ > 1 and

MS(L[b]) =
d∑
i=1

min{qi · τ, Li[bi]} · qi (3)

called the max-similarity. The stopping condition ϕTC(b) = (MS(L[b]) < θ) is tight
and complete.

Remark. The solution τ to the equation
∑d
i=1 min{qi ·τ, Li[bi]}2 = 1 is unique when

‖L[b]‖ > 1. This is because the LHS is a strictly increasing function with respect to τ
and the range of the LSH is (−∞, ‖L[b]‖2]. When ‖L[b]‖ = 1, any τ that satisfies
qi ·τ ≥ Li[bi] for all iwill satisfy the equation, resulting inmin{qi ·τ, Li[bi]} = Li[bi]
for all i and an unique value ofMS(L[b]). If ‖L[b]‖ < 1, then ‖s‖ < 1 thus no unit
vector s exists so the equation has no solution. However, ‖L[b]‖ ≤ 1 also implies that
all unit vectors have been added to the candidate set C thus the traversal would have
stopped. Thus, it is safe to assume that ‖L[b]‖ > 1 and the solution τ is unique.

Proof The tight and complete stopping condition is obtained by applying the Karush-
Kuhn-Tucker (KKT) conditions [47] for solving nonlinear programs. We first formulate
the set of constraints in (2) as an optimization problem over s:

maximize
d∑
i=1

si · qi subject to
d∑
i=1

s2i = 1 and si ≤ Li[bi], ∀i ∈ [d]

(4)
So checking whether C is feasible is equivalent to verifying whether the maximal∑d
i=1 si · qi is at least θ. So it is sufficient to show that

∑d
i=1 si · qi is maximized when

si = min{qi · τ, Li[bi]} as specified above.
The KKT conditions of the above maximization problem specify a set of necessary

conditions that the optimal s needs to satisfy. More precisely, let

L(s, µ, λ) =

d∑
i=1

siqi −
d∑
i=1

µi(Li[bi]− si)− λ

(
d∑
i=1

s2i − 1

)

be the Lagrangian of (4) where λ ∈ R and µ ∈ Rd are the Lagrange multipliers. Then,
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Lemma 1 (derived fromKKT) The optimal s in (4) satisfies the following conditions:

∇sL(s, µ, λ) = 0 (Stationarity)
µi ≥ 0, ∀ i ∈ [d] (Dual feasibility)
µi(Li[bi]− si) = 0, ∀ i ∈ [d] (Complementary slackness)

in addition to the constraints in (4) (called the Primal feasibility conditions).

By the Complementary slackness condition, for every i, if µi 6= 0 then si = Li[bi]. If
µi = 0, then from the Stationarity condition, we know that for every i, qi+µi−2λ·si =
0 so si = qi/2λ. Thus, the value of si is either Li[bi] or qi/2λ.

If Li[bi] < qi/2λ then since si ≤ Li[bi], the only possible case is si = Li[bi]. Oth-
erwise, the objective function

∑d
i=1 si · qi is maximized when each si is proportional

to qi, so si = qi/2λ. Combining these two cases, we have si = min{qi/2λ, Li[bi]}.
Thus, for the λ that satisfies

∑d
i=1 min{qi/2λ, Li[bi]}2 = 1, the objective function∑d

i=1 si · qi is maximized when si = min{qi/2λ, Li[bi]} for every i. The theorem is
obtained by letting τ = 1/2λ. ut

Remark of ϕTC. The tight stopping condition ϕTC computes the vector s below L(b)
with the maximum cosine similarityMS(L[b]) with the query q. At the beginning of
the gathering phase, bi = 0 for every i soMS(L[b]) = 1 as s is not constrained. The
cosine score is maximized when s = q where τ = 1. During the gathering phase, as
bi increases, the upper bound Li[bi] of each si decreases. When Li[bi] < qi for some
i, si can no longer be qi. Instead, si equals Li[bi], the rest of s increases proportional
to q and τ increases. During the traversal, the value of τ monotonically increases and
the score s(L[b]) monotonically decreases. This is because the space for s becomes
more constrained by L(b) as the pointers move deeper in the inverted lists.

3.2 Efficient computation of ϕTC with incremental maintenance

Testing the tight and complete condition ϕTC requires solving τ in Theorem (3), for
which a direct application of the bisection method takes O(d) time. We show a novel
efficient algorithm based on incremental maintenance which takes only O(log d) time
for each test of ϕTC.

Theorem 4 The stopping conditionϕTC(b) can be incrementally computed inO(log d)
time.

Proof According to the proof of Theorem 3, for an optimal solution s of (4) we know
that

si =

Li[bi], τ ≥ Li[bi]

qi
;

qi · τ, otherwise.
(5)

Wlog, suppose L1[b1]
q1
≤ · · · ≤ Ld[bd]

qd
. Since

∑d
i=1 s

2
i is monotonic increasing with

respect to τ , to solve the τ such that
∑d
i=1 s

2
i = 1, we simply need to find the range

[Lk[bk]
qk

, Lk+1[bk+1]
qk+1

] for the largest k such that
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–
∑d
i=1 s

2
i ≤ 1 when τ = Lk[bk]

qk
and

–
∑d
i=1 s

2
i > 1 when τ = Lk+1[bk+1]

qk+1
.

Then the solution τ is in the range [Lk[bk]
qk

, Lk+1[bk+1]
qk+1

]. For such k, we have si = Li[bi]

for every 1 ≤ i ≤ k and si = qi · τ for k < i ≤ d. Let eval(k, τ) be the function

eval(k, τ) =
d∑
i=1

s2i =

k∑
i=1

Li[bi]
2 +

d∑
i=k+1

q2i · τ2. (6)

Then for the largest k such that eval(k, Lk[bk]/qk) ≤ 1, τ can be computed by solving

k∑
i=1

Li[bi]
2 +

d∑
i=k+1

q2i · τ2 = 1⇒ τ =

(
1−

∑k
i=1 Li[bi]

2

1−
∑k
i=1 q

2
i

)1/2

. (7)

Then, MS(L[b]) can be computed as follows:

MS(L[b]) =
k∑
i=1

Li[bi] · qi + (1−
k∑
i=1

q2i ) · τ . (8)

The equations above provide a simple algorithm for computing MS(L[b]): at each
positionb, sort theLi[bi]’s byLi[bi]/qi, find the largest k (such that eval(k, Lk[bk]/qk) ≤
1), then compute τ and MS(L[b]) using Equation 7 and 8. However, such a simple
algorithm requires Ω(d log d) time for sorting, which is still too expensive as the stop-
ping condition is checked in every step. Fortunately, we show thatMS(L[b]) can be
incrementally maintained in O(log d) time as we describe below.

We use a binary search tree (BST) to maintain an order of the Li’s sorted by
Li[bi]/qi. The BST supports the following two operations:

– update(i): update Li[bi]→ Li[bi + 1]
– compute(): return the value of MS(L[b])

The compute() operation essentially performs the binary search of finding the largest
k mentioned above. To ensure O(log d) running time, we observe that from Equation
(7) and (8), for any k, MS(L[b]) can be computed if

∑k
i=1 Li[bi] · qi,

∑k
i=1 Li[bi]

2,
and

∑k
i=1 q

2
i are available. Let T be the BST and each node in T is denoted as an

integer n, meaning that the node represents the list Ln. We denote by subtree(n) the
subtree of T rooted at node n, and keep track of the following values at each node n:

– n.key: Ln[bn]/qn,
– n.LQ:

∑
i∈subtree(n) Li[bi] · qi,

– n.Q2:
∑
i∈subtree(n) q

2
i and

– n.L2:
∑
i∈subtree(n) Li[bi]

2 .

Thus, whenever there is a move on the list Li, the key of the node i (i.e., Li[bi]/qi)
will be updated. Then we can remove the node i from the tree and insert it again using
the new key, which takes O(log d) time (with all the associated values being updated
as well).
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To compute MS(L[b]), we need to traverse a path in the BST to find the largest k
while keeping track of the LQ, Q2, and L2 values from all nodes with less Li[bi]/qi
value than the current node n. Such nodes can be either in: (1) the left subtree of n or (2)
the left subtrees of all nodes n′ on the path to node n where Li[bn′ ]/qn′ < Li[bn]/qn.
(In other words, those are nodes where the traversal path makes a “right” turn.) We
illustrate an example in Figure 3.

T1

T2 T3

T4

n1

n2

n3

T1

T2 T3

T4

n1

n2

n3

T1

T2 T3

T4

n1

n2

n3

Fig. 3 Illustration of the BST traversal algorithm for computing MS(·) incrementally. The tree traversal
starts at the node n1 and follows the path n1 → n2 → n3. At n1, the scoreMS(L[b]) is computed using
values stored in the subtree T1. At n2, the values used are from T1 and the subtree rooted at n3 (T2 and T3).
At n3, the values are from T1 and T2.

Algorithm 2: BST traversal algorithm for computing MS(·)
1 (LQ_parent,Q2_parent, L2_parent)← (0, 0, 0);
2 MS(L[b])← 1 ; // MS(L[b]) = 1 if ∀i τ ≤ Li[bi]/qi
3 n← root(T );
4 while n 6= null do
5 LQ← LQ_parent+ n.left.LQ+ Ln[bn] · qn;
6 Q2← Q2_parent+ n.left.Q2+ q2n ;
7 L2← L2_parent+ n.left.L2+ Ln[bn]2;
8 f(n)← LQ+ (1− Q2) · n.key2; // Computing the RHS of Equation (6)
9 if f(n) ≤ 1 then
10 τ ← ((1− L2)/(1− Q2))1/2;
11 MS(L[b])← LQ+ (1− Q2) · τ ;
12 n← n.left ; // Left turn. No updates.

13 else
14 LQ_parent← LQ_parent+ n.left.LQ+ Ln[bn] · qn;
15 Q2_parent← Q2_parent+ n.left.Q2+ q2n ;
16 L2_parent← L2_parent+ n.left.L2+ Ln[bn]2;
17 n← n.right ; // Right turn. The accumulative values are updated.

18 return MS(L[b]);

Algorithm 2 shows the details of the traversal algorithm for computing MS(L[b]).
For each node n, we denote by n.left (n.right) the left (right) child of n. We used the
variables LQ_parent, Q2_parent, and L2_parent to accumulate the values when the
right turns are made. The number of traversal steps is no more than the depth of the
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BST and each step uses constant time. Thus, the overall cost of a single test of the
stopping condition is O(log d). ut

4 Near-Optimal Traversal Strategy

Given the inverted lists index and a query, there can be many stopping positions that
are both complete and tight. To optimize the performance, we need a traversal strategy
that reaches one such position as fast as possible. Specifically, the goal is to design a
traversal strategy T that minimizes |b| =

∑d
i=1 bi where b is the first position vector

satisfying the tight and complete stopping condition if T is followed. Minimizing |b|
also reduces the number of collected candidates, which in turn reduces the cost of the
verification phase. We call |b| the access cost of the strategy T . Formally,

Definition 7 (Access Cost) Given a traversal strategy T , we denote by {bi}i≥0 the
sequence of position vectors obtained by following T . The access cost of T , denoted by
cost(T ), is the minimal k such that ϕTC(bk) = True. Note that cost(T ) also equals
|bk|.

Definition 8 (OptimalAccessCost)Given a databaseDwith inverted lists {Li}1≤i≤d,
a query vector q and a threshold θ, the optimal access cost OPT(D,q, θ) is the mini-
mum

∑d
i=1 bi for position vectors b such that ϕTC(b) = True. When it is clear from

the context, we simply denote OPT(D,q, θ) as OPT(θ) or OPT.

At a position b, a traversal strategy makes its decision locally based on what has
been observed in the inverted lists up to that point, so the capability of making globally
optimal decisions is limited. As a result, traversal strategies are often designed as
simple heuristics, such as the lockstep strategy in the baseline approach. The lockstep
strategy has a d · OPT near-optimal bound which is loose in the high-dimensionality
setting.

In this section, we present a traversal strategy for cosine threshold queries with
tighter near-optimal bound by taking into account that the index values are skewed
in many realistic scenarios. We approach the (near-)optimal traversal strategy in two
steps.

First, we consider the simplified case with the unit-vector constraint ignored so
that the problem is reduced to inner product queries. We propose a general traversal
strategy that relies on convex hulls pre-computed from the inverted lists during indexing.
During the gathering phase, these convex hulls are accessed as auxiliary data during
the traversal to provide information on the increase/decrease rate towards the stopping
condition. The hull-based traversal strategy not only makes fast decisions (in O(log d)
time) but is near-optimal (Corollary 1) under a reasonable assumption. In particular,
we show that if the distance between any two consecutive convex hull vertices of the
inverted lists is bounded by a constant c, the access cost of the strategy is at most
OPT+ c. Experiments on real data show that this constant is small in practice.

The hull-based traversal strategy is quite general, as it applies to a large class of
functions beyond inner product called the decomposable functions, which have the form
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i=1 fi(si) where each fi is a non-decreasing real function of a single dimension si.

Obviously, for a fixed query q, the inner product q · s is a special case of decomposable
functions, where each fi(si) = qi · si. We show that the near-optimality result for
inner product queries can be generalized to any decomposable function (Theorem 6).

Next, in Section 4.4, we consider the cosine queries by taking the normalization
constraint into account. Although the function MS(·) used in the tight stopping condi-
tion ϕTC is not decomposable so the same technique cannot be directly applied, we
show that the hull-based strategy can be adapted by approximatingMS(·) with a de-
composable function. In addition, we show that with a properly chosen approximation,
the hull-based strategy is near-optimal with a small adjustment to the input threshold
θ, meaning that the access cost is bounded by OPT(θ − ε) + c for a small ε (Theorem
7). Under the same experimental setting, we verify that ε is indeed small in practice.

4.1 Decomposable Functions

We start with defining the decomposable functions for which the hull-based traversal
strategies can be applied:

Definition 9 (Decomposable Function) A decomposable function F (s) is a real d-
dimensional function where F (s) =

∑d
i=1 fi(si) and each fi is a non-decreasing real

function.
Given a decomposable function F , the corresponding stopping condition is called

a decomposable condition, which we define next.
Definition 10 (DecomposableCondition)Adecomposable conditionϕF is a boolean
function ϕF (b) =

(
F (L[b]) < θ

)
where F is a decomposable function and θ is a

fixed threshold.
When the unit vector constraint is lifted, the decomposable condition is tight and

complete for any scoring function F and threshold θ. The condition is tight because an
unseen vector s can now be arbitrarily close to L[b] so the traversal has to continue as
long as F (L[b]) ≥ θ. As a result, the goal of designing a traversal strategy for F is to
have the access cost as close as possible to OPT when the stopping condition is ϕF .

4.2 The max-reduction traversal strategy

To illustrate the high-level idea of the hull-based approach, we start with a simple
greedy traversal strategy called the Max-Reduction traversal strategy TMR(·). The
strategy works as follows: at each snapshot, move the pointer bi on the inverted list Li
that results in the maximal reduction on the score F (L[b]). Formally, we define

TMR(b) = argmax
1≤i≤d

(F (L[b])− F (L[b+ 1i])) = argmax
1≤i≤d

(fi(Li[bi])− fi(Li[bi + 1]))

where 1i is the vector with 1 at dimension i and 0’s else where. Such a strategy is
reasonable since one would like F (L[b]) to drop as fast as possible, so that once it is
below θ, the stopping condition ϕF will be triggered and terminate the traversal.
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Note that there are instances where the max-reduction strategy can be far from
optimal. The strategy suffers from the drawback of making locally optimal but globally
suboptimal decisions. The pointer bi to an inverted list Li might never be moved if
choosing the current bi only results in a small decrease in the score F (L[b]), but there
is a much larger decrease several steps ahead.

Is it possible that it is optimal under some assumption? The answer is positive: if
for every list Li, the values of fi(Li[bi]) are decreasing at decelerating rate, then we
can prove that its access cost is optimal. We state this ideal assumption next.

Assumption 1 (Ideal Convexity) For every inverted list Li, let∆i[j] = fi(Li[j])−
fi(Li[j + 1]) for 0 ≤ j < |Li|.6 The list Li is ideally convex if the sequence ∆i is
non-increasing, i.e., ∆i[j + 1] ≤ ∆i[j] for every j. Equivalently, the piecewise linear
function passing through the points {(j, fi(Li[j]))}0≤j≤|Li| is convex for each i. A
database D is ideally convex if every Li is ideally convex.

An example of an inverted list satisfying the above assumption is shown in Figure
4(a). The max-reduction strategy TMR is optimal under the ideal convexity assumption:

Theorem 5 (Ideal Optimality) Given a decomposable function F , for every ideally
convex database D and every threshold θ, the access cost of TMR is exactly OPT.

We prove Theorem 5 with a simple greedy argument (detailed next): each move
of TMR always results in the globally maximal reduction in the scoring function as
guaranteed by the convexity condition.

Proof Let {bt}1≤t≤k be the sequence of position vectors produced by the strategy
TMR.

Since each∆i is non-increasing and the strategy TMR chooses the dimension i with
the maximal∆i[bi], then at each step t, the multiset {∆i[j]|1 ≤ i ≤ d, 0 ≤ j ≤ bt[i]}
contains the first t largest values of all the ∆i[j]’s from the multiset {∆i[j]|1 ≤ i ≤
d, 0 ≤ j < |Li|}. Since the score F (L[bt]) equals

d∑
i=1

fi(Li[0])−
d∑
i=1

bt[i]∑
j=1

∆i[j] ,

it follows that for each bt of TMR, the score F (L[bt]) is the lowest score possible for
any position vector reachable in t steps. Thus, if the optimal access cost OPT is t with
an optimal stopping position bOPT, then bt, the t-th position of TMR, satisfies that
F (L[bt]) ≤ F (L[bOPT]) < θ. So TMR is optimal. ut

4.3 The hull-based traversal strategy

Theorem 5 provides a strong performance guarantee but the ideal convexity assumption
is usually not true on real datasets. As a result, the TMR strategy has no performance
guarantee in general.

6 Recall that Li[0] = 1.
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Fig. 4 Convexity and near-convexity
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Fig. 5 The skewed inverted lists in mass spectrometry
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Fig. 6 The inverted lists of the first 4 dimensions of a document dataset. The dataset [74] contains 515k
hotel reviews from the booking.com website . We convert each hotel review to a 300d vector by applying
the doc2vec [25] model to transform each hotel review to a vector representation.
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Fig. 7 The inverted lists of the first 4 dimensions of an image dataset. The dataset [50] contains 13,000
images of human faces collected from the web. We use the ResNet-18 model [40] to convert each image to
a 512d vector.

In most practical scenarios that we have seen, we can bring the traversal strategy
TMR to practicality by considering a relaxed version of Assumption 1. Informally,
instead of assuming that each list fi(Li) forms a convex piecewise linear function, we
assume that fi(Li) is “mostly” convex, meaning that if we compute the lower convex
hull [22] of fi(Li), the gap between any two consecutive vertices on the convex hull
is small.7 Intuitively, the relaxed assumption implies that the values at each list are
decreasing at “approximately” decelerating speed. It allows list segments that do not
follow the overall deceleration trend, as long as their lengths are bounded by a constant.
We verified this property in the mass spectrometry dataset as illustrated in Figure 5, a
document dataset, and an image dataset (Figure 6 and 7).

7 We denote by fi(Li) the list [fi(Li[0]), fi(Li[1]), . . . ] for every Li.
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Assumption 2 (Near-Convexity) For every inverted listLi, letHi be the lower convex
hull of the set of 2-D points {(j, fi(Li[j]))}0≤j≤|Li| represented by a set of indices
Hi = {j1, . . . , jn} where for each 1 ≤ k ≤ n, (jk, fi(Li[jk])) is a vertex of the convex
hull. The list Li is near-convex if for every k, jk+1 − jk is upper-bounded by some
constant c. A database D is near-convex if every inverted list Li is near-convex with
the same constant c, which we refer to as the convexity constant.

Example 1 Intuitively, the near-convexity assumption captures the case where each
fi(Li) is decreasing with approximately decelerating speed, so the number of points
between two convex hull vertices should be small. For example, when fi is a linear
function, the list Li shown in Figure 4(b) is near-convex with convexity constant 2
since there is at most 1 point between each pair of consecutive vertices of the convex
hull (dotted line). In the ideal case shown in Figure 4(a), the constant is 1 when the
decrease between successive values is strictly decelerating.

Imitating the max-reduction strategy, for every pair of consecutive indices jk, jk+1

inHi and for every index j ∈ [jk, jk+1), let ∆̃i[j] =
fi(Li[jk])− fi(Li[jk+1])

jk+1 − jk
. Since

the (jk, fi(Li[jk]))’s are vertices of a lower convex hull and each fi is non-decreasing,
each sequence ∆̃i is non-decreasing. Then the hull-based traversal strategy is simply
defined as

THL(b) = argmax
1≤i≤d

(∆̃i[bi]). (9)

Remark on data structures. In a practical implementation, to answer queries with
scoring function F using the hull-based strategy, the lower convex hulls need to be
ready before the traversal starts. If F is a general function unknown a priori, the convex
hulls need to be computed online which is not practical. Fortunately, when F is the
inner product F (s) = q · s parameterized by the query q, each convex hull Hi is
exactly the convex hull for the points {(j, Li[j])}0≤i≤|Li| from Li. This is because

the slope from any two points (j, fi(Li[j])) and (k, fi(Li[k])) is
qiLi[j]− qiLi[k]

j − k
,

which is exactly the slope from (j, Li[j]) and (k, Li[k]) multiplied by qi. So by using
the standard convex hull algorithm [34], Hi can be pre-computed in O(|Li|) time.
Then the set of the convex hull vertices Hi can be stored as inverted lists and accessed
for computing the ∆̃i’s during query processing. In the ideal case, Hi can be as large
as |Li| but is much smaller in practice.

Moreover, during the traversal using the strategy THL, choosing the maximum
∆̃i[bi] at each step can be done in O(log d) time using a max heap. This satisfies the
requirement that the traversal strategy is efficiently computable.
Near-optimality results. We show that the hull-based strategy THL is near-optimal
under the near-convexity assumption.

Theorem 6 Given a decomposable function F , for every near-convex databaseD and
every threshold θ, the access cost of THL is strictly less than OPT+ c where c is the
convexity constant.
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When the assumption holds with a small convexity constant, this near-optimality result
provides a much tighter bound compared to the d · OPT bound in the TA-inspired
baseline. This is achieved under data assumption and by keeping the convex hulls
as auxiliary data structure, so it does not contradict the lower bound results on the
approximation ratio [30].

Proof Let B = {bi}i≥0 be the sequence of position vectors generated by THL. We call
a position vector b a boundary position if every bi is the index of a vertex of the convex
hull Hi. Namely, bi ∈ Hi for every i ∈ [d]. Notice that if we break ties consistently
during the traversal of THL, then for any position b′′ between any pair of consecutive
boundary positions b and b′, THL(b′′) will always be the same as THL(b). We call the
subsequence positions {bi}l≤i<r of B where bl = b and br = b′ a segment with
boundaries (bl,br). We show the following lemma.

Lemma 2 For every boundary position vectorb generated by THL, we haveF (L[b]) ≤
F (L[b∗]) for every position vector b∗ where |b∗| = |b|.

Intuitively, the above lemma says that if the traversal of THL reaches a boundary
position b, then the score F (L[b]) is the minimal possible score obtained by any
traversal sequence of at most |b| steps.

Lemma 2 is sufficient for Theorem 6 because of the following. Suppose bstop is the
stopping position in B, which means that bstop is the first position in B that satisfies ϕF
and the access cost is |bstop|. Let {bi}l≤i<r be the segment that contains bstop. Given
Lemma 2, Theorem 6 holds trivially if bstop = bl. It remains to consider the case
bstop 6= bl. Since the traversal does not stop at bl, we have F (L[bl]) ≥ θ. By Lemma
2, bl is the position with minimal F (L[·]) obtained in |bl| steps so |bl| ≤ OPT. Since
|bstop| − |bl| < |br| − |bl| ≤ c, we have that |bstop| < OPT+ c. We illustrate this in
Figure 8.

...L1 L2 L3 Ld

bl

br

bOPT

Fig. 8 (bl, br): the two boundary positions surrounding the stopping position bstop of THL; bOPT: the
optimal stopping position; It is guaranteed that (1) |bstop|− |bl| < |br|− |bl| ≤ c and (2) |bl| < |bOPT|.

Now, it remains to prove Lemma 2. We do so by generalizing the greedy argument
in the proof of Theorem 5.

We construct a new collection of inverted lists {L̃i}1≤i≤d from the original lists
as follows. For every i and every pair of consecutive indices jk, jk+1 of Hi, we assign

L̃i[j] = fi(Li[jk])−(j − jk) · ∆̃i[j] for every j ∈ [jk, jk+1].

Intuitively, we construct each L̃i by projecting the set of 2D points {(i, fi(Li[j]))}j∈[jk,jk+1]

onto the line passing through the two boundary points with index jk and jk+1, which
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is essentially projecting the set of points onto the piecewise linear function defined by
the convex hull vertices in Hi (See Figure 4(c) for an illustration). The new {L̃i}1≤i≤d
satisfies the following properties.
(i) By the construction of each convex hull Hi, we have L̃i[j] ≤ fi(Li[j]) for every i

and j.
(ii) For every boundary position b, we have L̃[b] = F (L[b]) since for every index j

on a convex hull Hi, L̃[j] = fi(Li[j]).
(iii) The collection {L̃i}1≤i≤d is ideally convex8. In addition, the strategy THL pro-

duces exactly the same sequence reduced by the max-reduction strategy TMR when
{L̃i}1≤i≤d is given as the input. By the same analysis for Theorem 5, for every
position vector b generated by THL, L̃[b] is minimal among all position vectors
reached within |b| steps.

Combining (ii) and (iii), for every boundary position vector b generated by THL and
every b∗ where |b∗| = b, we have F (L[b]) = L̃[b] ≤ L̃[b∗]. Finally, by (i) and since
F is non-decreasing, we have L̃[b∗] ≤ F (L[b∗]) so F (L[b]) ≤ F (L[b∗]) for every
b∗. This completes the proof of Theorem 6. ut

Since the baseline stopping condition ϕBL is tight and complete for inner product
queries, one immediate implication of Theorem 6 is that

Corollary 1 (Informal) The hull-based strategy THL for inner product queries is near-
optimal under the near-convexity assumption.

Verifying the assumption. We demonstrate the practical impact of the near-optimality
result in real mass spectrometry datasets. The near-convexity assumption requires that
the gap between any two consecutive convex hull vertices has bounded size, which is
hard to achieve in general. According to the proof of Theorem 6, for a given query, the
difference from the optimal access cost is at most the size of the gap between the two
consecutive convex hull vertices containing the last move of the strategy (the bl and
br in Figure 8). The size of this gap can be much smaller than the global convexity
constant c, so the overall precision can be much better in practice. We verify this by
running a set of 1,000 real queries on the dataset9. The gap size is 163.04 in average,
which takes only 1.3% of the overall access cost of traversing the indices. This indicates
that the near-optimality guarantee holds in the mass spectrometry dataset.

We also observed that the near-convexity assumption holds for document and image
vectors, thus the proposed algorithms can potentially be applied to document/image
similarity search. In the review dataset mentioned above, we ran 100 randomly sampled
queries on a random subset of 10,000 reviews with threshold θ = 0.6 using the hull-
based strategy. The total number of accesses is 4,762,040 and the total sizes of the last
gap is 374,521 which means that the cost additional to the optimal access is no more
than 7.86% of the overall access cost. In the face image dataset, under the same setting,
we ran 100 random queries of faces in the whole dataset with the same threshold
θ = 0.6. The total access cost is 118,795,452, the total size of last gaps is 473,999,
so the additional access cost compared to OPT is no more than 0.40% of the overall
access cost.

8 where each fi of the decomposable function F is the identity function
9 https://proteomics2.ucsd.edu/ProteoSAFe/index.jsp
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4.4 The traversal strategy for cosine

Next, we consider traversal strategies which take into account the unit vector constraint
posed by the cosine function, which means that the tight and complete stopping
condition is ϕTC introduced in Section 3. However, since the scoring functionMS in
ϕTC is not decomposable, the hull-based technique cannot be directly applied. We
adapt the technique by approximating the original MS with a decomposable function
F̃ . Without changing the stopping condition ϕTC, the hull-based strategy can then be
applied with the convex hull indices constructed with the approximation F̃ . In the rest
of this section, we first generalize the result in Theorem 6 to scoring functions having
decomposable approximations and show how the hull-based traversal strategy can be
adapted. Next, we show a natural choice of the approximation for MS with practically
tight near-optimal bounds. Finally, we discuss data structures to support fast query
processing using the traversal strategy.

We start with some additional definitions.

Definition 11 A d-dimensional function F is decomposably approximable if there
exists a decomposable function F̃ , called the decomposable approximation of F , and
two non-negative constants ε1 and ε2 such that F (s) − F̃ (s) ∈ [−ε1, ε2] for every
vector s.

When applied to a decomposably approximable function F , the hull-based traversal
strategy THL is adapted by constructing the convex hull indices and the {∆̃i}1≤i≤d
using the approximation F̃ . The following can be obtained by generalizing Theorem 6:

Theorem 7 Given a function F approximable by a decomposable function F̃ with
constants (ε1, ε2), for every near-convex database D wrt F̃ and every threshold θ, the
access cost of THL is strictly less than OPT(θ − ε1 − ε2) + c where c is the convexity
constant.

Proof Denote by blast the last boundary position generated by THL that does not satisfy
the tight stopping condition for F (which is ϕTC when F is MS) so F (L[bl]) ≥ θ.
Note that blast is the bl in the proof of Lemma 2 when bl 6= bstop. It is sufficient to
show that for every vector b∗ where |b∗| = |blast|, F (L[b∗]) ≥ θ − ε1 − ε2 so no
traversal can stop within |blast| steps, implying that the final access cost is no more
than |blast|+ c which is bounded by OPT(θ − ε1 − ε2) + c.

According to Lemma 2, we know that for every such b∗, F̃ (L[b∗]) ≥ F̃ (L[blast]).
By definition of the approximation F̃ , we know that F (L[b∗]) ≥ F̃ (L[b∗])− ε1 and
F̃ (L[blast]) ≥ F (L[blast])− ε2. Combined together, for every b∗ where |b∗| = |blast|,
we have

F (L[b∗]) ≥ F̃ (L[b∗])−ε1 ≥ F̃ (L[blast])−ε1 ≥ F (L[blast])−ε1−ε2 ≥ θ−ε1−ε2.
This completes the proof of Theorem 7. ut

Choosing the decomposable approximation. ByTheorem 7, it is important to choose
an approximation F̃ of MS with small ε1 and ε2 for a tight near-optimality result. By
inspecting the formula (3) of MS, one reasonable choice of F̃ can be obtained by
replacing the term τ with a fixed constant τ̃ . Formally, let
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F̃ (L[b]) =

d∑
i=1

min{qi · τ̃ , Li[bi]} · qi (10)

be the decomposable approximation ofMS where each component is a non-decreasing
function fi(x) = min{qi · τ̃ , x} · qi for i ∈ [d].

Ideally, the approximation is tight if the constant τ̃ is close to the final value
of τ which is unknown in advance. We argue that when τ̃ is properly chosen, the
approximation parameter ε1 + ε2 is very small.

With the analysis detailed next, we obtain the following upper bound of ε by
upper-bounding ε1 and ε2:

ε ≤ max{0, τ̃ − 1/MS(L[blast])}+MS(L[blast])− F̃ (L[blast]).

Upper bounding ε1: A trivial upper bound of ε1 is τ̃ − 1 since τ is 1 when the
traversal starts and the gap F̃ (L[b]) − MS(L[b]) is maximized when b = 0. This
upper bound can be improved as follows. We notice that in the proof of Theorem 7,
given |b∗| = |blast|, we need to have F (L[b∗]) ≥ θ − ε1 − ε2 for every such b∗,
which is equivalent to requiring that this property holds for the b∗ that minimizes
F (L[b∗]) given |b∗| = |blast|. This b∗ satisfies that F (L[b∗]) ≤ F (L[blast]) and
F (L[blast]) is known when the query is executed. This upper bound of F (L[b∗])
implies a lower bound of τ at position b∗, which also implies the following lower
bound of MS(L[b∗])− F̃ (L[b∗]):

Lemma 3 Let b be an arbitrary position vector and let b∗ be the position vector such
that

b∗ = argmin
b′:|b|=|b′|

{MS(L[b′])}.

Then
(†) MS(L[b∗])− F̃ (L[b∗]) ≥ min{0, 1/MS(L[b])− τ̃}.

where F̃ is the decomposable function where each component is fi(x) = min{τ̃ ·
qi, x} · qi for constant τ̃ and every 1 ≤ i ≤ d.

Proof Let τ∗ be the value of τ at L[b∗]. We consider two cases separately: τ∗ ≥ τ̃
and τ∗ < τ̃ .

Case One: When τ∗ ≥ τ̃ , since each fi is non-decreasing wrt τ̃ , we have

fi(x) = min{τ̃ · qi, x} · qi ≤ min{τ∗ · qi, x} · qi

thusMS(L[b∗]) ≥ F̃ (L[b∗]).
Case Two: Suppose τ∗ < τ̃ . We show the following Lemma.

Lemma 4 For every position b and constant c, MS(L[b]) < c implies that the τ at
L[b] is at least 1/c.
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Recall the notations LQ =
∑
i:Li[bi]<τ ·qi Li[bi] · qi, Q2 =

∑
i:Li[bi]<τ ·qi q

2
i and

L2 =
∑
i:Li[bi]<τ ·qi Li[bi]

2. Then τ satisfies that

LQ+ (1− Q2) · τ < c (11)

and
L2+ (1− Q2) · τ2 = 1. (12)

By rewriting Equation (12), we have (1 − Q2) = (1 − L2)/τ2. Plug this into (11),
we have LQ+ (1− L2)/τ < c. Since Li[bi]≤τ · qi, we have LQ ≥ L2/τ so 1/τ < c
which means τ > 1/c. This completes the proof of Lemma 4.

We know that since b∗ minimizes MS(L[b′]) among all b′ with |b′| = |b|, we
have MS(L[b∗]) ≤ MS(L[b]). By Lemma 4, we have τ∗ ≥ 1/MS(L[b]).

Now considerMS(L[b∗])− F̃ (L[b∗]). Since τ∗ < τ̃ ,MS(L[b∗])− F̃ (L[b∗]) can
be written as the sum of the following 3 terms:

–
∑
i:Li[bi]/qi<τ∗

(Li[bi] · qi − Li[bi] · qi), which is always 0,
–
∑
i:τ∗≤Li[bi]/qi<τ̃

(q2i · τ∗ − Li[bi] · qi) and
–
∑
i:τ̃≤Li[bi]/qi

(q2i · τ∗ − q2i · τ̃).

In the second term, since eachLi[bi] is at most qi · τ̃ , so this term is greater than or equal
to
∑
i:τ∗≤Li[bi]/qi<τ̃

(q2i · τ∗ − q2i · τ̃). Adding them together, we haveMS(L[b∗])−
F̃ (L[b∗]) is lower bounded by ∑

i:τ∗≤Li[bi]/qi

q2i · (τ∗ − τ̃)

which is greater than or equal to τ∗−τ̃ . Since τ∗ ≥ 1/MS(L[b]), we haveMS(L[b∗])−
F̃ (L[b∗]) ≥ 1/MS(L[b])− τ̃ . Finally, combining case one and two together completes
the proof of Lemma 3.

Thus, when the query is given, ε1 is at most max{0, τ̃ − 1/MS(L[blast])}. ut

Upper bounding ε2: In general, there is no upper bound for τ since it can be as large
as Li[bi]/qi for some i. The gapMS(L[b])− F̃ (L[b]) can be close to 1. However, the
proof of Theorem 7 only requires ε2 to be at least the difference betweenMS and F̃
at position blast. So ε2 is upper-bounded by MS(L[blast]) − F̃ (L[blast]) for a given
query.

Summarizing the above analysis, the approximation factor ε is determined by the
following two factors:

1. how much the approximation F̃ is smaller than the scoring functionMS at blast,
the last boundary position that does not satisfy the stopping condition during the
traversal, and

2. how much F̃ is bigger than MS at the optimal position with exactly |blast| steps
that minimizes MS.
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Fig. 10 The construction of convex hull H̃i

This yields the following upper bound of ε:

ε ≤ max{0, τ̃ − 1/MS(L[blast])}+MS(L[blast])− F̃ (L[blast]). (13)

Verifying the near-optimality. The upper bound 13 provides a convenient way of
computing an upper bound of ε for each query at execution time. Next, we experi-
mentally verify that the upper bound of ε is small. We ran the same set of queries
as in Section 4.3 and show the distribution of ε’s upper bounds in Figure 9. We set
τ̃ = 1/θ for all queries so the first term of (13) becomes zero. Note that further tuning
the parameter τ̃ can yield better ε, but it is not done here for simplicity. Overall, the
fraction of queries with an upper bound <0.12 (the sum of the first 3 bars for all θ) is
82.5% and the fraction of queries with ε > 0.16 is 0.5%.

The convexity constant remains small similar to the case with inner product queries.
The average of the convexity constant c is 193.39, which is only 4.8% of the overall
access cost.

In addition to the above results, we have also conducted an experimental study
on comparing the TA-baseline and the hull-based strategy in their access cost and
the actual running time in real-world settings. We direct the interested readers to [76]
(Chapter 4.8).
Remark on data structures. Similar to the inner product case, it is necessary that
the convex hulls for THL can be efficiently obtained without a full computation when a
query comes in. For every i ∈ [d], we let H̃i be the convex hull for the i-th component
fi of F̃ and Hi be the convex hull constructed directly from the original inverted list
Li. Next, we show that each H̃i can be efficiently obtained from Hi during query time
so we only need to pre-compute the Hi’s.

We observe that whenLi[bi]≥qi ·τ̃ , fi(Li[bi]) equals a fixed value q2i ·τ̃ otherwise is
proportional toLi[bi]. As illustrated in Figure 10 (left), the list of values {fi(Li[j])}j≥0
is essentially obtained by replacing the Li[j]’s greater than qi · τ̃ with qi · τ̃ . To obtain
the new convex hull H̃i, we use the following Lemma:

Lemma 5 For every i ∈ [d], the convex hull H̃i is

– Hi, if qi · τ̃ ≥ Li[0], or
– {0}, if qi · τ̃ ≤ Li[|Li|], otherwise
– a subset of Hi where an index jk of Hi is in H̃i iff k = 1 (and jk = 0) or(

qi · τ̃ − Li[jk]
)
/ jk ≥

(
Li[jk]− Li[jk+1]

)
/ (jk+1 − jk). (14)

The first two options essentially cover the boundary cases where qi · τ̃ is above/below
all values in Li. For the last case, the lemma says that H̃i consists of the index 0 and a
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suffix of Hi which can be efficiently located using a binary search. We illustrate the
construction of the new convex hull H̃i in Figure 10 (right). Suppose that the maximum
size of all Hi is h. The computation of the H̃i’s adds an extra O(d log h) of overhead
to the query processing time, which is insignificant in practice since h is likely to be
much smaller than the size of the database.

Next, we provide a simple proof of Lemma 5.

Proof We use the following property derived from the classic Graham scan algo-
rithm [34] for computing the lower convex hulls: for every vertex (jk, Li[jk]) of the
convex hull, the next vertex (jk+1, Li[jk+1]) has the minimum slope (i.e., largest reduc-
tion rate from (jk, Li[jk])) among the points {(j, Li[j])}jk<j≤|Li|. By this property,
it suffices to show that the second vertex of H̃i is in Hi. This is because the prefix of
fi(Li) that are equal to qi · τ̃ cannot be part of H̃i (except for j = 0). Starting from
the index of the second vertex H̃i, fi(Li[j]) = Li[j] so the remaining part of H̃i and
Hi are identical.

Next, we prove by contradiction that the second vertex is in Hi. Suppose this vertex
is not in Hi. We assume that the vertex is B = (j′, Li[j

′]) and it is in between of two
adjacent vertices A = (ja, Li[ja]) and C = (jc, Li[jc]) of Hi where c = a + 1 and
ja < j′ < jc. We illustrate the relative positions of point A,B, and C in Fig. 11. By
the convex hull property aforementioned, because B is not in Hi, it is above the AC
segment. Since B and C are in the new hull H̃i, the first vertex (0, fi(Li[0])) is in the
region marked as “(1)”. Similarly, because A is not in H̃i, the vertex (0, fi(Li[0])) can
only be in region “(2)” which does not intersect with “(1)” – a contradiction. Therefore,
the second vertex of H̃i is in Hi. ut

①

②

B
A

C

Fig. 11 The illustration of why the new convex hull H̃i can only contain vertices from the original hull Hi.
Here A and C are from Hi and B is not.

5 The Verification Phase

Next, we discuss optimizations in the verification phase where each gathered candidate
is tested for θ-similarity with the query vector. The naive approach of verification is to
fully access all the non-zero entries of each candidate s to compute the exact similarity
score cos(q, s) and compare it against θ, which takesO(d) time per candidate. Various
techniques have been proposed [72,5,54] to decide θ-similarity by leveraging partial
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information about the candidate vector so the exact computation of cos(q, s) can be
avoided. In this section, we revisit these existing techniques which we call partial
verification. In addition, as a novel contribution, we show that in the presence of
data skewness, partial verification can have a near-constant performance guarantee
(Theorem 8).

Informally, while a vector s is scanned, based on what has been observed in s so
far, it might be possible to infer that

(1) the similarity score cos(q, s) is certainly at least θ or
(2) the similarity score is certainly below θ.

In either case, we can stop without scanning the rest of s and return an accurate
verification result. The problem is formally defined as follows:

Problem 1 (Partial Verification) A partially observed vector s̃ is a d-dimensional
vector in (R≥0 ∪ {⊥})d where ⊥ refers to an unobserved value (i.e., null). Given a
query q and a partially observed vector s̃, compute whether for every vector s where
s[i] = s̃[i] for every s̃[i] 6= ⊥, it is cos(s,q) ≥ θ.

Intuitively, a partially observed vector s̃ contains the entries of a candidate s either
already observed during the gathering phase, or accessed for the actual values during
the verification phase. The unobserved dimensions are replaced with a null value ⊥.
We say that a vector s is compatible with a partially observed one s̃ if s[i] = s̃[i] for
every dimension i where s̃[i] 6= ⊥.

The partial verification problem can be solved by computing an upper and a lower
bound of the cosine similarity between s and q when s̃ is observed. We denote by
ub(s̃) and lb(s̃) the upper bound and lower bound, so ub(s̃) = maxs{s · q} and
lb(s̃) = mins{s · q} where the maximum/minimum are taken over all s compatible
with s̃. By [72,5,54], the upper/lower bounds can be computed as follows:

Lemma 6 Given a partially observed vector s̃ and a query vector q,

ub(s̃) =
∑

s̃[i] 6=⊥

s̃[i] · q[i] +
√
1−

∑
s̃[i]6=⊥

s̃[i]2 ·
√
1−

∑
s̃[i]6=⊥

q[i]2 , (15)

and

lb(s̃) =
∑

s̃[i]6=⊥

s̃[i] · q[i] +
√
1−

∑
s̃[i]6=⊥

s̃[i]2 · min
s̃[i]=⊥

q[i] . (16)

Example 2 Figure 12 shows an example of computing the lower/upper bounds of a
partially scanned vector s with a query q. Assume the first three dimensions have been
scanned, then the lower bound and upper bound are computed as follows:

lb(s̃) = 0.8× 0 + 0.4× 0.7 + 0.3× 0.5 = 0.43

ub(s̃) = lb(s̃) +
√
1− 0.82 − 0.42 − 0.32 ·

√
1− 0.72 − 0.52 = 0.6

If the threshold θ is 0.7, then it is certain that s is not θ-similar to q because 0.6 < 0.7.
The verification algorithm can stop and avoid the rest of the scan. Note that when q is
sparse, most of the time we have lb(s̃) =

∑
s̃[i]6=⊥ s̃[i] · q[i] due to the existence of 0’s.
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1 2 3 4 5 6 7 8 9 10

s

q 0.50.7 0.5

0.8 0.3 0.20.30.4

Fig. 12 An example of the lower and upper bounds

Performance Guarantee. Next, we show that when the data is skewed, partial ver-
ification achieves a strong performance guarantee. Along with each s, we store a
permutation π such that s[π[1]] ≥ s[π[2]] ≥ · · · ≥ s[π[d]]. Then, s[i] · q[i] could be
replaced by s[π[i]] ·q[π[i]]. We notice that partial verification saves data accesses when
there is a gap between the true similarity score and the threshold θ. Intuitively, when
this gap is close to 0, both the upper and lower bounds converge to θ as we scan s so we
might not stop until the last element. When the gap is large and s is skewed, meaning
that the first few values account for most of the candidate’s weight, then the first few
s[i] · q[i] terms can provide large enough information for the lower/upper bounds to
decide θ-similarity. Formally,

Theorem 8 Suppose that a vector s is skewed: there exists an integer k ≤ d and
constant value c such that

∑k
i=1 s[i]

2 ≥ c. For every query (q, θ), if |cos(s,q)−θ| ≥√
1− c, then the number of accesses for verifying s is at most k.

Equivalently, Theorem 8 says that if the true similarity is at least δ off the threshold
θ (i.e. |cos(s,q)− θ| ≥ δ for δ > 0), then it is only necessary to access k entries of s
with the smallest k that satisfies

∑k
i=1 s[i]

2 ≥ 1− δ2. For example, if δ = 0.1 and the
first 20 entries of a candidate s account for >99% of

∑d
i=1 s[i]

2, then it takes at most
20 accesses for verifying s.

Proof Case one: We first consider the case where cos(s,q) − θ ≥
√
1− c. In this

case, we need to show
∑k
i=1 s[i] · q[i] ≥ θ. Since cos(s,q)− θ ≥

√
1− c, we know

that
k∑
i=1

s[i] · q[i] +
d∑

i=k+1

s[i] · q[i] ≥ θ +
√
1− c ,

so it suffices to show that
∑d
i=k+1 s[i] · q[i] ≤

√
1− c. This can be obtained by

d∑
i=k+1

s[i] · q[i] ≤

√√√√ d∑
i=k+1

s[i]2 ·

√√√√ d∑
i=k+1

q[i]2 =

√√√√1−
k∑
i=1

s[i]2 ·

√√√√1−
k∑
i=1

q[i]2

≤
√
1− c .

Case two:We then consider the case where cos(s,q)− θ ≤ −
√
1− c. In this case,

we need to show

k∑
i=1

s[i] · q[i] +

√√√√1−
k∑
i=1

s[i]2 ·

√√√√1−
k∑
i=1

q[i]2 ≤ θ .
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The first term of the LHS is bounded by
∑d
i=1 s[i] · q[i] ≤ θ −

√
1− c. The second

term of the LHS is bounded by
√
1−

∑k
i=1 s[i]

2 ≤
√
1− c. Adding together, the

LHS is bounded by θ. This completes the proof of Theorem 8. ut
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Fig. 13 The distribution of number of accesses and true similarities

Example 3 Figure 13a shows the distribution of the number of accesses in a query
over the mass spectrometry dataset aforementioned. The query is randomly sampled
from a real workload with a query vector of 100 non-zero values and θ = 0.6. The
result shows that for most candidates, the number of accesses is much smaller than
100. In particular, 55.9% candidates need less than five accesses and 93.1% candidates
need less than 30 accesses. This is because as shown in Figure 13b, only 0.23% of
candidates have true similarity within ±0.2 compared to θ (the range [0.4, 0.8]). The
rest of the candidates, according to Theorem 8, can be verified in a small number of
steps (i.e., ≤ 20).

6 Applying the proposed techniques to top-k cosine queries

Finally, we briefly introduce how to apply the proposed stopping condition and traversal
strategies to top-k cosine queries. In the top-k setting, each query is a pair (q, k) where
q is a query vector and k is an integer parameter. A query (q, k) asks for the top k
database vectors with the highest cosine similarity with the query vector q.

Top-k cosine queries can be processed using the original algorithmic framework
of TA with a slightly modified version of the stopping condition and traversal strategy.
The algorithm retains the same indexing data structures with the 1-d inverted list and
convex hulls. At query time, the algorithm traverses the inverted lists as follows. At
each snapshot, instead of keeping track of the original candidate set, we keep track of
the k vectors with the top-k highest similarity among the gathered vectors.

Note that to guarantee tightness, the exact similarity scores need to be computed
online for each gathered candidate, which results in additional computation cost com-
pared to the threshold version of the problem. To decide whether the traversal can be
terminated, one can adapt the stopping condition as follows:
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Theorem 9 At a position vector b, let θk be the k-th highest similarity score with the
query vector q among vectors on or above b. Then the following stopping condition is
tight and complete:

ϕtop-k(b) =
(
MS(L[b]) ≤ θk

)
.

Completeness is straightforward as MS(L[b]) equals to the largest similarity of
the unseen vectors. IfMS(L[b]) ≤ θk then it is guaranteed that no new unseen vectors
can make to the top-k list. The proof of tightness follows the same proof to Theorem 3
by replacing θ with θk.

In terms of running time, the score MS(L[b]) can be computed using the same
O(log d) incremental maintenance algorithm in Section 3.2. The lower bound θk needs
to be updated when a new candidate is gathered. Computing the similarity score takes
O(d) time and updating θk can be done in O(log k) using a binary heap.

The hull-based traversal strategy for inner product threshold queries can be directly
applied to top-k inner product queries without any change. The same near-optimality
result holds by following the same analysis. This is because although the threshold θk
gets updated during the traversal, the final θk is fixed for a given query. In addition,
the execution of the hull-based strategy for inner product queries is agnostic to the
threshold. So processing the top-k query is the same as the processing a threshold
query with the same query vector and threshold equal to the final θk.

Theorem 10 For a top-k inner product query (q, k), the access cost of the hull-based
traversal strategy THL on a near-convex database D is at most OPT+ c where c is the
convexity constant of D.

For top-k cosine queries, the hull-based traversal strategy is also applicable but
under minor changes. Recall that for cosine threshold queries, the hull-based traversal
strategy operates on the convex hulls of a decomposable approximation F̃ where F̃
requires a pre-selected constant τ̃ in order to compute the convex hulls. The choice of
the right τ̃ is easy for threshold queries but not obvious for top-k queries. As discussed
in Section 4.4, τ̃ can be set to 1/θ for cosine threshold queries. However, for top-k
queries, since the final threshold θk is unknown in advance, one might need to estimate
the final θk and set τ̃ accordingly. In a practical implementation, to avoid a bad choice
of τ̃ , the constant τ̃ can be made query-dependent or even dynamic during query
execution. We leave these aspects for future work.

7 Related work

In this section, we summarize the techniques for cosine similarity search and for the
closely related problems such as nearest neighbor search and maximum inner product
search in Section 7.1 to 7.3. We also highlight the comparison and compatibility of
our proposed techniques with these previous approaches. Moreover, there are related
techniques specific to each domain such as keyword search in databases and mass
spectrometry search. We summarize them in Section 7.4 and Section 7.5 respectively.
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7.1 Cosine similarity search

The cosine threshold querying problem studied in this work is a special case of the
cosine similarity search (CSS) problem [10,4,5] mentioned in Section 1. We first
survey the techniques developed for CSS.

LSH. A widely used technique for cosine similarity search is locality-sensitive hashing
(LSH) [63,6,38,41,71]. The main idea of LSH is to partition the whole database into
buckets using a series of hash functions such that similar vectors have high probability
to be in the same bucket. However, LSH is designed for approximate query processing,
meaning that it is not guaranteed to return all the true results. In contrast, this work
focuses on exact query processing which returns all the results.

TA-family algorithms. Another technique for cosine similarity search is the family of
TA-like algorithms. Those algorithms were originally designed for processing top-k
ranking queries that find the top k objects ranked according to an aggregation function
(see [39] for a survey). We have summarized the classic TA algorithm [30], presented
a baseline algorithm inspired by it, and explained its shortcomings in Section 1. The
Gathering-Verification framework introduced in Section 2 captures the typical structure
of the TA-family when applied to our setting.

The variants of TA (e.g., [35,9,23,15]) can have poor or no performance guarantee
for cosine threshold queries since they do not fully leverage the data skewness and
the unit vector condition. For example, Güntzer et al. developed Quick-Combine [35].
Instead of accessing all the lists in a lockstep strategy, it relies on a heuristic traversal
strategy to access the list with the highest rate of changes to the ranking function in a
fixed number of steps ahead. It was shown in [31] that the algorithm is not instance
optimal. Although the hull-based traversal strategy proposed in this paper roughly
follows the same idea, the number of steps to look ahead is variable and determined
by the next convex hull vertex. Thus, for decomposable functions, the hull-based
strategy makes globally optimal decisions and is near-optimal under the near-convexity
assumption, while Quick-Combine has no performance guarantee because of the fixed
step size even when the data is near-convex.

Bast et al. studied top-k ranked query processing with a different goal of minimiz-
ing the overall cost by scheduling the best sorted accesses and random accesses [9].
However, when the number of dimensions is high, it requires a large amount of online
computations to frequently solve a Knapsack problem, which can be slow in practice.
Note that, [9] only evaluated the number of sorted and random accesses in the ex-
periments instead of the wall-clock time. Besides, it does not provide any theoretical
guarantee, which is also applicable to [43]. Akbarinia et al. proposed BPA to improve
TA, but the optimality ratio is the same as TA in the worst case [3]. Deshpande et
al. solved a special case of top-k problem by assuming that the attributes are drawn
from a small value space [23]. Zhang et al. developed an algorithm targeting for a
large number of lists [86] by merging lists into groups and then apply TA. However,
it requires the ranking function to be distributive that does not hold for the cosine
similarity function. Yu et al. solved top-k query processing in subspaces [85] that are
not applicable to general cosine threshold queries.



Index-based, High-dimensional, Cosine Threshold Querying with Optimality Guarantees 33

Some works considered non-monotonic ranking functions [87,83]. For example,
[87] focused on the combination of a boolean condition with a regular ranking function
and [83] assumed the ranking functions are lower-bounded.
COORD. Teflioudi et al. proposed the COORD algorithm based on inverted lists for
CSS [73,72]. The main idea is to scan the whole lists but with an optimization to
prune irrelevant entries using upper/lower bounds of the cosine similarity with the
query. Thus, instead of traversing the whole lists starting from the top, it scans only
those entries within a feasible range. We can also apply such a pruning strategy to
the Gathering-Verification framework by starting the gathering phase at the top of the
feasible range. However, there is no optimality guarantee of the algorithm. Also the
optimization only works for high thresholds (e.g., 0.95), which can be too restricted in
practice. For example, a common and well-accepted threshold in mass spectrometry
search is 0.6, which is a medium-sized threshold, making the effect of the pruning
negligible.
Partial verification. Anastasiu andKarypis proposed a technique for fast verification of
θ-similarity between two vectors [4] without a full scan of the two vectors. We apply the
same optimization to the verification phase of the Gathering-Verification framework
(Section 5). Additionally, we prove that it has a novel near-constant performance
guarantee in the presence of data skewness.
CSS in Hamming Space. [28] and [62] studied cosine similarity search in the Ham-
ming space where each vector contains only binary values. They proposed to store the
binary vectors efficiently into multiple hash tables. However, the techniques proposed
there cannot be applied since transforming real-valued vectors to binary vectors loses
information, and thus correctness is not guaranteed.
Other variants. There are several studies focusing on cosine similarity join to find
out all pairs of vectors from the database such that their similarity exceeds a given
threshold [10,4,5]. The main idea is to build inverted lists and prune the vectors that
are impossible to be similar to any of the vectors in the database in order to limit the
search space. However, this work is different since the focus is comparing to a given
query vector q rather than join. As a result, the techniques in [10,4,5] are not directly
applicable: (1) The inverted index is built online instead of offline, meaning that at
least one full scan of the whole data is required, which is inefficient for search.10 (2)
The index in [10,4,5] is built for a fixed query threshold, meaning that the index
cannot be used for answering arbitrary query thresholds as concerned in this work.
The theoretical aspects of similarity join were discussed recently in [2,38].

7.2 Euclidean distance threshold queries

The cosine threshold queries can also be answered by techniques for distance threshold
queries (the threshold variant of nearest neighbor search) in Euclidean space. This
is because there is a one-to-one mapping between the cosine similarity θ and the
Euclidean distance r for unit vectors, i.e., r = 2 sin(arccos(θ)/2). Thus, finding
vectors that are θ-similar to a query vector is equivalent to finding the vectors whose

10 The linear scan is feasible for join because the naive approach of join is quadratic.
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Euclidean distance is within r. Next, we review exact approaches for distance queries
while leaving the discussion of approximate approaches later on. There are four main
types of techniques for exact approaches: tree-based indexing, pivot-based indexing,
clustering, and dimensionality reduction.
Tree-based indexing. Several tree-based indexing techniques (such as R-tree, KD-
tree, Cover-tree [11]) were developed for range queries (so they can also be applied
to distance queries), see [12] for a survey. However, they are not scalable to high
dimensions (say thousands of dimensions as studied in this work) due to the well
known dimensionality curse issue [81].
Pivot-based indexing. The main idea is to pre-compute the distances between data
vectors and a set of selected pivot vectors. Then during query processing, use triangle
inequalities to prune irrelevant vectors [17,37]. However, it does not scale in high-
dimensional space as shown in [17] since it requires a large space to store the pre-
computed distances.
Clustering-based (or partitioning-based) methods. The main idea of clustering is
to partition the database vectors into smaller clusters of vectors during indexing. Then
during query processing, irrelevant clusters are pruned via the triangle inequality [66,
65]. Clustering is an optimization orthogonal to the proposed techniques, as they can
be used to process vectors within each cluster to speed up the overall performance.
Dimensionality reduction. Since many techniques are affected negatively by the large
number of dimensions, one potential solution is to apply dimensionality reduction
(e.g. PCA, Johnson-Lindenstrauss) [58,57,44] before any search algorithm. However,
this does not help much if the dimensions are not correlated and there are no hidden
latent variables to be uncovered by dimensionality reduction. For example, in the mass
spectrometry domain, each dimension represents a chemical compound/element and
there is no physics justifying a correlation. We applied dimensionality reduction to the
data vectors and turned out that only 4.3% of dimensions can be removed in order to
preserve 99% of the distance.
Approximate approaches. Besides LSH, there aremany other approximate approaches
for high-dimensional similarity search, e.g., graph-based methods [33,26,82], product
quantization [42,7,52], randomized KD-trees [69], priority search k-means tree[60],
rank cover tree [36], randomized algorithms [80], HD-index [8], and clustering-based
methods[53,19].

7.3 Inner product search

The cosine threshold querying is also related to inner product search where vectors may
not be unit vectors, otherwise, inner product search is equivalent to cosine similarity
search.

Teflioudi et al. proposed the LEMP framework [73,72] to solve the inner product
search where each vector may not be normalized. The main idea is to partition the
vectors into buckets according to vector lengths and then apply an existing cosine
similarity search (CSS) algorithm to each bucket. This work provides an efficient way
for CSS that can be integrated to the LEMP framework.
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Li et al. developed an algorithm FEXIPRO [54] for inner product search in rec-
ommender systems where vectors might contain negative values. Since we focus
on non-negative values in this work, the proposed techniques (such as length-based
filtering and monotonicity reduction) are not directly applicable.

There are also tree-based indexing and techniques for inner product search [64,
20], but they are not scalable to high dimensions [45]. Another line of research is
to leverage machine learning to solve the problem [61,32,68]. However, they do not
provide accurate answers. Besides, they do not have any theoretical guarantee.

7.4 Keyword search

This work is different from keyword search although the similarity function is (a variant
of) the cosine function and the main technique is inverted index [59]. There are two
main differences: (1) keyword search generally involves a few query terms [77]; (2)
keyword search tends to return Web pages that contain all the query terms [59]. As a
result, search engines (e.g., Apache Lucene) mainly sort the inverted lists by document
IDs [14,24,16] to facilitate boolean intersection. Thus, those algorithms cannot be
directly applied to cosine threshold queries. Although there are cases where the inverted
lists are sorted by document frequency (or score in general) that are similar to this
work, they usually follow TA [24]. This work significantly improves TA for cosine
threshold queries.

7.5 Mass spectrometry search

For mass spectrometry search, the state-of-the-art approach is to partition the spectrum
database into buckets based on the spectrum mass (i.e., molecular weight) and only
search the buckets that have the similar mass to the query [46]. Each bucket is scanned
linearly to obtain the results. The techniques proposed in this work can be applied to
each bucket and improve the performance dramatically.

Library search, wherein a spectrum is compared to a series of reference spectra
to find the most similar match, providing a putative identification for the query spec-
trum [84]. Methods in library search often use cosine [49] or cosine-derived [78]
functions to compute spectrum similarity. Many of the state-of-the-art library search
algorithms, e.g., SpectraST [49], Pepitome [21], X!Hunter [18], and [79] find candi-
dates by doing a linear scan of peptides in the library that are within a given parent
mass tolerance and computes a distance function against relevant spectra. This is likely
because the libraries that are searched against have been small, but spectral libraries are
getting larger, e.g., MassIVE-KB now has more than 2.1 million precursors. This work
fundamentally improves on these, as it uses inverted lists with many optimizations
to significantly reduce the candidate spectra from comparison. M-SPLIT used both
a prefiltering and branch and bound technique to reduce the candidate set for each
search [75]. This work improves on both these by computing the similar spectra directly,
while still applying the filtering.

Database search [29] is where the experimental spectrum is compared to a host of
theoretical spectra that are generated from a series of sequences. The theoretical spectra
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differ from experimental spectra in that they do not have intensities for each peak and
contain all peaks which could be in the given peptide fragmentation. In other words, the
values in the vectors are not important and the similarity function evaluates the number
of shared dimensions that are irrelevant to the values. While the problem is different in
practice than that described in this paper, it is still interesting to consider optimizations.
Dutta and Chen proposed an LSH-based technique which embeds both the experimental
spectra and the theoretical spectra onto a higher dimensional space [27]. While this
method performs well at the expense of low recall rate, our method is guaranteed to not
lose any potential matches. There are also other methods optimizing this problem by
using preindexing [70,46] but none do this kind of preindexing for calculating matches
between experimental spectra.

7.6 Others

This work is also different from [55] because that work focused on similarity search
based on set-oriented p-norm similarity, which is different from cosine similarity.

In the literature, there are skyline-based approaches [51] to solve a special case of
top-k ranked query processing where no ranking function is specified. However, those
approaches cannot be used to solve the problems that only involves unit vectors such
that all the vectors belong to skyline points.

8 Conclusion

In this work, we proposed optimizations to the index-based, TA-like algorithms for
answering cosine threshold queries as well as cosine top-k queries, which lie at the core
of numerous applications. The novel techniques include a complete and tight stopping
condition computable incrementally inO(log d) time and a family of convex hull-based
traversal strategies with near-optimality guarantees for a larger class of decomposable
functions beyond cosine. With these techniques, we show near-optimality first for
inner-product threshold queries, then extend the result to the full cosine threshold
queries using approximation. These results are significant improvements over a baseline
approach inspired by the classic TA algorithm. In addition, we have verified with
experiments on real data the assumptions required by the near-optimality results.
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