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Abstract—A graph is called hidden if the edges are not explicitly given and edge probe tests are required to detect the presence of

edges. This paper studies the k most connected vertices (kMCV) problem on hidden bipartite graphs, which has applications in spatial

databases, graph databases, and bioinformatics. There is a prior work on the kMCV problem, which is based on the “2-vertex testing”

model, i.e., an edge probe test can only reveal the existence of an edge between two individual vertices. We study the kMCV problem,

in the context of a more general edge probe test model called “group testing.” A group test can reveal whether there exists some edge

between a vertex and a group of vertices. If group testing is used properly, a single invocation of a group test can reveal as much

information as multiple invocations of 2-vertex tests. We discuss the cases and applications where group testing could be used, and

present an algorithm, namely, GMCV, that adaptively leverages group testing to solve the kMCV problem.

Index Terms—Query processing, graphs and networks

Ç

1 INTRODUCTION

A graph is called hidden if the edges are not explicitly
given and edge probe tests are required to detect the

presence of edges [18]. Recently, Tao et al. [29], [28]
studied the k most connected vertices (kMCV) problem on
hidden bipartite graphs. Specifically, given a hidden
bipartite graph G with two independent vertex sets B
(black vertex set) and W (white vertex set), the kMCV
problem is to find the top k vertices in B that have the
maximum degrees. Fig. 1 shows a hidden bipartite graph
G, where B ¼ fb1; b2g and W ¼ fw1; w2; . . . ; w8g. The 1MCV
aims to identify the vertex b1 because it has the largest
degree. The problem is trivial on conventional bipartite
graphs but not in the case of hidden graphs because edge
probe tests are usually expensive operations (e.g., biologi-
cal experiments, graph operations). The applications of
finding the kMCV on a hidden bipartite graph include
distance join on road networks, bioinformatics, and graph
pattern matching [29], [28].

Example 1. Distance join on road networks. Let B and W
be the hotel set and scenic spot set, which constitute a
bipartite graph GðB;WÞ. A hotel b 2 B and a scenic spot
w 2 W has an edge if their distance is less than a
threshold �dist, for example, 5 km, where the distances
are shortest path distances. Therefore, the kMCV problem
could help discover the most convenient hotels. While
the edges on G are not given initially, a shortest path
algorithm could be executed to detect their presence.
Fig. 2 shows a road network. Fig. 1 shows the hidden
graph representation of distance join in Fig. 2, using
�dist ¼ 5. To detect whether hotel b1 and scenic spot w2

have an edge connecting in Fig. 1, we can run a shortest
path algorithm as the edge probe test to find the shortest
path between b1 and w2 in Fig. 2. In this example, the
shortest path distance between b1 and w2 is 2; thus, after
the execution of the shortest path algorithm, the edge
that connects b1 and w2 in Fig. 1 becomes explicit.
Shortest path queries on large graphs are usually
computationally expensive [30]. Therefore, the goal of
kMCV is to find the answer using an efficient strategy.

Example 2. Bioinformatics. In bioinformatics, interactions
between proteins are often represented as graphs.
Specifically, the interactions between bait proteins (B)
and prey proteins (W) could form a hidden bipartite
graph GðB;WÞ [21], [22]. An edge (b; w) represents a bait
protein b interacts with a prey protein w, and this
interaction could be discovered by carrying out an edge
probe test in the form of a biological experiment, which
may take hours or days [17]. The kMCV problem is to
find the most active proteins. And it would be beneficial
if there is a way to get the answer efficiently.

Example 3. Graph pattern matching. Applications like
drug discovery often need to identify the graph patterns
that match the most number of data graphs [29], [28]. The
discovery process usually involves testing whether a
graph pattern b is a sub/supergraph of a data graph w.
An edge is present if such a containment relationship
exists between b and w. Such information, however,
remains hidden unless an explicit sub/supergraph
containment test is carried out. Unfortunately, such
testing is known to be expensive, for example, a subgraph
isomorphism test is NP-complete [9], [27]. Therefore, it is
necessary to devise an efficient algorithm for the kMCV
problem to speed up the drug discovery process.

As the pioneering work, Tao et al. [29], [28] developed an
algorithm, SOE,1 to solve the kMCV problem. SOE is based
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on 2-vertex edge probe testing, or simply 2-vertex testing [7],
i.e., each edge probe test Qðb; wÞ takes as inputs one black
vertex b 2 B and one white vertex w 2 W, and returns 1 if b
and w possess an edge in the hidden bipartite graph G and 0
otherwise. In many applications [11], [13], [32], [7], the more
general vertex-group edge probe testing is used as a replace-
ment of the 2-vertex model. Specifically, a vertex-group
edge probe test, or simply, a group test, takes as inputs one
black vertex b 2 B and a group of white vertices W � W,
denoted as Qðb;WÞ, and returns 1 if there exists at least one
white vertex w 2W possessing an edge with b in the
hidden graph G and 0 otherwise. We observe that such a
test model is also applicable to the kMCV problem (in
above applications):

. In the distance join application, if a road network
index [19], [25], [31] is available, a group test Qðb;WÞ
can be implemented by asking the road network index
the nearest neighbor of a vertex b (denoted aswnn) in a
given group of vertices W . If distðb; wnnÞ > �dist, we
learn that all vertices in W are beyond �dist of
b; therefore, none of the vertices in the group W
connects with b in the hidden graph, i.e.,Qðb;WÞ ¼ 0.
Otherwise, we get Qðb;WÞ ¼ 1.

. In bioinformatics, the literature does show that many
biological experiments can be set up to tell whether
there are reactions between a protein b and a set of
proteins W [22], [7].

. In the graph matching application, a graph index IW
(e.g., FG-index [9], cIndex [8], GPTree [33]) can be
built on a set of data graphs W. A group test Qðb;WÞ
can be regarded as a pattern query b on the set W �
W to check whether there exists a data graph w 2W
such that b and w satisfy the containment relation-
ship. If yes, then Qðb;WÞ ¼ 1, and Qðb;W Þ ¼ 0
otherwise. Notice that W corresponds to a particular
subtree of the index IW . Thus, the group test can be
implemented by issuing b as a graph query to the
corresponding subtree of IW .

Table 1 gives a summary of how the above applications
associated with the kMCV problem in the context of
group testing.

The applicability of group testing on the kMCV problem
raises a very interesting research question: Can we leverage
group testing to solve the kMCV problem more efficiently?
Specifically, a group test Qðb;WÞ returning 0 is equivalent
to revealing many hidden edges in a row: Qðb; w1Þ ¼ 0,
Qðb; w2Þ ¼ 0; . . . ; Qðb; wiÞ ¼ 0, for all wi 2W . If an algorithm
can leverage it smartly and correctly, the number of tests
can be significantly reduced. However, although the use of
group test may reduce the number of tests in solving the
kMCV problem, we have to ensure that the actual cost of
solving the kMCV problem can essentially be reduced. That
is because the cost (e.g., monetary cost, running time) of a
group test execution, in which we call that as external cost,
may be more than the external cost of a 2-vertex edge probe
test execution, because the former may take more than two
white vertices as input. Fortunately, in all of the applica-
tions that we concern, the external cost of a group test is
indeed sublinear to or even independent of the input size.
For example, in the distance join application and the graph
pattern matching application, it has been shown that the
external cost (running time) of checking the nearest
neighbor between a vertex b and a set of vertices W using
a road network index and the external cost (running time)
of checking the containment relationship between a pattern
b and a set of data graphs W using a graph index are
sublinear to the size of W [19], [25], [31], [9], [8], [33],
because of the indices’ high pruning effectiveness. In
bioinformatics, it is a well-known fact that the external cost
of a group test, no matter in terms of the monetary cost (e.g.,
the cost of the chemical used) or the time to finish an
experiment, is independent of the number of input
chemicals involved in the experiment [4], [5], [3], [15].

To leverage group testing, we have to design the
algorithm carefully because it is tricky to determine the
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Fig. 1. A (hidden) bipartite graph GðB;WÞ; edges are not explicitly given.

Fig. 2. Example of a road network.

TABLE 1
Applications That Can Apply Group Testing



input size of the white vertex set, i.e., jW j, for each group
testing. Even though the external cost of a group test is
usually sublinear to or independent of the group size, we still
should not deliberately include a lot of vertices in each group
test because that would increase the chance of the testing
result being 1. Such a result is actually not informative
because it does not reveal any hidden edge between any pair
of black vertex and white vertex. However, if a very small
group size is used, the power of group testing may not be
well exploited. Therefore, it is challenging to leverage the
group test model in a productive manner.

Based on the discussions above, we propose an algo-
rithm, GMCV, that leverages group testing to solve the
kMCV problem. Note that if the group size jW j is always set
to 1, a group test is the same as 2-vertex testing. Therefore,
GMCV is more general than SOE. GMCV adaptively
controls the group sizes based on the data characteristics
during execution. For applications like distance join and
graph pattern matching, GMCV can be regarded as a usual
computer algorithm that aims to solve the kMCV problem
efficiently. For applications like bioinformatics, GMCV can
serve as an offline human-involving tool like [23] that
assists human (scientists) in scheduling their actions
(experiments) using the least amount of external resources.
Specifically, GMCV can suggest to a scientist what experi-
ment should be done next after finishing the current
experiment (which may take days).

The rest of the paper is organized as follows: We review
the related work in Section 2. We formally define the
problem in Section 3. Then, we present the technical
contributions in the following order:

. First, we present the details of GMCV, a more
general algorithm for solving the kMCV problem, in
Section 4.

. Then, we present cost models of GMCV and SOE in
Section 5. Notice that the total external testing cost of
an execution of GMCV not only depends on

- the number of group tests executed, but also
- the input size to each group test and
- the implementation of the group test.

For example, the time complexity of a group test in
the distance join application is sublinear to the input
group size. However, in bioinformatics, a group
testing is an actual (chemical/biological) experi-
ment, in which its cost (running time/monetary
cost) is independent of the group size.

. Finally, we experimentally evaluate GMCV in
Section 6. The evaluation is done on both real-life
data sets and synthetic data sets. The experimental
results show that GMCV is a good general alter-
native to SOE.

After presenting the above contributions, we conclude
the paper in Section 7. Table 2 summarizes the symbols
used in the subsequent sections.

2 RELATED WORK

Hidden graph has been an active research topic in the
computing theory community [18], [4], [3]. Applications of
hidden graph are mostly bioinformatic related. One branch
of hidden graph research is graph testing: Given a hidden

graph G, the objective is to test whether G possesses a certain
property (e.g., k-colorable [16]) using a minimal number of
edge probe tests (e.g., biological experiments). Another
branch of hidden graph research is graph learning: Given a
hidden graph G, the objective is to reconstruct the whole
graph using a minimal number of edge probe tests [18], [4],
[3], [7], [15]. As argued by Tao et al. [29], [28], the kMCV
problem is different from those work because it neither tests
the possession of any property of the hidden graph, nor
reconstructs the whole graph.

The works above are all based on the 2-vertex edge probe
test model [7]. They assume that the cost of a 2-vertex test is a
constant. So, the costs of those algorithms are analyzed based
on the number of tests they invoked. Thus, it is natural that
those works focus on reducing the number of tests. Recently,
the more general vertex-group edge probe test model is used
in both graph testing and graph learning [13], [32], [7],
because in those applications the cost of a group test is
independent of the group size. This paper aims to investigate
the use of group testing in solving the kMCV problem.

Comparing with SOE [29], [28], the use of group testing
raises at least two new technical aspects: 1) In terms of
algorithm design, a kMCV algorithm that exploits the group
test model has to determine the group size carefully, in
which algorithms that based on the 2-vertex model do not.
2) In terms of solution analysis, the analysis has to base on
the external testing cost, which depends on a) the number of
executed group tests, b) the group size, and c) the cost
function of various group testing implementations.

3 PROBLEM DEFINITION

We formally define the kMCV problem under the group
testing model.

Let G ¼ ðB;W; EÞ be a bipartite graph, where B is a set of
black vertices, W is a set of white vertices, and E is a set of
edges connecting vertices in B andW. G is hidden if E is not
explicitly given. An edge probe test, or simply a test, can be
carried out to detect the presence of edges.

Definition 1 (2-vertex testing). An edge probe test Qðb; wÞ is
called 2-vertex testing if it asks whether a black vertex b 2 B
connects with a white vertex w 2 W:
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Qðb; wÞ ¼ 1 if ðb; wÞ 2 E
0 if ðb; wÞ 62 E:

�

The 2-vertex testing method is used by SOE [29], [28]. As

mentioned earlier, in many applications, for example,

distance join, protein-protein interaction, we can test a

group of vertices together.

Definition 2 (Group testing). Let W be a group of white

vertices; an edge probe test Qðb;WÞ is called group testing if

it asks whether a black vertex b 2 B connects with at least one

white vertex w 2W :

Qðb;WÞ ¼ 1 if 9w 2W; ðb; wÞ 2 E
0 if 8w 2W; ðb; wÞ 62 E:

�

When jW j ¼ 1, group testing is the same as 2-vertex

testing. Hence, 2-vertex testing is a special case of group

testing. Depending on the actual applications, the cost of

group testing may or may not depend on the input sizes.

Definition 3 (External testing cost �). Let Qðb;WÞ be a group
test, the external cost (e.g., monetary cost, running time) of
carrying out such a test is denoted as �ðb;W Þ. For simplicity,
we represent �ðb;WÞ using the input size, i.e., �ðjW jÞ.

Definition 4 (kMCV). Given a hidden graph G ¼ ðB;W; EÞ, a
user-threshold k identify a minimal result set R � B such that

1. jRj � k; and
2. di > dj for any bi 2 R and bj 2 B nR, where di is the

degree of bi.

The goal of this paper is to minimize the total external
testing cost of solving the kMCV problem using group
testing. For ease of presentation, we assume that there is no
tie on the vertex’s degree such that there is exactly k vertices
in the result set R. Our techniques can be easily extended to
handle the tie case.

4 ALGORITHM GMCV

In this section, we present our GMCV algorithm that solves
the kMCV problem by the use of group testing, which aims
to reduce the external testing cost. We first put down the
relevant definitions.

Definition 5 (Hidden vertex and hidden edge). For a vertex
pair ðb; wÞ where b 2 B and w 2 W, w is a hidden vertex
of b if the connection between b and w in the hidden graph G
is unknown. If w is a hidden vertex of b, then ðb; wÞ is a
hidden edge.

Definition 6 (Solid and empty vertex). For a vertex pair
ðb; wÞ where b 2 B and w 2 W, if ðb; wÞ 2 E, then w is a solid
vertex of b; otherwise, w is an empty vertex of b.

Definition 7 (Completed). A black vertex b is completed if it
has no hidden edges.

GMCV finds the top k black vertices with the highest

degree in iterations. In each iteration, it examines the black

vertices b1; b2; � � � ; bjBj in B one by one. For a black vertex bi,

some group tests are carried out between it and some white

vertices W � W to tighten the degree bounds of bi, except

when bi is completed, or when bi is deliberately skipped in

that iteration because of the poor chance for bi being in the

final result (more on this later). After one iteration, another

iteration starts and the black vertices b1; b2; . . . ; bjBj in B are

examined once again. Similar to most top k processing

algorithms (e.g., [14], [20]), GMCV maintains the degree

upper bound (denoted as bi:maxDeg) and lower bound

(denoted as bi:minDeg) of each black vertex bi 2 B
throughout the execution and stops when the following

condition holds:

Property 1 (Stop condition). Let � be the kth largest degree in
the result set R, and � be the maximum degree upper bound of
vertices not in R, GMCV can stop and return R when � > �.

With the skeleton of GMCV in place, we study the
following research issues:

R1. In an iteration, when a black vertex bi is being
examined by GMCV, how to leverage group testing
to refine bi’s degree bounds? Specific issues include

a. How to determine the group of white vertices that
should be tested with bi? and

b. When shall GMCV stop examining bi in this
iteration and switch to another black vertex?

R2. Black vertices with low degrees are unlikely to be in
the top k result set R, thus, the question is: How to

avoid unnecessary testing for low-degree vertices?

4.1 Dealing with Research Issue R1

GMCV follows the “switch-on-empty” (SOE) principle [29],

[28] to deal with research issue R1b. Within an iteration, it

continues to work on bi until a test returns “empty,” i.e.,

Qðbi;W Þ ¼ 0, or bi becomes completed. For a black vertex bi,

let WCUR be the set of white vertices that bi is going to carry

out group testing with, and WPRE be the previous set of

white vertices that bi carried out group testing with.
To deal with research issue R1a, GMCV adaptively

identifies WCUR based on WPRE and the two possible
“states” associated with bi: expanding, and identifying.
Initially, the state of every bi 2 B is expanding, WPRE is
set to empty, and WCUR is set to one random white vertex.
For other cases (except initialization), WCUR is determined
as follows:

When bi is in the expanding state, the objective of group
testing between bi and a set of white vertices is to reveal as
many hidden vertices of bi as possible:

. [Case EXP-(a)]: If Qðbi;WPREÞ ¼ 0, the number of
white vertices that should be involved in the
upcoming group test, denoted as jWCURj, is set as
twice the size of jWPREj, i.e., jWCURj ¼ 2 � jWPREj.
This is called the doubling strategy, which is com-
monly used in problems to dynamically adjust the
value of some unknown parameters [6], [10].2 The
rationale is that if Qðb;WPREÞ ¼ 0, it implies bi might
have a low degree. Thus, GMCV can aim higher in
this test—set bi to test with a larger group of white
vertices and hope that can reveal even more hidden
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vertices of bi. The set WCUR is then randomly chosen
from bi’s hidden vertices.

. [Case EXP-(b)]: If Qðbi;WPREÞ ¼ 1 and jWPREj ¼ 1, it

means bi is a potentially high-degree vertex, so

GMCV keeps jWCURj ¼ 1.
. [Case EXP-(c)]: If Qðbi;WPREÞ ¼ 1 and jWPREj > 1, it

implies that GMCV were too aggressive in the

previous group test. In this case, bi enters the

identifying state.

When bi is in the identifying state, the objective of group

testing becomes to identify at least one of the solid vertices

in WPRE of bi. Therefore,

. [Case IDF-(a)]: If jWPRE j > 1 and Qðbi;WPREÞ ¼ 1,

GMCV will devote some more tests to locate the white

solid vertex in WPRE . To do so, GMCV splits WPRE

into two halves: WPRE
L and WPRE

R , and sets WCUR to

be WPRE
L and saves WPRE

R as an unexplored set WU .

. [Case IDF-(b)]: If jWPREj ¼ 1 and Qðbi;WPREÞ ¼ 1,

that means a white solid vertex of bi in WPRE has

been identified; in this case, GMCV resets bi’s state

back to the expanding state.

. [Case IDF-(c)]: IfQðbi;WPREÞ ¼ 0, GMCV explores the
unexplored set by settingWCUR to beWU , but the test
result of Qðbi;WCURÞ is explicitly encoded as 1.

After identifying WCUR, GMCV then executes such a

group testing Qðbi;WCURÞ. As mentioned, GMCV follows

the switch-on-empty principle, so it may carry out a

number of group tests, between bi and a number of groups

of white vertices, before it switches to another black vertex

in the same iteration.

Fig. 4 shows an example that illustrates some of the

cases above. The corresponding input hidden graph is

shown in Fig. 3. In the first iteration, b1 is first considered

and WCUR ¼ fw1g (a random white vertex) (Iteration 1a).

After the first group test Qðb1;W
CURÞ, it is found that w1

is a solid vertex of b1. This falls into [Case EXP-(b)]

described above, resulting WCUR is set to another random

vertex w2 (Iteration 1b). After the next group test

Qðb1;W
CURÞ, it is found that w2 is an empty vertex of

b1. So, GMCV follows the switch-on-empty principle and

considers b2 (Iteration 1c). Since b2 is first visited by

GMCV, its WCUR is set as fw1g, like what happened to b1.
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Fig. 3. A hidden bipartite graph.

Fig. 4. Running example.



After the group test Qðb2;W
CURÞ, it is found that w1 is an

empty vertex of b2. Therefore, GMCV has to switch to

another vertex, leading to Iteration 2, which considers b1

again (Iteration 2a). At that point, for b1, WPRE ¼ fw2g
(refer to Iteration 1b), so, it falls into [Case EXP-(a)]

described above, causing the size of WCUR to be doubled

(Iteration 2a). After the group test Qðb1;W
CURÞ, it is found

that w3, or w4, or both are solid vertices of b1, so, it falls

into [Case EXP-(c)] described above, b1’s state is thereby

switched to identifying (Iteration 2b). At that point, for b1,

WPRE ¼ fw3; w4g, so it falls into [Case IDF-(a)] described

above, resulting WCUR is set as fw3g. After the group test

Qðb1;W
CURÞ, it is found that w3 is an empty vertex of b1

(which then also implies w4 is a solid vertex of b1), which

triggers GMCV to switch to b2 (Iteration 2c). After the

group test Qðb2;W
CURÞ, it is found that both w2 and w3

are empty vertices of b2, making GMCV switches to b1

again (Iteration 3a). By that time, although Qðb1;W
CURÞ

supposes to test with w4, it falls into the case of

[Case IDF-(c)], in which the test result is already encoded

as 1 without even testing. So, after that, GMCV continues

testing between b1 and another white vertex w5

(Iteration 3b), and the process goes on until the stopping

condition (Property 1) holds.

4.2 Dealing with Research Issue R2

For each black vertex bj 62 R, the “necessary” tests are to

reduce its degree upper bound, until below � . In other

words, it should not have any further testing once its degree

upper bound below � , as it is not part of the result set.

However, the value of � is unknown in advance; therefore,

bj may get redundant tests even if bj:maxDeg is really less

than � during the execution.

Thus, the question is, for any bj 62 R (i.e., low-degree

vertex), how to prevent it from any further unnecessary

testing even though � is unknown beforehand? In other

words, how to guarantee for any bj 62 R, it does not have

any unnecessary testing once bj:maxDeg < �?

GMCV employs a skipping policy to achieve the goal. If

Qðbj;WCURÞ ¼ 0, then bj is skipped for a skip factor of

jWCURj � 1 iterations. For example, if at iteration i,

Qðb; fw1; w2; w3gÞ ¼ 0, then GMCV skips b in the iterations

iþ 1 and iþ 2. In Theorem 1 (Section 4.3), we will show that

with our skipping policy, vertices not in the result set do not

have unnecessary testing. Then, we will show in Lemma 4

(Section 4.3) that the skip factor jWCURj � 1 is the optimal

one among all the possible choices, so GMCV will use that

as the skip factor. In the following, we first present the

algorithm GMCV.

4.3 Algorithm: GMCV

The pseudocode of GMCV is listed below. It is self-
explanatory. It employs a skip factor of jWCURj � 1. Each
black vertex b is associated with a field skip, which gets
incremented whenever a group test has identified a group of
b’s empty vertices in a single group test, resulting in the
skipping of processing b in a number of subsequent iterations.

Algorithm GMCV

Input

GðB;WÞ: Hidden bipartite graph; k: User-threshold

Output

R: k black vertices that have the maximum degree

1 � : the degree of the k-th ranked vertex in R

2 �: the maximum degree upper bound for those vertices

not in R, i.e., maxb 62Rb:maxDeg

3 R is initialized to k dummy vertices with degree �1

4 for each b 2 B do

5 b:minDeg 0 /*degree lower bound*/

6 b:maxDeg jWj /*degree upper bound*/

7 b:skip 0 /*implement the skip policy*/

8 repeat

/*start an iteration*/

9 for each b 2 B do

10 if b is completed then continue

11 if b.skip > 0 then /*skip policy*/

12 b:skip b:skip� 1

13 continue

14 find a group of white vertices WCUR to test

/*Section 4.1*/

15 if Qðb;WCURÞ ¼ 0 then /*external testing*/

16 b:maxDeg b:maxDeg� jWCURj
17 b:skip b:skipþ ðjWCURj � 1Þ
18 else

19 if jWCURj ¼ 1 then

20 b:minDeg b:minDegþ 1

21 goto line 10

22 let C be the completed vertices in this iteration

23 R R [ C
24 update � /*k-th largest degree in R*/

25 R fbi 2 R : di � �g /*update the result set R*/
26 update � /*upper-bound score of vertices not in R*/

27 until � < �

Table 3 shows the detailed execution steps of GMCV in
finding the 1MCV of the hidden graph presented in Fig. 3.
The final � value is 10, which is the degree of b1 but is
unknown till the end of GMCV. After the fourth iteration,
b2:maxDeg ¼ 9, which is below � . Since then, b2 is skipped
for any further tests, until the end of GMCV.

Lemma 1. GMCV correctly reports the results, i.e., black vertices

with top k maximum degrees.

Proof. The stopping condition � < � (Property 1) guaran-
tees that for any vertices not in R will not have a higher
degree than those in R. tu

Theorem 1. In GMCV, a black vertex bj 62 R stops any further

testing, once its degree upper bound is just smaller than the

final � .

Proof. The statement is equivalent to, any black vertex bj 62
R stops for any further testing once the number of empty
vertices it has detected is greater than or equal to
jWj � ð� � 1Þ. Let � ¼ jWj � ð� � 1Þ.

Formally, let Ebj be the number of empty vertices

detected with bj during GMCV, then Ebj is increasing

during the execution of the algorithm. Let Embj be the

value of Ebj after the mth change of Ebj . (Thus, Embj � E
mþ1
bj

).
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Let Ezbj be the value of Ebj of the last change of Ebj before

GMCV terminates, we have 1) Ezbj � � and 2) Ez�1
bj

< �.

We prove 1 by contradiction. At the end of GMCV,
if Ebj < � (i.e., Ezbj < �), we have bj:maxDeg ¼ jWj �
Ezbj > jWj � � ¼ � � 1. In order words, bj:maxDeg � � .
According to the stop condition of GMCV (Property 1),
� < � , where � is the maximum degree upper bound of
vertices not in R, meaning that bj:maxDeg < � , which is
a contradiction.

Next, we will prove 2 Ez�1
bj

< � by contradiction. Let
us assume

Ez�1
bj
� �: ð1Þ

We state the supplementary Lemmas 2 and 3, which
are proved in the appendix, which can be found on
the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2012.178.

Lemma 2. Let the ðz� 1Þth change of Ebj value occurs at the end
of iteration-I of GMCV, if bj:skip ¼ 0, then iteration-I is the
last iteration of GMCV.

Lemma 3. Let the ðz� 1Þth change of Ebj value occurs at the end
of iteration-I of GMCV, if bj:skip > 0, then at the end of the
iteration-ðI þ bj:skipÞ, GMCV must have terminated.

With Lemma 2 proven, it implies that the ðz� 1Þth
change of Ebj is the last change of Ebj , which contradicts
the fact that Ezbj is the last change of Ebj .

With Lemma 3 proven, and together with the fact that

the value of Ebj does not change between iteration-I and
iteration-ðI þ bj:skipÞ (because by that time bj:skip > 0

and thus bj is skipped), so the value of Ebj at iteration-

ðI þ bj:skipÞ is equal to the value of Ebj at the end of the

iteration-I , which is equal to Ez�1
bj

. So, if we can prove

that GMCV has terminated by that time, it implies that

Ez�1
bj

is the value of Ebj before GMCV terminates, which

contradicts the fact that Ezbj is the last change of Ebj .
With Lemmas 2 and 3 proven, we can conclude that

the assumption Ez�1
bj
� � is false and the proof is

completed. tu

Lemma 4. Let Cs be the external testing cost of our solution with

skip factor of s, then for any s, CjWCUR j�1 � Cs.
Proof. First, each b 2 B has a sequence of group tests and

stops when the stopping condition (Property 1) is met.

Obviously, for a bi in the final result set R, its whole
sequence of group tests must be carried out. So, we care

about only those bj not in the final result set R. For

bj 62 R, its degree upper bound, denoted as bj:maxDeg,
gets reduced along the iterations when more tests are

done. Its corresponding aggregated external testing cost
is the minimum if its test sequence stops once bj:maxDeg

is just smaller than � . We denote that cost as minCbj .
Let C

bj
s be the external testing cost of bj with any skip

factor s. We first show that C
bj
s ¼ minCb when

s ¼ jWCURj � 1. That is, we show C
bj
jWCURj�1

¼ minCbj . If
that is proved, then it is straightforward to deduce the total
cost of all bj 62 R as minimum and thereby proved the
lemma.

As mentioned above, if C
bj
jWCURj�1

¼ minCbj , it implies
that GMCV stops processing bj once its degree upper
bound bj:maxDeg gets refined so that it is smaller than � ,
which is proved in Theorem 1. tu

5 COST MODEL

Although SOE is proven to be instance optimal (i.e., for any

given problem instance, it incurs at most a constant factor of

tests of the optimal solution), it is not applicable to the
context with group testing. In SOE, minimizing the number

of tests is equivalent to minimizing the total external testing
cost because the external cost of a 2-vertex test function is a

constant. However, the overall external cost of a group test

function depends not only on the number of tests invoked,
but also on the input size to each test as well as the

implementation of the group test.
In this section, we provide cost models to capture the

total external testing costs of GMCV (Section 5.1) and SOE
(Section 5.2) and compare their external costs based on

different group test cost functions (Section 5.3). For every
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TABLE 3
Detailed Execution Steps of GMCV in Fig. 3



black vertex bi, we assume that its degree di 6¼ 0 and
di 6¼ jWj, as it is trivial to deal with these two cases.

5.1 External Testing Cost of GMCV

In an execution of GMCV, a particular black vertex bi 2 R
is associated with a series of expanding-and-identifying
processes that may span across multiple iterations.
Initially, a test Qðbi;W 1

i Þ is carried out. If Qðbi;W 1
i Þ ¼ 0,

another group test Qðbi;W 2
i Þ is carried out. The expanding

phase Qðbi;W 1
i Þ ¼ 0; Qðbi;W 2

i Þ ¼ 0; . . . , continues until the
sth test in which Qðbi;Ws

i Þ ¼ 1 (while all the previous tests
return 0), where s is called the turning point in the process.
After that, the identifying phase starts: Qðbi;Wsþ1

i Þ; . . . ;
Qðbi;W 2s�1

i Þ, i.e., recursively drill into the set Ws
i to locate

the solid vertex.

Lemma 5. Let Cji be the external testing cost of the jth expanding-
and-identifying process of bi, and s be the turning point, then
Cji ¼ 2

Ps�1
j¼1 �ð2j�1Þ þ �ð2s�1Þ.

Proof. Note that the size of the vertex set Wj
i has the

following property:

jWj
i j ¼

2j�1; 1 � j � s
22s�j�1; s < j � 2s� 1:

�

As Cji denotes the external testing cost of the jth

expanding-and-identifying process of bi, then Cji ¼P2s�1
j¼1 �ðjWj

i jÞ ¼ 2
Ps�1

j¼1 �ð2j�1Þ þ �ð2s�1Þ. tu
Lemma 6. For bi 2 R, the total external testing cost CostðbiÞ

associated with bi is

CostðbiÞ ¼ di � Cji ;

where di is the degree of bi, and the value of turning point s in Cji
is set as blg jWjdi e þ 1 (bxe denotes the randomized rounding [24]

of x).

Proof. Lemma 5 gives the external testing cost of any
expanding-and-identifying process. Since in GMCV,
every black vertex bi in R is completed, i.e., it has the
exact degree di, and each expanding-and-identifying
process locates one solid vertex, the cost of bi 2 R is thus
di � Cji . The value of s in Cji is derived as follows:

An expanding-and-identifying process reveals 1 solid
vertex plus at least

Ps�1
j¼1 2j�1 ¼ 2s�1 � 1 empty vertices, a

total of at least 2s�1 vertices. Let ! ¼ 2s�1. Since the

GMCV algorithm randomly picks white vertices to carry

out group testing on bi, ! can be approximated as jWj=di.
So, we have s� 1 ¼ blg jWjdi e, i.e., s ¼ blg jWjdi e þ 1. We use

randomized rounding here because s is an integer. tu
Next, we derive CostðbjÞ, the external testing cost

associated with a vertex bj 62 R. Before that, we define
AðtÞ be the accumulated external testing cost to identify
t empty vertices through a series of group tests whose
results are all zero (i.e., the external testing costs spent on
the doubling strategy during the expanding phase). It is
thus trivial to see that AðtÞ ¼

Pblg tc
j¼0 �ð2jÞ.

Lemma 7. For bj 62 R, the external testing cost CostðbjÞ
associated with bj is

CostðbjÞ ¼ �j � Cji þAð�� �j � ð2s � 1ÞÞ;

where � ¼ jWj � � þ 1, �j ¼ b �
jWj
dj
�1
c, s ¼ blg jWjdj e þ 1, and dj

is the degree of bj.

Proof. In Theorem 1, we show that a black vertex bj 62 R
does not need any further testing in GMCV, once its

degree upper bound is smaller than � . Meaning that bj
needs to detect jWj � ð� � 1Þ empty vertices. Let

� ¼ jWj � ð� � 1Þ. Next, the analysis is redirected to

analyze the external testing cost of detecting � empty

vertices for bj 62 R.

As mentioned, an expanding-and-identifying process

discovers 1 solid vertex plus at least 2s�1 � 1 empty

vertices, where s ¼ blg jWjdj e þ 1. Thus, to detect � empty

vertices, it requires b �
2s�1�1c ¼ b �

jWj
dj
�1
c (denoted as �)

expanding-and-identifying processes.
For the remaining �� � � ð2s � 1Þ empty vertices, it

requires a follow-up expanding phrase, which costs
Að�� � � ð2s � 1ÞÞ.

Summing up the external testing cost gives the result,
which completes the proof. tu

Theorem 2. The external testing cost of GMCV is

CostGMCV ¼
X
bi2R

CostðbiÞ þ
X
bj 62R

CostðbjÞ; ð2Þ

where CostðbiÞ and CostðbjÞ are defined in Lemmas 6 and 7,

respectively.

5.2 External Testing Cost of SOE

According to [29], [28], the number of tests N SOE consumed

by SOE for a hidden partite graph with jBj black vertices

and jWj white vertices is
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Fig. 5. Derived costs of SOE and GMCV.

TABLE 4
Statistics of Real Graphs



N SOE ¼ k � jWj þ
XjBj
i¼kþ1

ðjWj � � þ 1ÞðjWj þ 1Þ
li � jWj þ 1

¼ k � jWj þ
XjBj
i¼kþ1

�ðjWj þ 1Þ
jWj � di þ 1

;

where li ¼ 1� di
jWj .

Since each 2-vertex test has the cost of �ð1Þ, the external
testing cost of SOE is

CostSOE ¼ N SOE � �ð1Þ: ð3Þ

5.3 Cost Comparison

We compare the external testing costs of GMCV and SOE
based on the cost models established in (2) and (3).
Following [29], [28], we assume the degrees of the
bipartite graph follow power-law distribution such that
for each b 2 B, its degree equals d (between 0 and jWj) has
the probability:

PrðdÞ ¼ 1=ðdþ 1Þ�PjWj
i¼0 1=ðiþ 1Þ�

; ð4Þ

where � is the skewness factor to control the sparseness of a
graph (� > 0). The smaller the � is, the denser the graph is.

We consider four group testing implementations:

1. Const, where �ðjW jÞ ¼ �ð1Þ.
2. Log, where �ðjW jÞ ¼ lg jW j � �ð1Þ.
3. Sqrt, where �ðjW jÞ ¼

ffiffiffiffiffiffiffiffi
jW j

p
� �ð1Þ.

4. Linear, where �ðjW jÞ ¼ jW j � �ð1Þ.
The Const implementation is to simulate the group test

implementation in the biological domain, in which both the
monetary cost and the running time of an experiment is a
constant [17]. The Log and the Sqrt implementations are to
simulate the group test implementations in the graph
pattern matching and distance join applications, where the

external cost (running time) is sublinear to the input size.
Applications for the Linear group test implementation are
not clear; however, we include it in our study to show that
GMCV should not be misused in applications where the
external cost of a group test is (super) linear to its input size.

Fig. 5 plots the external testing costs of GMCV and SOE
(k ¼ 10) based on (2) and (3), on hidden partite graphs of
varying sizes (jBj ¼ jWj) and different sparseness �. It can
be seen that GMCV outperforms SOE in almost all graph
sizes and graph sparseness, except when the graphs are
unusually dense (� is close to 0)3 or when GMCV is
deliberately misused on applications where the external
cost of a group testing is (super) linear to the size of the
input. In those cases, we found GMCV and SOE have
comparable performance.

6 EXPERIMENTS

In this section, we evaluate GMCV on both real-life data sets
and synthetic data sets.

PPI.4 It consists of the interactions between Yeast
proteins, where B and W represent all the proteins.
Particularly, a protein b 2 B connects with w 2 W if they
can interact with each other.

Germany.5 It is a real road network from Germany. In our
problem setting, B and W contain all the nodes. A vertex
b 2 B and a vertex w 2 W has an edge if their distance (in
terms of the shortest path distance) is less than a predefined
threshold, which is set to 10 km by default.

Actor-W.6 It is an actor collaboration network data based
on IMDB (http://www.imdb.com). In which, B and W
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Fig. 6. Results on PPI data, varying k.

3. Normally, � is larger than 2.0 in real graphs [1], [2].
4. http://turing.cs.iastate.edu/PredDNA/data set.html.
5. www.maproom.psu.edu/dcw.
6. http://www.datatang.com/DataRes/Detail.aspx?id=1624.



include all the actors. In particular, two actors b and w have
an edge if they have coappeared in at least one movie.

Actor-D, available from [29], [28]. It is derived from the
actor collaboration social network data by extracting 10,000
actors that have the largest number of collaborators, i.e., B
and W. Two actors b and w have an edge if they have two-
hop relationship, i.e., either they appeared in at least one
common movie, or they have a common collaborator.

Table 4 summarizes the properties of the four real data
sets above. Actor-D is unusually dense—in a hidden graph

with only 10,000 black and 10,000 white vertices, a black
vertex connects to more than 7,000 white vertices on
average. In fact, Actor-D does not follow power-law
distribution as its � < 0.

Synthetic Data. We follow [29], [28] to generate graphs of
different sizes and sparseness. By default, jBj ¼ jWj ¼ 5;000.

Following [29], [28], we simulate the implementation of
a (group) test. We use the four group testing functions
Const, Log, Sqrt, and Linear mentioned in Section 5.3. For
example, we regard the external cost of a group test with
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Fig. 7. Results on Germany data, varying k.

Fig. 8. Results on Actor-W data, varying k.



an input of four vertices is 2, if the Sqrt group test function
is used. The experimental results are reported in terms of
external testing cost.

6.1 Experimental Results on Real Data Sets

Fig. 6 (the bigger graph) shows the external testing costs of
GMCV (based on different group testing cost functions) and
SOE of different k values, on the PPI data set. It is clear that
GMCV outperforms SOE significantly, except when the
inappropriate Linear group testing is deliberately used.
Specifically, the costs of GMCV are 36 times (Const), 10
times (Log), and 7 times (Sqrt) less than SOE, respectively.
Since their costs differ so much and we cannot see the effect
of k when putting them together in one graph, we plot their
individual costs as well (smaller graphs). We can observe
that all methods scale well with the value of k.

The experimental results on Germany and Actor-W data
sets are shown in Figs. 7 and 8. We can also observe that
GMCV outperforms SOE significantly, again except when
the Linear group testing function is deliberately used.

Fig. 9 shows the external testing costs of GMCV and SOE
on Actor-D. We can see that even on such an unusually
dense data set, SOE and GMCV have comparable perfor-
mance. This is because GMCV uses the doubling strategy to
adaptively determine the group size based on the outcome
of the previous testing, i.e., double the group size if the
previous test result is 0 and halve the group size otherwise.
On dense graphs, however, a group testing has a high
chance to return 1. Therefore, GMCV seldom employs the
doubling strategy, which makes GMCV behave like SOE,
but with a little overhead.

6.2 Experimental Results on Synthetic Data Sets

6.2.1 Sparseness

Fig. 10 shows the external testing costs of GMCV and SOE
running on synthetic graphs of different sparseness. The
skewness factor � ranges from 0.1 (average degree is 2,389)
to 4.0 (average degree is 0.108). We can see that GMCV
outperforms SOE from sparse to dense graphs, except when
the improper Linear group test function is deliberately used.
SOE is comparable with GMCV only when the graph is
extremely dense (� ¼ 0:1).

6.2.2 Scalability

In this experiment, we evaluate the scalability of GMCV on
synthetical graphs of different sizes (from 5,000 black
vertices and 5,000 white vertices to 500,000 black vertices
and 500,000 white vertices). The graphs here are generated
using � ¼ 2:0, which is found in many real-life graph data
[1], [2]. Fig. 11 shows the external testing costs of GMCV
running on synthetic graphs of different sizes. We can see
that GMCV scales well on graphs of different sizes.

7 CONCLUSIONS

This paper studies the kMCV problem on hidden bipartite
graphs in the context of group testing. Group testing is a
common testing model in hidden graph literature. Instead
of testing the presence of edge between only two vertices
(which is called the 2-vertex testing model), a group test
takes as input a group of vertices and returns whether
there is any edge among them. If group testing is used
properly, a single group test can reveal the same
information as multiple 2-vertex tests. Therefore, if the
external cost of a group test is constant to or sublinear of
the input size, the external cost of solving an kMCV
problem can be significantly reduced. To that end, an
algorithm that is based on group testing, called, GMCV, is
developed. GMCV adaptively determines the size of the
vertices to be input to each group test based on the data
characteristics. Our cost analysis as well as experimental
results show that GMCV outperforms SOE, a 2-vertex
testing-based kMCV algorithm, except in some extreme
cases (e.g., when the linear implementation of group
testing is deliberately used or the graphs are unusually
dense). In those cases, GMCV still has comparable
performance with SOE, making GMCV a robust and more
effective choice than SOE in the usual settings.
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Fig. 10. Varying graph sparseness; k ¼ 10.

Fig. 11. Varying number of black vertices jBj, with jBj ¼ jWj; k ¼ 10.Fig. 9. Results on Actor-D data.



REFERENCES

[1] L.A. Adamic and B.A. Huberman, “Power-Law Distribution of the
World Wide Web,” Science, vol. 287, pp. 2115, 2000.

[2] R. Albert, H. Jeong, and A.L. Barabasi, “The Diameter of the
World Wide Web,” Nature, vol. 401, pp. 130-131, 1999.

[3] N. Alon and V. Asodi, “Learning a Hidden Subgraph,” SIAM J.
Discrete Math., vol. 18, pp. 697-712, 2005.

[4] N. Alon, R. Beigel, S. Kasif, S. Rudich, and B. Sudakov, “Learning
a Hidden Matching,” SIAM J. Computing, vol. 33, pp. 487-501,
2004.

[5] D. Angluin and J. Chen, “Learning a Hidden Graph Using O(log
n) Queries per Edge,” J. Computer and System Sciences, vol. 74,
pp. 546-556, 2008.

[6] A. Bar-Noy, F.K. Hwang, I. Kessler, and S. Kutten, “A New
Competitive Algorithm for Group Testing,” Discrete Applied Math.,
vol. 52, no. 1, pp. 29-38, 1994.

[7] M. Bouvel, V. Grebinski, and G. Kucherov, “Combinatorial Search
on Graphs Motivated by Bioinformatics Applications: A Brief
Survey,” Proc. Int’l Workshop Graph-Theoretic Concepts in Computer
Science, pp. 16-27, 2005.

[8] C. Chen, X. Yan, P.S. Yu, J. Han, D.-Q. Zhang, and X. Gu,
“Towards Graph Containment Search and Indexing,” Proc. Int’l
Conf. Very Large Data Bases (VLDB), pp. 926-937, 2007.

[9] J. Cheng, Y. Ke, W. Ng, and A. Lu, “Fg-index: Towards
Verification-Free Query Processing on Graph Databases,” Proc.
ACM SIGMOD Int’l Conf. Management of Data, pp. 857-872, 2007.
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