Vector Database Management Techniques and Systems

James Jie Pan
jamesjpan@tsinghua.edu.cn
Tsinghua University
Beijing, China

ABSTRACT

Feature vectors are now mission-critical for many applications, in-
cluding retrieval-based large language models (LLMs). Traditional
database management systems are not equipped to deal with the
unique characteristics of feature vectors, such as the vague notion
of semantic similarity, large size of vectors, expensive similarity
comparisons, lack of indexable structure, and difficulty of answering
“hybrid” queries that combine structured attributes with feature vec-
tors. A number of vector database management systems (VDBMSs)
have been developed to address these challenges, combining novel
techniques for query processing, storage and indexing, and query
optimization and execution and culminating in a spectrum of perfor-
mance and accuracy characteristics and capabilities. In this tutorial,
we review the existing vector database management techniques and
systems. For query processing, we review similarity score design
and selection, vector query types, and vector query interfaces. For
storage and indexing, we review various indexes and discuss com-
pression as well as disk-resident indexes. For query optimization
and execution, we review hybrid query processing, hardware ac-
celeration, and distibuted search. We then review existing systems,
search engines and libraries, and benchmarks. Finally, we present
research challenges and open problems.

CCS CONCEPTS

« Information systems — Data management systems.

KEYWORDS
Vector Database, Vector Similarity Search, Dense Retrieval, k-NN

ACM Reference Format:

James Jie Pan, Jianguo Wang, and Guoliang Li. 2024. Vector Database
Management Techniques and Systems. In Companion of the 2024 Inter-
national Conference on Management of Data (SIGMOD-Companion ’24),
June 9-15, 2024, Santiago, AA, Chile. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3626246.3654691

1 INTRODUCTION

High-dimensional feature vectors are now used in a variety of
dense retrieval search applications, including retrieval-based large
language models (LLMs) [28, 31, 51], e-commerce [54], recommen-
dation [82], document retrieval [76], and so on [45, 51, 79, 84]. These
applications may involve billions of vectors and require millisecond

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

SIGMOD-Companion 24, June 9-15, 2024, Santiago, AA, Chile
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0422-2/24/06.
https://doi.org/10.1145/3626246.3654691

Jianguo Wang
csjgwang@purdue.edu
Purdue University
West Lafayette, Indiana, USA

Guoliang Li
liguoliang@tsinghua.edu.cn
Tsinghua University
Beijing, China

Query Processor
Interface

QUEI’IES

(
[Operators
(

(Sort / Top-K) Table Scan |

Embed [Idx Scan | [Hybrid Scan |

/;)\—/,

Query Optimizer) Query Executor

Storage Manager
Search Indexes }

(LSH] (IVF) (k-d) [RP_) (KGraph) (EFANNA] (NSG

(FLANN](ANNOY) [FANNG) (HNSW)(NGT

(Vector Storage

Figure 1: Overview of a VDBMS (Vector Database Manage-
ment System).

query latencies, all while needing to scale to increasing workloads
without sacrificing performance or response quality.

But existing traditional database management systems, includ-
ing NoSQL and relational databases, are not designed for these
datasets and workloads. First, vector queries rely on the concept of
similarity which can be vague for different applications, requiring
a different query specification. Second, similarity computation is
more expensive than other types of comparisons seen in relational
predicates, requiring efficient techniques. Third, processing a vector
query often requires retrieving full vectors from the collection. But
each vector may be large, possibly spanning multiple disk pages,
and the cost of retrieval is more expensive compared to simple
attributes while also straining memory. Fourth, vector collections
lack obvious properties that can be used for indexing, such as being
sortable or ordinal, preventing the use of traditional techniques. Fi-
nally, “hybrid” queries require accessing both attributes and vectors
together, but it remains unclear how to do this efficiently.

These challenges have led to the rise of vector database man-
agement systems (VDBMSs) specially adapted for these applica-
tions, and there are now over 20 commercial VDBMSs developed
within the past five years. A typical VDBMS is composed of a query
processor and a storage manager (Figure 1). For the query proces-
sor, VDBMSs introduce new approaches to query interfaces, query
types such as k-nearest-neighbor search, hybrid, and multi-vector
queries, and data operators such as similarity projection and hybrid
index scan. New techniques have also been proposed for query

https://doi.org/10.1145/3626246.3654691
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626246.3654691

SIGMOD-Companion 24, June 9-15, 2024, Santiago, AA, Chile

optimization and execution, including plan enumeration and se-
lection for hybrid query plans and hardware accelerated search.
For the storage manager, several techniques for large-scale vector
indexing and vector storage are now available, including hashing
and quantization-based approaches like PQ [1] and IVFADC [49]
that tend to be easy to update; tree-based indexes like FLANN [62]
and ANNOY [2] that tend to support logarithmic search complex-
ity; and graph-based indexes like HNSW [58] and others that are
efficient in practice but with less theoretical understanding. To-
gether, these techniques culminate into a variety of native systems,
extended systems, and search engines and libraries over a spectrum
of performance and accuracy characteristics and capabilities.

In this tutorial, we review techniques and systems for vector
data management along with benchmarks, followed by remaining
challenges and open problems.

Tutorial Overview. This tutorial contains three parts and the
intended length is 1.5 hours. The first part discusses specific tech-
niques and will last 50 minutes.

(1) Query Processing (10 min.). Query processing begins with a search
specification that defines the search parameters. These include
considerations for similarity score design, score selection and the
curse of dimensionality [22, 30, 61], the query type such as basic,
multi-vector, and hybrid queries [79, 84], and the query interface.

(2) Storage and Indexing (30 min.). Vector indexes tend to rely on
novel partitioning techniques such as randomization, learned par-
titioning, and navigable partitioning. The performance, accuracy,
and storage characteristics of an index depend on the techniques
used and the index structure. We classify indexes into table, tree, or
graph-based, and then describe the techniques for each index type.
To deal with large size, we also discuss vector compression using
quantization [49, 59] and disk-resident indexes [32, 74].

(3) Optimization and Execution (10 min.). For processing hybrid
queries, several plan enumeration and plan selection techniques
have been proposed, including rule-based [3, 4] and cost-based
selection [79, 84], and which also introduce new hybrid operators
including block-first scan [43, 79, 84, 87] and visit-first scan [43,
87]. Several techniques also speed up vector search via hardware
acceleration using SIMD [26, 27], GPUs [50], and distributed search.
To address slow index updates, some VDBMSs also rely on out-of-
place updates.

The second part discusses vector database management systems
and will last 30 minutes.

(1) Native Systems (10 min). Native systems such as Pinecone [5],
Miluvs [6, 79], and Manu [45] aim at high performance vector
search applications by offering a narrower range of capabilities.

(2) Extended Systems (10 min). For applications that require more so-
phisticated capabilities, several extended systems such as AnalyticDB-
V [84], PASE [90], pgvector [7], and Vespa [4] have been developed
based on NoSQL or relational systems.

(3) Search Engines and Libraries (5 min). Several search engines such
as Apache Lucene [8] and Elasticsearch [9] now also incorporate
vector search capability via integrated vector indexes. Several li-
braries are also available such as Meta Faiss [1] that provide vector
search functionality.

James Jie Pan, Jianguo Wang, and Guoliang Li

(4) Benchmarks (5 min). We describe two notable benchmarks that
evaluate a wide variety of search algorithms and systems over a
range of workloads [29, 91].

The final part discusses challenges and open problems (10 min.).
We describe several fundamental challenges, including how to per-
form similarity score selection, design more efficient hybrid oper-
ators and indexes, and estimate the cost of hybrid plans. We also
describe future applications, including index-supported incremental
search, multi-vector search, and enhancing security and privacy.

Target Audience. This tutorial is intended for database researchers
interested in understanding and advancing the state-of-art tech-
niques for large-scale vector database management and modern
applications beyond similarity search. This tutorial may also ben-
efit industry practitioners interested in learning about the latest
commercial systems. There are no prerequisites beyond a basic
understanding of database concepts.

Related Tutorials. A recent tutorial [28] discusses how vector
search can be used for retrieval-based LLMs. There are also separate
tutorials on similarity search techniques [37, 67, 68].

Our tutorial aims to complement these tutorials by focusing
on vector database management systems as a whole, and most of
this tutorial has not been covered elsewhere. Specifically, most of
the overlap is confined to Section 2.2, and the extent is not large.
In [37], a broad taxonomy of search techniques is given, along
with representative examples. Similarly in [67, 68], an overview of
various exact and approximate search techniques is given. Some
of the material in Section 2.2, mainly locality-sensitive hashing,
learning-to-hash, ANNOY, and HNSW, overlaps with these past
tutorials. But Section 2.2 also discusses key indexing trends in
VDBMSs that have not been discussed in past tutorials, including
disk-based indexes, quantization-based compression approaches for
handling large vector collections, and the diversity of graph-based
indexes. Aside from this section, all other sections in this tutorial
have not been covered elsewhere as they pertain to the VDBMS
as a whole, including query processing, hybrid operators, plan
enumeration, and plan selection, and a survey of existing VDBMSs.

2 TUTORIAL
2.1 Query Processing

Similarity Scores. Dense retrieval works based on similarity. A
similarity score can be used to quantify the degree of similarity be-
tween two feature vectors. While many scores have been proposed,
different scores may lead to different query results, and so how to
perform score selection is an important problem for VDBMSs, in
addition to score design.

(1) Score Design. A similarity score is designed to accurately capture
similarity relationships between feature vectors. Existing similarity
scores can be classified as basic scores, aggregate scores, and learned
scores. Basic scores are derived directly from the vector space and
include Hamming distance, inner product, cosine angle, Minkowski
distance, and Mahalanobis distance. For certain workloads involv-
ing multiple query or feature vectors per entity, aggregate scores
such as mean, weighted sum, and others [79] combine multiple
scores into a single scalar score that can be more easily compared.

Vector Database Management Techniques and Systems

It may also be possible to improve query results by learning a suit-
able score directly over the vector space. This is the goal of metric
learning, and several techniques have been proposed [21, 60, 91].

(2) Score Selection. Score selection aims to select the most appro-
priate score for a particular application. While many scores are
known, automatic score selection remains challenging. We mention
one attempt to dynamically adjust the score based on the query
[82]. Score selection is also related to query semantics, as certain
query entities such as text strings may still be ambiguous and need
to be resolved before a suitable score can be selected [75]. Finally,
the curse of dimensionality limits the usefulness of certain distance-
based scores, requiring other scores to compensate [22, 30, 61].

Query Types and Basic Operators. Data manipulation queries
aim to alter the vector collection. As each vector is derived from an
embedding model, it is possible to integrate the model within the
VDBMS. A VDBMS also must handle vector search queries. Basic
search queries include k-nearest neighbor (k-NN) and approximate
nearest neighbor (ANN) queries, and query variants include predi-
cated, batched, and multi-vector queries. To answer these queries,
a VDBMS compares the similarity between the query vector and a
number of candidate vectors using similarity projection. The quality
of a result set is measured using precision and recall.

(1) Data Manipulation. The embedding model can live inside or out-
side the VDBMS. Under direct manipulation, users directly modify
the feature vectors, and the user is responsible for the embedding
model [7, 90]. Under indirect manipulation, the collection appears
as a collection of entities, not vectors, and users manipulate the
entities [5, 10]. The VDBMS is responsible for the embedding model.

(2) Basic Search Queries. In a (c, k) -search query, the goal is to retrieve
k vectors that are most similar to the query vector, and where no
retrieved vector has a similarity score that is a factor of ¢ worse
than the best non-zero score. In a range query, a similarity threshold
is given, and the goal is to retrieve all vectors with similarity scores
within the threshold. Some particular cases of (c, k)-search queries
have been studied, notably ¢ = 0,k > 1 corresponding to the k-NN
query and ¢ > 0,k > 1 corresponding to the ANN query. These
queries have been individually studied for many decades, leading
to a variety of techniques and theoretical results [24, 48, 70].

(3) Query Variants. Most VDBMSs support predicated or “hybrid”
queries, and some also support batched and multi-vector queries
for applications such as e-commerce, facial recognition, and text
retrieval [11, 79, 84]. In a hybrid query, vectors in the collection
are associated to structured attributes regarding the represented
entity, and each vector in the search result set must also satisfy
boolean predicates over the corresponding attributes [84]. For
batched queries, a number of search queries are given at once,
and the VDBMS must answer all the queries in the batch. Several
techniques have been proposed to exploit commonalities between
the queries in order to speed up processing the batch [50, 79]. Fi-
nally in a multi-vector query, multiple feature vectors are used to
represent either the query, each entity, or both, and these can be
supported via aggregate scores [79]. Multi-vector queries support
several additional sub-variants.

SIGMOD-Companion 24, June 9-15, 2024, Santiago, AA, Chile

(4) Basic Operators. Similarity projection can be used to answer
vector search queries by projecting each vector in the collection
onto its similarity score.

Query Interfaces. Some VDBMSs aim to support only a small num-
ber of query types and simple APIs are sufficient. Other VDBMSs
aim to support a wide range of query types and may rely on SQL
extensions.

2.2 Indexing

An index can be used to speed up search queries, but vectors cannot
be indexed like structured attributes as they lack a natural sort or-
der and categories that are used in typical attribute indexes such as
B-tree. As a result, vector indexes rely on techniques including ran-
domization, learned partitioning, and navigable partitioning in order
to partition the collection so that it can be more easily explored.
To address the large size of vectors, disk-resident indexes have also
been proposed, in addition to techniques based on a compression
technique called quantization. A single index may combine several
of these techniques, but the performance of an index also depends
on its structure that can be table-based, tree-based, or graph-based.
In this section, we describe several vector indexes that are used in
existing VDBMSs, starting from table-based indexes.

Table-Based Indexes. A table-based index partitions the vector
collection into buckets, and each bucket can be retrieved by looking
up a key like the rows in a hash table. In general, table-based indexes
are easy to maintain but search performance may be worse than
other indexes at same recall if buckets are very large. Large buckets
can improve recall but are harder to scan while small buckets may
suffer from low recall but are easier to scan. Existing techniques,
including locality sensitive hashing (LSH) and learning to hash (L2H),
tend to rely on randomization and learned partitioning to improve
performance at high recall. Furthermore, quantization is a compres-
sion technique that relies mostly on learning compression codes in
order to reduce storage costs.

(1) Locality Sensitive Hashing (LSH). Locality sensitive hashing relies
on random hash functions to bucket vectors. The basic idea is to
hash each vector into each of L tables, with each hash function
a concatenation of K number of hash functions that belong to a
“hash family”. To answer a query, the query vector is hashed to
each of the tables, and collisions are kept as candidates. The hash
family, along with the tunable parameters L and K, can be designed
to give error guarantees for ANN. Many hash families are known
with varying performance and accuracy characteristics, including
random hyperplanes in EZLSH [35], binary projections in IndexLSH
[1], and overlapping spheres in FALCONN [23, 25].

(2) Learning to Hash (L2H). Learning to hash aims to use machine
learning techniques to directly learn a hash function that can bucket
similar vectors together. One technique is k-means clustering in
SPANN, where each vector is bucketed along with other members
of the same cluster [32]. The SPANN index also introduces several
techniques for disk-resident collections such as overlapping buckets
to reduce I/O retrievals. Other techniques include spectral hashing
[85] and techniques based on neural networks [71]. While these
techniques may produce high quality partitionings, they are data
dependent and cannot easily handle out-of-distribution updates. A
survey of techniques can be found in [81].

SIGMOD-Companion 24, June 9-15, 2024, Santiago, AA, Chile

(3) Quantization. Quantization aims to map each vector onto a
smaller discrete subset of compression codes [44]. For example,
the SQ index works by mapping each vector onto a bit-compressed
representation, where every 64-bit dimension is reduced to 32 bits
[1], and the IVFSQ index first buckets the vectors into a few k-means
clusters, and then stores the bit-compressed vectors in each bucket.
The k-means centroids can also be directly used as compression
codes [42, 56], but this may require large k for large collections.
Product quantization splits the original space into multiple sub-
spaces, each of which can support more efficient k-means clustering
compared to the original space [49]. The PQ index directly maps
each vector onto its product quantization code [1]. The IVFADC
index first buckets the vectors into a few k-means clusters, and
then stores the product quantized codes in each of the buckets.
Other techniques aim to reduce the compression error and include
Cartesian k-means [64], optimized PQ (OPQ) [41], hierarchical
quantizers [89], and the score-aware ScaNN anisotropic quantizer
1 [46]. A survey of quantization techniques is available at [59].

Tree-based indexes. A tree-based index recursively partitions
the vectors to yield a search tree, in general offering logarithmic
search. One of the fundamental indexes is k-d tree, which performs
partitioning splits deterministically and has well-understood prop-
erties [33, 69]. More recent techinques rely on randomization to
determine splits or for other purposes, as deterministic trees cannot
easily adapt to the intrinsic dataset dimensionality. For example, a
principal component tree first finds the principal components of the
dataset, and then splits along the principal axes. The PKD-tree splits
by rotating through the principal axes [72], while FLANN splits
along random principal dimensions [62]. To avoid the expensive
pre-processing step for finding the principal components incurred
by these indexes, random projection trees adopt random splits. The
RPTree uses random splitting planes along with random splitting
thresholds [33, 34]. To improve recall, a forest of trees can be used,
similar to the multiple hash tables used in LSH. The ANNOY index
is similar to RPTree but selects the splitting threshold based on
random medians [2].

Graph-based indexes. A graph can be overlayed on top of the
vectors so that a node resides at each vector location in the vector
space, inducing distances between the nodes. The nodes correspond-
ing to similar vectors are then connected with edges that can be
weighted by similarity. These edges, along with the distance metric,
guide vector search through the graph. The edge selection prob-
lem that determines which edges to include in the graph has been
extensively studied, leading to distinct graph categories. Typically
edges are selected in order to yield high performance search, but as
graphs are highly data dependent, they tend to be hard to update.
In a k-nearest neighbor graph (KNNG), each vector is connected to
its k most similar vectors. This allows k-NN queries to be answered
exactly in O(1) time if the query vector is a member of the vector
collection. In a monotonic search network (MSN) and small world
graph (SWG), the aim is to select edges that make the graph easily
navigable. All graph types may make use of randomized, learned,
and navigable partitioning techniques during graph construction.

Ihttp://github.com/google- research/google- research/tree/master/scann

James Jie Pan, Jianguo Wang, and Guoliang Li

(1) k-Nearest Neighbor Graphs (KNNGs). The brute-force approach
for constructing a KNNG requires O(N?) time, and unfortunately
this appears to be a fundamental limit [86] despite some empirical
results [65, 77]. Other techniques aim to approximate a KNNG via
iterative refinement. For example, KGraph (NN-Descent) begins
with a random KNNG and refines it by examining the second-
order neighbors of each node in the graph [36]. To improve recall,
EFANNAZ? begins with a KNNG constructed using a forest of ran-
domized k-d trees. In [78], a similar approach is taken but using
trees that split on random hyerplanes.

(2) Monotonic Search Networks (MSNs). An MSN guarantees that a
monotonic search path exists for every pair of nodes in the graph,
allowing for a simple best-first vector search procedure. But similar
to KNNGs, MSNs are also difficult to construct [38, 63]. Recent
techniques use search trials that repeatedly probe the quality of the
graph as edges are added. During a search trial, a best-first search
is conducted on the given source and target nodes. If no monotonic
search path can be found, then edges are added until such a path
exists. An initial graph such as a random graph [74] or approximate
KNNG [40] may be used to initialize the MSN to reduce the number
of trials. Some indexes such as FANNG [47] perform a large number
of search trials over random node pairs, while others such as NSG
[40] and Vamana [74] designates a “navigating node” as the source
for all trials and selects random targets instead in order to speed up
construction. In [74], a disk-resident version of Vamana (Disk ANN)
is also introduced.

(3) Small World Graphs (SWGs). A “small-world” graph is one where
the characteristic path length scales logarithmically with the num-
ber of nodes [83], and a “navigable” graph is one where the number
of nodes visited by best-first search grows in O(log N) [52]. These
properties combine to support efficient search. In [57], a naviga-
ble SWG (NSW) is constructed by inserting nodes one at a time
into the graph and connecting each one to its k nearest neighbors
that are already in the graph. In [58], a hierarchical NSW (HNSW)
graph is constructed by assigning each node to a random maximum
“layer”, chosen from an exponentially decaying distribution, and
then adding it to each of the underlying layers while connecting it
to its k nearest neighbors in each layer to avoid the degree explosion
problem of a flat graph.

2.3 Query Optimization and Execution

For predicated queries, plan enumeration and selection may depend
on hybrid operators. We introduce these first before discussing
enumeration, selection, and query execution.

Hybrid Operators. A hybrid operator works by combining vector
index scan with attribute search, and there are generally two ap-
proaches. In block-first scan, parts of the vector index are prevented
from exploration (“blocked”) based on their associated attribute
values, and then the index scan proceeds as normal over the blocked
index. The main consideration is how to efficiently perform the
blocking. In visit-first scan, the scan operator itself is modified so
that it takes into consideration the attribute values on the visited
vectors during index traversal. The main consideration is how to
design the operator so that search is efficient.

Zhttp://arxiv.org/abs/1609.07228

http://github.com/google-research/google-research/tree/master/scann
http://arxiv.org/abs/1609.07228

Vector Database Management Techniques and Systems

(1) Block-First Scan. For block-first scan, some techniques perform
online blocking, where the index is blocked at query time. This
allows it to be more flexible to different queries but adds query
latency overhead. To reduce the overhead, [6, 79, 84] first construct
a bitmask using traditional attribute filtering techniques. This bit-
mask is then used during index scan to quickly determine if a vector
is blocked. Other techniques perform offline blocking, where the
index is blocked beforehand. In [6, 79], the vector collection is pre-
partitioned along attributes so that at query time, only the relevant
partition needs to be searched. In [3, 43, 87], online blocking can
cause a graph-based index to become disconnected, complicating
the search procedure. Thus, these techniques construct the graph
in a way that can prevent disconnections from occurring by con-
sidering attribute values during edge selection.

(2) Visit-First Scan. For visit-first scan, if the predicate is highly
selective, then the scan may backtrack in order to fill the result
set. To avoid backtracking, several techniques infuse the best-first
search operator for a graph-based index with attribute information
so that the scan prefers nodes that satisfy the predicate [43, 87].

Plan Enumeration. There may be multiple query plans for any
given query. For example for non-predicated queries, a VDBMS
may support multiple search indexes, and each can potentially be
used to answer the query. For predicated queries, there are three
broad approaches. The predicate can be applied first, for example
via block-first scan, known as “pre-filtering”; applied onto the result
set after the search, known as “post-filtering”; or applied while the
search is being conducted, for example via visit-first scan, known
as “single-stage filtering”. To enumerate all the possible plans, a
VDBMS may predefine all the plans for every supported query type,
or it may automatically enumerate the plans.

(1) Predefined. Some VDBMSs predefine a single plan for each query
type, removing the overhead of plan selection. This is useful for
workloads with specific needs. For example for e-commerce, Vearch
[12, 54] executes all predicated search queries using post-filtering.
Post-filtering risks returning fewer than k results for a (¢, k)-search
query, but for e-commerce, this is acceptable. Other VDBMSs such
as Weaviate [13] execute all predicated search queries using pre-
filtering. Still others such as Euclid [14] only support a single search
index at a time, and all search queries are executed using the index.
There are also some VDBMSs that predefine multiple plans for
different queries. For example, AnalyticDB-V [84] supports four
different plans for predicated queries based on index availability,
and then a cost-based optimizer is used to select the plan.

(2) Automatic. Some VDBMSs that are based on relational systems,
such as pgvector [7] and PASE [90], take advantage of the under-
yling relational optimizer to automatically perform plan enumer-
ation. This is achieved by extending the relational language with
vector search operators, including index scan operators.

Plan Selection. Plan selection aims to select the optimal query
plan, usually the minimum latency plan. This is achieved using
rule-based or cost-based selection.

(1) Rule Based. For VDBMSs that only support a small number of
plans, simple rules can be sufficient for plan selection. For exam-
ple, Qdrant [3] and Vespa [4] use predicate selectivity estimates

SIGMOD-Companion 24, June 9-15, 2024, Santiago, AA, Chile

as a heuristic for deciding whether to perform pre-filtering, post-
filtering, or single-stage brute-force scan.

(2) Cost Based. Other VDBMSs use a cost model to select the plan
with minimum cost. For example, AnalyticDB-V [84] and Milvus
[6, 79] devise costs for several vector operators in order to use a
linear cost model that aggregates the I/O and computation cost of
each plan operator in order to yield a total plan cost.

Query Execution. Several techniques aim to exploit hardware
acceleration in order to speed up search queries. Additionally, many
VDBMSs adopt distributed architecture, allowing them to scale
to larger datasets and workloads. Finally, as some vector indexes
are hard to update, some VDBMSs adopt mechanisms for out-of-
place updates that enable high write throughput without sacrificing
search throughput.

(1) Hardware Acceleration. Modern machines equipped with SIMD
and GPUs support high amounts of data parallelism. In [26, 27],
in addition to parallelizing similarity projection, memory retrieval
is identified as a key bottleneck during IVFADC index scan, and
a technique is introduced to reduce the amount of retrievals by
exploiting the storage capacity of SIMD registers along with SIMD
shuffle. In [50], a similar technique is introduced for GPU registers.
In Milvus [6, 79], the small register size is identified as a limiting
factor, and a technique based on multiple rounds is introduced in
order to support (c, k)-search queries with large k.

(2) Distributed Search. Several VDBMSs adopt a distributed archi-
tecture where the vector collection is sharded and replicated and
scatter-gather is used to answer vector search. To partition the
collection into shards, the vectors can be equally partitioned or the
partitioning can be index guided, such as placing all vectors in the
same bucket into the same partition for a table-based index. These
can also take advantage of disaggregated architecture [80] or cloud
functions [73] to increase elasticity.

(3) Out-of-Place Updates. Many vector indexes are hard to update
due to their data dependent nature, leading to long query latencies.
To address this issue, some VDBMs perform updates out-of-place,
either by applying updates asynchronously over replicas [10, 13, 84],
storing updates in a temporary structure and then applying them
in bulk at a more appropriate time [10, 84], or using dedicated
structures such as a log-structured merge (LSM) tree [6, 45, 79].

2.4 Existing Systems

Native. Native systems aim at providing dedicated vector capabili-
ties. Some native systems target mostly vector workloads, whereas
others target mostly mixed workloads that consist of queries over
both vectors and attributes.

(1) Mostly Vector. Mostly-vector systems aim to support efficient
vector queries with limited support for attribute-related capabilities
such as predicated search. As a result, these systems tend to be
streamlined for vectors. The interface tends to be a simple API, and
there is usually no query parser or rewriter, reducing the query
processing overhead. Usually there is also no optimizer as all queries
are handled in the same way by a single search index. Some systems
like EuclidesDB [14] and Vald [10] do not support predicated search
at all, whereas others like Vearch [12], Pinecone [5], and Chroma
[15] support it with a single predefined plan.

SIGMOD-Companion 24, June 9-15, 2024, Santiago, AA, Chile

(2) Mostly Mixed. Mostly-mixed systems aim to support a wider
variety of queries and query plans, including attribute-only queries
in some cases. This makes them more complex, featuring more
sophisticated data and storage models as well as query optimiza-
tion. For example, Milvus [6, 79], Qdrant [3], and Manu [45] all
include query optimizers. Systems like Weaviate [13], NucliaDB
[16], and Marqo [11] support other queries in addition to vector
queries. Weaviate uses a graph data model over data entities and
supports graph-based queries, while NucliaDB and Marqo support
non-vector keyword queries in addition to combined similarity and
keyword queries via dense and sparse multi-vectors.

Extended. When deploying a native system is difficult® or when
it simply lacks capabilities, an extended system may be preferred.
Extended systems aim to offer best of both worlds by integrating
vector capabilities into a non-vector NoSQL or relational system.

(1) NoSQL. Many NoSQL systems have or are planned to be extended
to support vector capabilities, including Vespa [4], Cassandra [53],
Spark-based Databricks, MongoDB, CosmosDB, and Redis. This is
typically achieved by adding vector search indexes into the stor-
age engine. For example Cassandra plans to integrate an HNSW
index into the storage layer, implement scatter-gather to support
distributed vector search, and extend the Cassandra query language
with vector-related operators.

(2) Relational. If a similarity score is available, a relational system
can already answer vector queries via brute-force scan, as demon-
strated by SingleStore [17, 66]. Moreover, after the built-in query
optimizer is made aware of vector operators, it can be used for
plan enumeration and selection as in PASE [90] and pgvector [7]
which also introduce search indexes into PostgreSQL. Other rela-
tional systems with similar vector support include AnalyticDB-V
[84], Clickhouse, and MyScale. A recent work [92] analyzed the
potential limitations of using relational databases to support vector
search and explored ways to overcome these limitations.

Search Engines and Libraries. Some applications may not require
a fully managed system. In this case, a few popular search engines,
including Apache Lucene [8], Elasticsearch [9], OpenSearch [18],
and Solr [19] now support vector search and may be preferred.
There are also several libraries that offer low-level search capability,
including Microsoft SPTAG [20] and Meta Faiss [1].

2.5 Benchmarks

We discuss two comprehensive benchmarks. In [55], a wide vari-
ety of ANN techniques and search indexes are reimplemented and
evaluated across a range of workloads. The datasets go up to thou-
sands of dimensions and are collected from real-world image, text,
video, and audio collections. In [29], existing implementations that
are available for use are compared, leaving intact implementation-
specific techniques. It also includes several commercial VDBMSs in
the evaluation, and the results are available online?.

2.6 Challenges and Open Problems

Despite this progress, several challenges remain.

3http://arxiv.org/abs/2308.14963
“4http://ann-benchmarks.com

James Jie Pan, Jianguo Wang, and Guoliang Li

(1) Similarity Score Selection. Approaches for similarity score selec-
tion remain lacking. EuclidesDB [14] offers one approach where
many scores and embedding models can be queried at once, but the
ultimate decision is left to the user. In [82], the score is dynamically
adjusted based on the query, but the technique is limited to social
media recommendation.

(2) Operator and Index Design. Existing hybrid operators are limited
to only small number of attribute categories, and there is a need for
more powerful operators that can support more complex hybrid
queries. Additionally, aside from DiskANN [74] and SPANN [32],
there remains a lack of disk-based indexes.

(3) Cost Estimation. The cost of block-first scan and visit-first scan
is difficult to estimate due to the uncertain effect from blocking.
For tree and graph-based indexes, blocking and predicate failures
can lead to excessive backtracking, increasing query latency. On
the other hand, post-filtering leads to uncertainty in the size of the
result set as fewer than k results may be returned for a (c, k)-search
query due to the filter. One way to avoid this is to retrieve ak results
before the filter so that there are enough results after the filter is
applied [79, 84], but how to tune a remains unclear.

(4) Security and Privacy. Many VDBMSs are offered as managed
cloud services that may be vulnerable to attack. For multi-tenant
systems, there is a need for techniques that can support private and
secure vector operations, such as secure k-NN search [88, 93].

(5) Incremental Search. Applications such as e-commerce rely on
incremental search, where the result set is seamlessly fetched in
parts. Techniques such as [39] exist for incremental k-NN search
but it is unclear how to support this search within vector indexes.

(6) Multi-Vector Search. Applications such as facial recognition or
contextual text retrieval make use of multi-vector search. While
aggregate scores can be used to support these applications, they re-
quire significant computations and increase query latency. Generic
multi-attribute top-k techniques also cannot easily be applied to
vector indexes [79], and new techniques are needed.

3 PRESENTERS

James Jie Pan is a postdoctoral researcher at Tsinghua University.
His research interest is vector data management.

Jianguo Wang is a tenure-track assistant professor in the De-
partment of Computer Science at Purdue University. His research
interests include disaggregated databases and vector databases. He
is a recipient of the NSF CAREER Award.

Guoliang Li is a professor in the Department of Computer Science
at Tsinghua University in Beijing, China. His research interests
include machine learning for databases, database systems, and data
cleaning and integration.

ACKNOWLEDGEMENT

This paper was sponsored by National Key Research and Devel-
opment Program of China (2023YFB4503600), and NSF of China
(61925205, 62232009, 62102215). Jianguo Wang acknowledges the
support of the National Science Foundation under Grant Number
2337806.

http://arxiv.org/abs/2308.14963
http://ann-benchmarks.com
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2337806

Vector Database Management Techniques and Systems

REFERENCES

oo
&

[26]

[27

[28]

[29

[30]

[31

[32]

[33

[34]

[35

[36]

@
=

[38]

[39

[40]

[41

[42]

[43

[n.d.

. http://github.com/facebookresearch/faiss.

. http://github.com/spotify/annoy.

. http://qdrant.tech.

. http://vespa.ai.

. http://pinecone.io.

. http://milvus.io.

. http://github.com/pgvector.

. http://lucene.apache.org.

. http://elastic.co.

. http://vald.vdaas.org.

. http://marqo.ai.

. http://github.com/vearch.

. http://weaviate.io.

. http://euclidesdb.readthedocs.io.

. http://trychroma.com.

. http://nuclia.com.

. http://singlestore.com.

. http://opensearch.org.

. http://solr.apache.org.

.d.]. http://github.com/microsoft/SPTAG.

Ahmed Abdelkader, Sunil Arya, Guilherme D. da Fonseca, and David M. Mount.
2019. Approximate nearest neighbor searching with non-Euclidean and weighted
distances. In SODA. 355-372.

Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. 2001. On the
surprising behavior of distance metrics in high dimensional space. In ICDT.
Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig
Schmidt. 2015. Practical and optimal LSH for angular distance. In NeurIPS. 1225~
1233.

Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. 2018. Approximate nearest
neighbor search in high dimensions. In ICM. 3287-3318.

Alexandr Andoni and Ilya Razenshteyn. 2015. Optimal data-dependent hashing
for approximate near neighbors. In STOC. 793-801.

Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2017. Acceler-
ated Nearest Neighbor Search with Quick ADC. In ICMR.

Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2021. Quicker
ADC: Unlocking the hidden potential of product quantization with SIMD. IEEE
Trans. Pattern Anal. and Mach. Intell. 43, 5 (2021), 1666—1677.

Akari Asai, Sewon Min, Zexuan Zhong, and Danqi Chen. 2023. Retrieval-based
Language Models and Applications. In ACL.

Martin Aumiiller, Erik Bernhardsson, and Alexander Faithfull. 2020. ANN-
Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms.
Inform. Syst. 87 (2020).

Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. 1999.
When is “nearest neighbor” meaningful?. In ICDT.

Wei-Cheng Chang, Felix X. Yu, Yin-Wen Chang, Yiming Yang, and Sanjiv Kumar.
2020. Pre-training tasks for embedding-based large-scale retrieval. In ICLR.

Qi Chen, Bing Zhao, Haidong Wang, Minggin Li, Chuanjie Liu, Zengzhong
Li, Mao Yang, Jingdong Wang, Mao Yang, and Jingdong Wang. 2021. SPANN:
Highly-efficient billion-scale approximate nearest neighbor search. In NeurIPS.
Sanjoy Dasgupta and Yoav Freund. 2008. Random projection trees and low
dimensional manifolds. In STOC. 537-546.

Sanjoy Dasgupta and Kaushik Sinha. 2013. Randomized partition trees for exact
nearest neighbor search. In COLT. 317-337.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. 2004. Locality-
sensitive hashing scheme based on p-stable distributions. In SCG. 253-262.

Wei Dong, Moses Charikar, and Kai Li. 2011. Efficient k-nearest neighbor graph
construction for generic similarity measures. In WWW.

Karima Echihabi, Kostas Zoumpatianos, and Themis Palpanas. 2021. New trends
in high-D vector similarity search: Al-driven, progressive, and distributed. Proc.
VLDB Endow. 14, 12 (2021), 3198-3201.

H. Edelsbrunner and N. R. Shah. 1996. Incremental topological flipping works
for regular triangulations. Algorithmica 15 (1996), 223-241.

Danyel Fisher, Igor Popov, Steven Drucker, and M. C. Schraefel. 2012. Trust me,
I'm partially right: Incremental visualization lets analysts explore large datasets
faster. In SIGCHI. 1673-1682.

Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast approximate
nearest neighbor search with the navigating spreading-out graph. Proc. VLDB
Endow. 12, 5 (2019), 461-474.

Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized product
quantization for approximate nearest neighbor search. In CVPR. 2946-2953.
Allen Gersho and Robert M. Gray. 1991. Vector Quantization and Signal Compres-
sion. Springer.

Siddharth Gollapudi, Neel Karia, Varun Sivashankar, Ravishankar Krishnaswamy,
Nikit Begwani, Swapnil Raz, Yiyong Lin, Yin Zhang, Neelam Mahapatro, Premku-
mar Srinivasan, Amit Singh, and Harsha Vardhan Simhadri. 2023. Filtered-
DiskANN: Graph algorithms for approximate nearest neighbor search with filters.

=]
o

BB BBBEBBEBBEBEBEBEBBEBBBT
[i et et e i it asit it it it e e

TEETEEEEEEEEEEEEEEEE
a.

SIGMOD-Companion 24, June 9-15, 2024, Santiago, AA, Chile

In WWW.

Robert M. Gray. 1984. Vector quantization. IEEE ASSP Mag. 1, 2 (1984), 4-29.
Rentong Guo, Xiaofan Luan, Long Xiang, Xiao Yan, Xiaomeng Yi, Jigao Luo,
Qianya Cheng, Weizhi Xu, Jiarui Luo, Frank Liu, Zhenshan Cao, Yanliang Qiao,
Ting Wang, Bo Tang, and Charles Xie. 2022. Manu: A cloud native vector database
management system. Proc. VLDB Endow. 15, 12 (2022), 3548-3561.

Ruigi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and
Sanjiv Kumar. 2020. Accelerating large-scale inference with anisotropic vector
quantization. In ICML, Vol. 119. 3887-3896.

Ben Harwood and Tom Drummond. 2016. FANNG: Fast approximate nearest
neighbour graphs. In CVPR.

Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In STOC. 604-613.

Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product quantization
for nearest neighbor search. IEEE Trans. Pattern Anal. and Mach. Intell. 33, 1
(2011), 117-128.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021. Billion-scale similarity
search with GPUs. IEEE Trans. Big Data 7, 3 (2021), 535-547.

Yubin Kim. 2022. Applications and future of dense retrieval in industry. In SIGIR.
3373-3374.

Jon M. Kleinberg. 2000. Navigation in a small world. Nature 406 (2000), 845.
Avinash Lakshman and Prashant Malik. 2010. Cassandra: A decentralized struc-
tured storage system. SIGOPS Oper. Syst. Rev. 44, 2 (2010), 35-40.

Jie Li, Haifeng Liu, Chuanghua Gui, Jianyu Chen, Zhenyuan Ni, Ning Wang, and
Yuan Chen. 2018. The design and implementation of a real time visual search
system on JD e-commerce platform. In Middleware. 9-16.

Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and
Xuemin Lin. 2020. Approximate nearest neighbor search on high dimensional
data — Experiments, analyses, and improvement. IEEE Trans. Knowl. Data Eng.
32, 8 (2020), 1475-1488.

S. Lloyd. 1982. Least squares quantization in PCM. IEEE Trans. Inform. Theory
28, 2 (1982), 129-137.

Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov.
2014. Approximate nearest neighbor algorithm based on navigable small world
graphs. Inform. Syst. 45 (2014), 61-68.

Yury Malkov and D. A. Yashunin. 2020. Efficient and robust approximate nearest
neighbor search using hierarchical navigable small world graphs. IEEE Trans.
Pattern Anal. and Mach. Intell. 42, 4 (2020), 824—-836.

Yusuke Matsui, Yusuke Uchida, Hervé Jégou, and Shin’ichi Satoh. 2018. A survey
of product quantization. ITE Trans. Media Technol. and Appl. 6, 1 (2018), 2-10.
Jingfan Meng, Huayi Wang, Jun Xu, and Mitsunori Ogihara. 2022. ONe Index
for All Kernels (ONIAK): A zero re-indexing LSH solution to ANNS-ALT (After
Linear Transformation). Proc. VLDB Endow. 15, 13 (2022), 3937-3949.

Evgeny M. Mirkes, Jeza Allohibi, and Alexander Gorban. 2020. Fractional Norms
and Quasinorms Do Not Help to Overcome the Curse of Dimensionality. Entropy
22, 10 (2020).

Marius Muja and David G Lowe. 2009. FLANN: Fast library for approximate
nearest neighbors. In VISAPP.

Gonzalo Navarro. 2002. Searching in metric spaces by spatial approximation.
VLDB 7. (2002).

Mohammad Norouzi and David J. Fleet. 2013. Cartesian k-means. In CVPR.
Rodrigo Paredes, Edgar Chavez, Karina Figueroa, and Gonzalo Navarro. 2006.
Practical construction of k-nearest neighbor graphs in metric spaces. In WEA.
Adam Prout, Szu-Po Wang, Joseph Victor, Zhou Sun, Yongzhu Li, Jack Chen, Evan
Bergeron, Eric Hanson, Robert Walzer, Rodrigo Gomes, and Nikita Shamgunov.
2022. Cloud-native transactions and analytics in SingleStore. In SIGMOD. 2340-
2352.

Jianbin Qin, Wei Wang, Chuan Xiao, and Ying Zhang. 2020. Similarity query
processing for high-dimensional data. Proc. VLDB Endow. 13, 12 (2020), 3437~
3440.

Jianbin Qin, Wei Wang, Chuan Xiao, Ying Zhang, and Yaoshu Wang. 2021. High-
dimensional similarity query processing for data science. In KDD. 4062-4063.
Parikshit Ram and Kaushik Sinha. 2019. Revisiting kd-tree for nearest neighbor
search. In KDD. 1378-1388.

Aviad Rubinstein. 2018. Hardness of approximate nearest neighbor search. In
STOC. 1260-1268.

R. R. Salakhutdinov and G. E. Hinton. 2007. Learning a nonlinear embedding by
preserving class neighbourhood structure. In AISTATS.

C. Silpa-Anan and R. Hartley. 2008. Optimised KD-trees for fast image descriptor
matching. In CVPR.

Yongye Su, Yinqi Sun, Minjia Zhang, and Jianguo Wang. 2024. Vexless: A Server-
less Vector Data Management System Using Cloud Functions. In Proceedings of
ACM Conference on Management of Data (SIGMOD).

Suhas Jayaram Subramanya, Devvrit, Rohan Kadekodi, Ravishankar Krish-
naswamy, and Harsha Simhadri. 2019. DiskANN: Fast accurate billion-point
nearest neighbor search on a single node. In NeurIPS.

Jacopo Tagliabue and Ciro Greco. 2023. (Vector) Space is not the final frontier:
Product search as program synthesis. In SIGIR.

http://github.com/facebookresearch/faiss
http://github.com/spotify/annoy
http://qdrant.tech
http://vespa.ai
http://pinecone.io
http://milvus.io
http://github.com/pgvector
http://lucene.apache.org
http://elastic.co
http://vald.vdaas.org
http://marqo.ai
http://github.com/vearch
http://weaviate.io
http://euclidesdb.readthedocs.io
http://trychroma.com
http://nuclia.com
http://singlestore.com
http://opensearch.org
http://solr.apache.org
http://github.com/microsoft/SPTAG

SIGMOD-Companion 24, June 9-15, 2024, Santiago, AA, Chile

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

(84]

Jiajie Tan, Jinlong Hu, and Shoubin Dong. 2023. Incorporating entity-level
knowledge in pretrained language model for biomedical dense retrieval. Comput.
Biol. Med. 166 (2023).

P. M. Vaidya. 1989. An O(nlogn) algorithm for the all-nearest-neighbors prob-
lem. Discrete Comput. Geom. 4 (1989), 101-115.

Jing Wang, Jingdong Wang, Gang Zeng, Zhuowen Tu, Rui Gan, and Shipeng
Li. 2012. Scalable k-NN graph construction for visual descriptors. In CVPR.
1106-1113.

Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-
angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, Kun Yu, Yuxing Yuan,
Yinghao Zou, Jiquan Long, Yudong Cai, Zhenxiang Li, Zhifeng Zhang, Yihua
Mo, Jun Gu, Ruiyi Jiang, Yi Wei, and Charles Xie. 2021. Milvus: A purpose-built
vector data management system. In SIGMOD. 2614-2627.

Jianguo Wang and Qizhen Zhang. 2023. Disaggregated database systems. In
SIGMOD. 37-44.

Jingdong Wang, Ting Zhang, Jingkuan Song, Nicu Sebe, and Heng Tao Shen.
2018. A survey on learning to hash. IEEE Trans. Pattern Anal. and Mach. Intell.
40, 4 (2018), 769-790.

Wenping Wang, Yunxi Guo, Chiyao Shen, Shuai Ding, Guangdeng Liao, Hao Fu,
and Pramodh Karanth Prabhakar. 2023. Integrity and junkiness failure handling
for embedding-based retrieval: A case study in social network search. In SIGIR.
Duncan J. Watts and Steven H. Strogatz. 1998. Collective dynamics of ‘small-
world’ networks. Nature 393 (1998), 440-442.

Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li,
and Yuanzhe Cai. 2020. AnalyticDB-V: A hybrid analytical engine towards query

[85

(86

(87]

(88

[90]

[91

[92]

[93

James Jie Pan, Jianguo Wang, and Guoliang Li

fusion for structured and unstructured data. Proc. VLDB Endow. 13, 12 (2020),
3152-3165.

Yair Weiss, Antonio Torralba, and Rob Fergus. 2008. Spectral hashing. In NeurIPS.
1753-1760.

Ryan Williams. 2018. On the difference between closest, furthest, and orthogonal
pairs: Nearly-linear vs barely-subquadratic complexity. In SODA. 1207-1215.
Wei Wu, Junlin He, Yu Qiao, Guoheng Fu, Li Liu, and Jin Yu. 2022. HQANN:
Efficient and robust similarity search for hybrid queries with structured and
unstructured constraints. In CIKM.

Wenzhuo Xue, Hui Li, Yanguo Peng, Jiangtao Cui, and Yu Shi. 2018. Secure k near-
est neighbors query for high-dimensional vectors in outsourced environments.
IEEE Trans. Big Data 4, 4 (2018), 586—-599.

Artem Babenko Yandex and Victor Lempitsky. 2016. Efficient indexing of billion-
scale datasets of deep descriptors. In CVPR. 2055-2063.

Wen Yang, Tao Li, Gai Fang, and Hong Wei. 2020. PASE: PostgreSQL ultra-
high-dimensional approximate nearest neighbor search extension. In SIGMOD.
2241-2253.

Huayi Zhang, Lei Cao, Yizhou Yan, Samuel Madden, and Elke A. Rundensteiner.
2020. Continuously adaptive similarity search. In SIGMOD. 2601-2616.

Yunan Zhang, Shige Liu, and Jianguo Wang. 2024. Are there fundamental limi-
tations in supporting vector data management in relational databases? A case
study of PostgreSQL. In ICDE.

Zhilin Zhang, Ke Wang, Chen Lin, and Weipeng Lin. 2018. Secure top-k inner
product retrieval. In CIKM. 77-86.

	Abstract
	1 Introduction
	2 Tutorial
	2.1 Query Processing
	2.2 Indexing
	2.3 Query Optimization and Execution
	2.4 Existing Systems
	2.5 Benchmarks
	2.6 Challenges and Open Problems

	3 Presenters
	References

