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Abstract

Recently, the class of learned index structures has emerged as one
form of database indexes that make use of Machine Learning (ML)
techniques. The learned indexes designed for the one-dimensional
space have demonstrated improvements in both the query pro-
cessing time and the index size. Observing the advantages of one-
dimensional learned indexes, various learned indexes have been
proposed for the multi-dimensional space. This class of learned in-
dexes is termed “Learned Multi-dimensional Indexes.” This tutorial
on learned indexes is designed based on our long survey article on
the subject [4]. In this tutorial, we use a taxonomy to categorize
over 100 learned one- and multi-dimensional indexes with more
focus on the class of learned multi-dimensional indexes. The goal
of this tutorial is to explain the fundamental techniques behind
state-of-the-art learned one- and multi-dimensional indexes with
emphasis on the latter, and identify the ongoing challenges and
future opportunities for research in this domain.
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1 Introduction

Machine Learning (ML) techniques have been successfully applied
to enhance the performance of core database systems components,
e.g., indexes [59] and query optimizers [84]. Particularly, treating a
database index structure as an ML model is a key observation in
building learned index structures. Initially, learned indexes have
been designed for the one-dimensional case [27, 35, 59]. Due to
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Figure 1: Spectrum of learned index structures.

the performance benefits of one-dimensional learned indexes, the
concept has been extended for the multi-dimensional space [58].
Numerous learned multi-dimensional indexes have been proposed
in the literature, e.g., [3, 4, 24, 28, 63, 66, 90, 96]. Learned index
structures can be broadly categorized into pure and hybrid learned
indexes. Pure learned indexes are primarily designed to replace
traditional index structures, e.g., to replace the B-tree [9, 17], the
R-tree [42], or the Bloom filter [13]. On the other hand, hybrid
learned indexes combine ML models with traditional indexes to
build an ML-enhanced index structure. The spectrum of learned
indexes is given in Figure 1.

In this tutorial, we use a taxonomy that we have developed in our
survey paper [4] (also highlighted in Figure 2) to classify over 100
learned one- and multi-dimensional indexes. The concept of learned
indexes has been extended into the multi-dimensional space due to
the promising performance of the learned one-dimensional indexes.
The following four approaches have been adopted to design various
learned multi-dimensional indexes:

e Approach 1: Traditional multi-dimensional indexes are aug-
mented with ML models.

e Approach 2: Multi-dimensional data are projected into the
one-dimensional space and a learned one-dimensional index
is built in the projected space.

e Approach 3: A learned one-dimensional index is applied
once per dimension, on one or more dimensions of the multi-
dimensional space without using any projection functions.

o Approach 4: Learned multi-dimensional indexes are designed
from scratch by leveraging a suitably arranged data layout.

The various learned one-dimensional indexes have influenced
the design choices for learned multi-dimensional indexes. As a
result, in this tutorial, an overview of learned indexes for the one-
dimensional space will be covered first, and this will serve as the
foundation for learned indexes for the multi-dimensional space.
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In the taxonomy, in the context of learning the index, we refer to
the task of learning the mapping from keys to positions inside a data
set as the learned index. First, we differentiate between Immutable
vs. Mutable learned indexes based on the capability of supporting
dynamic inserts/updates. We further classify the mutable learned
indexes based on Fixed vs. Dynamic data layouts. If the data
layout is fixed before the construction of an index, we refer to the
index as having a fixed data layout. In contrast, in the context of
dynamic data layouts, ML models help re-arrange the data layout
during the index construction phase.

Next, the learned indexes are categorized based on the underly-
ing data space: One-dimensional vs. Multi-dimensional space.
Both the learned one- and multi-dimensional indexes are catego-
rized to identify their position in the spectrum (Figure 1) of learned
indexes: Pure vs. Hybrid. In the context of mutable pure learned
indexes, we also distinguish the indexes based on their adopted
strategies for supporting new data insertions: In-place vs. Delta
buffer insertion strategies. The hybrid learned indexes are cat-
egorized based on their traditional index component (e.g., B-tree,
R-tree, etc.). Finally, the taxonomy sub-categorizes further the class
of learned multi-dimensional indexes based on how they deal with
the underlying space into Projected vs. Native space. For example,
some learned multi-dimensional indexes use Space Filling Curves
(SFC, for short) [88, 104] to map the multi-dimensional space into
the one-dimensional space, and then apply a learned model to learn
the mapped data in the one-dimensional space.

The evolution of research related to learned indexes is presented
in Figure 3. It is evident from Figure 3 that the field of learned one-
and multi-dimensional indexes is evolving rapidly. As a result, this
tutorial will cover the current state of research in this highly active
field with more focus on learned indexes for the multi-dimensional
case, and present several open challenges for future research.

2 Tutorial Outline

We plan to deliver a 1.5-hour lecture-style tutorial. Moreover, we
split the tutorial into the following parts:

o Introduction and Historical Background (10 Minutes)
- Learning the Index vs. Indexing the Learned Models
— Evolution of Learned Indexes
e Part 1: Learned Indexes for the One-dimensional Space (20
minutes)
— Immutable vs. Mutable Indexes (5 minutes)
— Fixed vs. Dynamic Data Layouts (5 minutes)
— Pure vs. Hybrid Indexes (5 minutes)
— In-place vs. Delta Buffer Insertion Strategies (5 minutes)
e Part 2: Learned Indexes for the Multi-dimensional Space (55
minutes)
— Motivation and Challenges (5 minutes)
* Projected vs. Native Space
- Learned Multi-dimensional Indexes (50 minutes)
* Immutable Indexes (10 minutes)
- Immutable Pure Indexes (5 minutes)
- Immutable Hybrid Indexes (5 minutes)
* Mutable Indexes with Fixed Data Layouts (20 minutes)
- Pure Indexes with In-place vs. Delta Buffer Insertion
Strategies (10 minutes)
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- Hybrid Indexes (10 minutes)
* Mutable Indexes with Dynamic Data Layouts (20 min-
utes)
- Pure Indexes with In-place vs. Delta Buffer Insertion
Strategies (10 minutes)
- Hybrid Indexes (10 minutes)
e Part 3: Open Challenges for Future Research (5 minutes)

3 Historical Background

3.1 Learning the Index vs. Indexing the Learned
Models

In this tutorial, we first differentiate between the concepts of Index-
ing the Learned Models vs. Learning the Index. In the context
of indexing the learned models, e.g., [7], the focus is to index the
learned (i.e., trained) ML models so that we can distinguish among
these models in an efficient way during query processing. On the
other hand, in the context of learning the index, we refer to the task
of learning the mapping (i.e., learned index) from keys to positions
inside a data set. We will give some historical background about
several early approaches, e.g., [52, 107] for indexing the learned
models to contrast them against the more recent trend of learning
the index.

3.2 Evolution of Learned Indexes

We will present and discuss the evolution of research for both one-
and multi-dimensional learned indexes using Figure 3. The Figure 3
is adapted from our survey paper on learned indexes [4]. Here, we
have grouped the papers on learned one- and multi-dimensional
indexes based on their publication years. Moreover, we have used
the — symbol to indicate if a later paper is related to an earlier
one. The --» is used when there is a line crossing. Additionally, a o
symbol is used to denote a copy of an earlier paper in a later year.
One- and multi-dimensional indexes are differentiated using the
and A symbols, respectively.

4 Part 1: Learned Indexes for the
One-dimensional Space

The Recursive Model Index (RMI, for short) [59] is considered the
first instance of a “Learned Index" for the one-dimensional space.
In [59], the key insight is that traditional indexes (e.g., the B-tree)
can be perceived as an ML (i.e., predictive) models. For example,
given an input search key, a B-tree predicts (i.e., searches) the key’s
position in a logical sorted array. Hence, an ML model can poten-
tially serve as a replacement for a traditional index. RMI proposes
the idea of learning the Cumulative Distribution Function (CDF)
to learn the key-to-position mapping. However, learning this map-
ping is challenging, and might not be accurate. As a result, an error
correction mechanism is used after each ML model prediction. No-
tice that a key assumption is that the data is totally ordered (i.e.,
sorted) in the one-dimensional space. After the introduction of RMI,
various indexes have been proposed in the literature addressing dif-
ferent issues related to the learned indexes: supporting dynamic in-
serts/updates, e.g., [27, 35, 129], supporting concurrency, e.g., [116].
Moreover, in the context of hybrid learned indexes, ML-enhanced
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variants of traditional index structures, e.g., Bloom filter [13], LSM-
tree [79], Skiplist [95]) have been introduced [21, 87, 143].

In Part 1, we will introduce the taxonomy, and present the fun-
damental concepts of learned index structures. Moreover, we will
cover the existing learned indexes designed for the one-dimensional
space. Particularly, we will follow the taxonomy, and explain the
core concepts of a representative learned one-dimensional index
from each class of indexes. Part 1 will serve as the foundation for
Part 2 of the tutorial.

4.1 Immutable vs. Mutable Indexes

In the taxonomy (Figure 2), in the context of learning the index, we
will first differentiate between immutable and mutable learned in-
dexes based on the capability of supporting dynamic inserts/updates.
The class of Immutable one-dimensional indexes contains 18 in-
dexes [1, 19, 30, 47, 54, 56, 59, 70, 72, 74, 85, 98, 108, 111, 112, 132].
On the other hand, in the taxonomy, the class of Mutable one-
dimensional indexes contains 48 indexes [11, 20-22, 27, 35, 36, 39,
41, 44-46, 64, 65, 67, 68, 73, 75-78, 80, 86, 87, 97, 106, 115, 116, 118—
120, 125-128, 128-131, 133, 137, 141-143, 146, 148-150]. We will
present and discuss the core ideas of representative immutable and
mutable one-dimensional learned indexes.

790

4.2 Fixed vs. Dynamic Data Layout

The class of mutable learned indexes are further classified into two
categories based on the data layout during the index construction
phase. We will present the core ideas of representative mutable
one-dimensional learned indexes (e.g., BOURBON [21], LIPP [129])
to explain the concepts of fixed and dynamic data layouts.

4.3 Pure vs. Hybrid Indexes

In the taxonomy, both immutable and mutable learned indexes are
categorized into two types: Pure vs. Hybrid (see Figure 1). The class
of immutable learned one-dimensional indexes contains 11 pure
and 7 hybrid indexes. For example, we will cover RMI [59], and
Hybrid_RMI [59] as the representative indexes to illustrate the pure
and hybrid categories, respectively.

4.4 In-place vs. Delta Buffer Insertion Strategy

The class of mutable pure indexes are further categorized into two
types based on the strategy for supporting new data insertions.
For example, we will present the ALEX [27], and the PGM [35] as
the representative mutable pure indexes to explain the concepts of
In-place and Delta Buffer insertion strategies, respectively.
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5 Part 2: Learned indexes for the
Multi-dimensional space

In Part 2, we will cover the state-of-the-art by presenting the motiva-
tion and challenges, and explaining the core concepts of the learned
multi-dimensional indexes. Moreover, we will use the taxonomy to
group similar indexes together, and highlight the similarities and
differences within each group. Notice that we will also highlight
the open branches in the taxonomy during our presentation.

5.1

Although the term learned multi-dimensional indexes has been
introduced recently, one of the earliest papers on a distribution-
aware index structure for spatial (i.e., multi-dimensional) data can
be found in [8]. We will begin Part 2 by presenting the motivation
behind extending the concept of learned one-dimensional indexes
into the multi-dimensional space. We will discuss the additional
challenges related to the development of learned multi-dimensional
indexes. Moreover, we will also introduce the taxonomy categories
that are only applicable to the learned multi-dimensional indexes:

Motivation and Challenges

Projected vs. Native Space.

5.2 Immutable Pure Indexes

The class of Immutable Pure learned indexes, e.g., [23, 24, 58, 81,
91, 92, 110, 122, 124, 135], operate on the projected space by using
a Space-filling Curve order (e.g., Z-order [89], Hilbert order [49]).
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Some indexes in this class, e.g., the ZM-index [122] and Qd-tree [135],
operate on the original representation of the data (i.e, native space).
We will explain the core concepts behind this class of learned in-
dexes.

5.3 Immutable Hybrid Indexes

The class of Immutable Hybrid learned indexes, e.g., [2, 6, 28, 43, 53,
69, 90, 93, 94, 136, 138, 144, 145], is classified based on the underling
traditional index component used (e.g., R-tree [42], Quad-tree [105]).
We will present representative indexes from each group (e.g., grid-
based, tree-based) of hybrid indexes.

5.4 Mutable Indexes with Fixed Data Layout

In the taxonomy, there are several indexes [10, 29, 48, 121, 123] in
this category of mutable indexes with fixed data layout. Moreover,
the pure indexes with fixed data layout are further categorized into
two branches based on their new data insertion strategy: In-place
vs. Delta Buffer. On the other hand, the hybrid indexes are further
categorized based on their underlying traditional index structures.
We will present the core ideas and the similarities/differences of
the learned indexes in each of the branches.

5.5 Mutable Indexes with Dynamic Data Layout

Indexes in this category [16, 26, 31, 37, 40, 50, 62, 66, 96, 109, 113,117,
134, 140, 152] are classified in the category of mutable indexes with
dynamic data layout. Moreover, the pure indexes with dynamic
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data layout are further categorized into two branches based on
their new data insertion strategy: In-place vs. Delta Buffer. On the
other hand, the hybrid indexes are further categorized based on
their underlying traditional index structures. We will cover the
representative learned multi-dimensional indexes from each of the
branches according to the taxonomy.

5.6 A Summary of ML Techniques, Supported
Query Types, and Practical Systems
Integration

We will present a summary of the various ML techniques used for
learned one- and multi-dimensional indexes. Moreover, a summary
of the supported query types (e.g., point, range, kNN, and join
queries) for each of the 40+ learned multi-dimensional indexes will
be included. On the other hand, several learned one-dimensional
indexes have been successfully integrated into practical systems [1,
21,35,97, 118, 146]. We will also discuss similar efforts in the context
of learned multi-dimensional indexes [25, 71, 134].

6 Part 3: Open Challenges and Future Directions

In Part 3, we will discuss several open challenges and future re-
search opportunities related to learned one- and multi-dimensional
indexes. The open challenges and directions for future research are
as follows:

6.1 The Lack of Total Ordering and Error Bound
for the Multi-dimensional Case

Due to the lack of total ordering in the multi-dimensional space, it is
challenging to provide an error bound in case of ML model mispre-
dictions. As a result, a class of learned multi-dimensional indexes
projects multi-dimensional data into the one-dimensional space
to impose an ordering. However, some learned multi-dimensional
indexes might select one of the dimensions to impose an order
in native space. Although various methods has been proposed to
address this challenge, there is still room for improvement.

6.2 Choice of ML models

In the context of learned indexes, to reduce the impact of ML model
training time, storage overhead, and prediction latency, simple ML
models are adopted whenever possible. However, choosing an ML
model for a particular learned index design is a challenging task. As
a result, a learned index should avoid using complex ML models so
that the model building time and prediction latency do not become
bottlenecks for achieving low index construction time and high
query processing performance, respectively.

6.3 ML Model Re-training

In the context of learned indexes, changes in the underlying input
data/query distribution should be detected as soon as possible, and
a model re-training process should be triggered when necessary.
For example, exploring the concept of Machine Unlearning [60] in
the context of mutable learned indexes is an interesting research
direction
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6.4 Supporting Dynamic Inserts/Updates

Although mutable learned one- and multi-dimensional indexes can
support inserts/updates, further research is needed to investigate
the advantages and disadvantages of each approach, e.g., as in [14].

6.5 Supporting Concurrency

Only a few proposed methods (marked with an * symbol in the
taxonomy Figure 2) discuss the issue of concurrency in the context
of learned indexes. As a result, future research in this area should
treat the issue of concurrency as a first-class citizen while designing
learned one- and multi-dimensional indexes.

6.6 Index Compression

Both one- and multi-dimensional indexes have demonstrated signif-
icant benefits in terms of reduced storage requirements. Although
the advantages of a learned multi-dimensional bloom filter for in-
dex compression are studied in CompressLBF [23], exploring the
potential benefits of index compression using learned one- and
multi-dimensional indexes in the context of other index types is an
interesting direction for future research.

6.7 Security

The issue of security in the context of learned indexes is little
explored. The impact of poisoning attacks has been discussed in
a recent study [57]. Particularly, indexes, e.g., PGM [35], that are
designed with a worst-case guarantee are expected to perform well
in the presence of adversarial queries. Exploring this direction in
the context of one- and multi-dimensional learned indexes is an
open research topic.

6.8 Benchmarking for the Multi-dimensional
Case

There are extensive benchmarking studies for various learned one
dimensional indexes [5, 12, 38, 55, 61, 82, 83, 102, 103, 114, 128].
However, similar effort is still missing in the context of learned
multi-dimensional indexes.

6.9 Theoretical Analysis for the
Multi-dimensional Case

There are a few theoretical studies [15, 32-34, 139] that mathemat-
ically analyze the reasons behind the performance gain of learned
one-dimensional indexes over traditional indexes. Theoretical anal-
ysis of the various components of learned multi-dimensional in-
dexes is needed to better understand the benefits and limitations of
existing techniques.

6.10 Leveraging Modern Hardware for Learned
Indexes

The benefit of natively implementing a learned one-dimensional

index on a GPU has been presented in [151]. Similar investigation

in the context of other learned one- and multi-dimensional indexes

is an interesting direction for future research.
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7 Related Tutorials

There is a prior tutorial on the subject of learned multi-dimensional
indexes [3] that has been offered by the same authors of this tuto-
rial.! However, the prior tutorial [3] covers methods only till the
end of the year 2020. Hence, this tutorial serves as a significant
extension over that earlier tutorial [3] by using a more sophisticated
taxonomy to cover the newer varieties of learned multi-dimensional
indexes. A survey paper on learned indexes by the same authors
of this tutorial can be found in [4]. Another related tutorial can be
found in [51]. The tutorial [51] presents the initial results related to
learned indexes. However, in [51], only the Flood [90] index struc-
ture was presented as the representative learned multi-dimensional
index. In a recent tutorial on spatial query optimization [147], seven
learned spatial (i.e., multi-dimensional) indexes have been included
in the context of I/O cost estimation. Another recent tutorial on
machine learning for databases [18] covers only the ML-enhanced
variants of R-tree index. In contrast, in addition to covering learned
one-dimensional indexes as background, this tutorial will provide
a comprehensive overview of learned multi-dimensional indexes
by including over 40 learned multi-dimensional indexes. A series
of related tutorials on big spatial data can be found in [99-101].
However, the focus of these series of tutorials is not on learned
index structures.

8 Target Audiences and Goals

Intended Audience. This tutorial is intended for a broad category
of students, academics, researchers, and practitioners with basic
knowledge of data structures, algorithms, and machine learning.
The tutorial is designed to be self-contained in providing all the
necessary background. We only assume basic understanding of
fundamental data indexing structures (e.g., the B-tree, the R-Tree,
and the Bloom Filter).

Learning Goals. The target outcomes include:

e Understanding the fundamental concepts of learned index
structures for the one- and multi-dimensional spaces.

e Familiarity of state-of-the-art learned one-dimensional in-
dexes and thorough coverage of the state-of-the-art of learned
multi-dimensional indexes using a taxonomy.

e Knowing the evolution of learned indexes using a timeline
figure and recognizing their relationships and differences.

o Identifying the open challenges and future research oppor-
tunities in the area of learned one- and multi-dimensional
indexes.
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