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* Infroduction and motivation
» Storage disaggregation - Jianguo Wang
» Additional discussions on PM
 Memory disaggregation

* Additional discussions on CXL + Qizhen Zhang
» Future directions
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What're Disaggregated Databases?

» Designed explicitly for resource disaggregation (RD)

* RD is a new frend in cloud data centers that decouples
resources (such as compute, storage, and memory) into
separated resource pools connected via networking



Compute Pool Memory Pool Storage Pool
{é} © | | o e

[ CPU ] \ CPU | Compute Node
| memory bus | networking
| oram | DRAM | Memory Node
I PCle bus I networking
[ Disk ] Disk [ Storage Node ]
* W
Traditional Data Center Disaggregated Data Center
Monolithic "converged" servers with Separate resources into resource
compute/memory/storage tightly pools connected via networking

coupled in physical servers :



Resource Disaggregation

« Compute Node
- High computing power (e.g., 100s cores) CPU
- Limited local memory and local storage (flexible)

Compute Node

| networking
« Memory Node DRAM | Memory Node
- Huge memory (e.g., 100s GBs) | networking
- Weak computing power (flexible) Disk [ Storage Node |

« Storage Node
- Huge storage (e.g., TBs)
- Weak computing and limited memory (flexible)

» Resources are separated info different types of servers and each
type may include limited (yet flexible) amount of other resources
(partial disaggregation)



Benefits of Resource Disaggregation

» Independent and elastic resource scaling

- Users can request any combinations of compute, memory, storage
based on their needs

- Very important in the cloud

* Increase resource utilization and reduce resource
fragmentation
- Due to resource pooling
- Lead to lower cost

« Other benefits
- Independent failure and upgrades, near-infinite pool of resources

10



Applications of Resource Disaggregation

 Many cloud vendors have adopted resource
disaggregation to some extent and have re-designed
their databases explicitly for resource disaggregation

2 SB1 Azure Google
AAmu?g r%n Socrates O Al |OYD B

)
Alibaba Cloud

Polar 2B

11



Classification of Resource Disaggregation

Amazon Compute & Memory Google
Aurora UA”OYDB
\Ya ~ Microsoft® TCP/IP
< SQLAzure /
Socrates
g St
Alibaga)éloud [ Orage ]
Polar 2B

Storage Disaggregation

Only separate storage from compute & memory

Networking is usually based on TCP/IP

Widely used in cloud-native databases

Compute

(P
Alibaba Cloud

Memory Polar™B

| cp/ip
[ Storage ]

| RDMA

Memory Disaggregation
Further separate compute and memory

Networking is usually based on high-
speed networks, e.g., RDMA

Under active investigation
12



Implications of Resource Disaggregation
to Database Systems

« What's the big deal to databasese Compute
* Isn’'t same as tradifional storage hierarchy? | Roma
 Implication 1: How to reduce networking

Memory

| i

overheade

Storage

]

- Use caching, compression (same as traditional storage
hierarchy)

- But can also use near-data computing (both the memory node
and storage node have CPUs), e.g., log-as-the-database
 Different from traditional storage hierarchy

- This is partial disaggregation

13



Implications of Resource Disaggregation
to Database Systems

* Implication 2: How to distribute and share resources?

- Resources are disaggregated = enable sharing, e.g., different compute
nodes can share the same storage or memory

- Use distributed shared-storage (or shared-memory) architecture for distributed
databases, instead of the golden standard of shared-nothing

- Support much better elasticity and independent resource scaling = key to
Implement serverless databases

Distributed Shared-Nothing Distributed Shared-Storage Distributed Shc:red-Memoryl4



Distributed Shared-Nothing

ORACLE

_m

PostgreSQLL

MySQL. Cluster

Distributed Shared-Storage

Distributed Shared-Memory

Microsofte The Case for Distributed Shared-Memory Databases with
AAmazon @ﬁ% SQL AZU re . I:VDMA EnabledJMem:ry Dlsaggregat:on N
™ ng Wang nguo g, Stratos reos
u ro ra Socrates wn' ng499 e (:)Ip ds"yl )’g\\d g(Up rdue. l ﬂr:i:(:’z:l:faglll‘;::;s:;idu
M. Tamer Ozsu Walid G. Aref
University of Waterloo Purdue University
tamer.ozsu@uwaterloo.ca aref@purdue.edu
Google
© VLDB’23
i AlloyDB

Wang et al. The Case for Distributed Shared-Memory Databases with RDMA-Enabled

Memory Disaggregation. VLDB 2023.
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Outline - . oL1p databases

- Amazon Aurora

. Infroduction and motivation - Microsoft Socrates
. . - Google AlloyDB

- Storage disaggregation _ Alibaba PolarDB

 Additional discussions on PM « OLAP databases

- Snowflake

e Memory disagaregation
4 SEE - Amazon Redshift

« Additional discussions on CXL
e Future directions
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Why Storage-Compute Disaggregation?

» Independent scaling of compute and storage
- Best for any workload, lower cost

Compute (master) Compute (replica)
« Easy for serverless Pl =
- Can shut down all compute nodes and EHE
start quickly . : : )
 Faster scaling & crash recovery Distributed Cloud Storage

- If you switch to a bigger instance
(or a new instance due to crash), no need to move data
= much faster

17



Avurora System Architecture

Designed for storage & compute disaggregation
Compute (master) Compute (replica)
C ii| ) C ii‘ )
Godal : —| :
Reduce network |/O m m
\ acning ) \ acning )

| |

Distt Storage Engine age

Verbitskiet al. Amazon Aurora: Design Considerations for High Throughput Cloud-Native

Relational Databases. SIGMOD 2017.
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https://dl.acm.org/doi/10.1145/3035918.3056101
https://dl.acm.org/doi/10.1145/3035918.3056101

Main Ideas in Aurora

* LOog Is tThe database Compute (master)
- Only write logs on network 8 SQL R
- Push log applicator to storage fier TrersE e e
« Asynchronous processing . caching
- Materialize pages in background ONLY LOGS
(storage engine) (not data pages)

e Buffer cache Storage Engine
- To avoid network |/O
- Can read pages upon cache miss

19



How Does Database Work with Logs?

Read Write
Cache Commit

Replication Recovery

20



Writes

VDL

f f

LSNO LSN1
(ack) (ack)

f !

LSN4 LSN5
(ack) (cur LSN)

« DB generates logs for all trxns
» Writes (frxns) send logs to storage asynchronously
» Durability: each log is durable (ack) with 4/6 quorums

* Volume Durable LSN (VDL)

- As log records can be lost, out of order
- VDL: the largest one with all prior LSNs are durable

2]



Transaction Commits

f f

LSNO LSN1
(ack) (ack)

!

LSN4
(commit LSN)

VDL

* Transaction commits asynchronously
* When a fransaction commits, mark its commit LSN

« Commitonly if VDL >= commit LSN

22



Replication: Scalability

lWriterl lReaderll l R2 l---l R15 l

Distributed Shared Storage

* | writer and up to 15 reader instances

« How to keep data consistent between writer and readerse
- The writer sends logs o readers at the same time

- Once the reader receives logs, it will check if the page is in the
cache

 If yes, apply the log; Otherwise, discard it
- Replication lag: 20ms

23



Reads (Caching)

* Each reader instance has a buffer (cache)

« Upon reads, check cache first
- The cache is supposed to contain the latest data pages
- Except replication lags

* What if the cache is full?

- Always evict a clean page: a page that's durable (pagelSN <=
VDL)

- Whye Otherwise, need to write dirty pages to storage, which
Increases network overhead

24



Crash Recovery

Traditional Databases Aurorg
« Have to replay logs since the last  No need to replay logs and
checkpoint generate pages duringrecovery
. Typically 5 minutes between (very tast)
checkpoints « Just need to re-establish some states
. Single-threaded in MySQL; requires a (e.g., YDLT) > make sure storage is
large number of disk accesses consisien
« Generate pages asynchronously, in
parallel

» Typically a few seconds

25



Avurora Storage

* Why not using S3 or EBSe Why developing a new
distributed storage<
- Highly available, 6-way replication
« 2 copies per AZ
« Write quorum 4/6; read quorum 3/6

- Offloading logs (and allow other optimizations)

26



Experiments

Writes per second
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% .
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0 %
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BMySQL5.6 BEAMySQL5.7 [@Amazon Aurora

%
% L
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% il % .

R3.4xlarge

% .

R3.xlarge  R3.2xlarge

Instance Type

Up to 5x faster than Cloud MySQL
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Microsoft Socrates

« Similar to Amazon Auroraq, it's also designed for storage-
compute disaggregation

« Key difference: separate log service from page service

- Philosophy: separate durability (implemented by logs) from
availability (implemented by pages)

- Allow customized optimizations for logs and pages
« Durability does not require copies in fast storage
« Availability does not require a fixed number of replicas

Antonopoulos et al. Socrates: The New SQL Serverin the Cloud. SIGMOD 20189.
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APPLICATION

Socrates Architecture =

Primary Secondary

SQL Server

I—» B
Compullle Layer /GetPage@LSlN Rg:itl:ihe:t —

GetPage@LSN
Log Flushwapp--
ooooooooooooo EOP-, Apply ® @ e ¢ o o o 0o 0 0 0 o
X \ 4 A 4
Log quer Page Server #1 Page Server #2 Page Server #N

Storage Layer /

;e ;| B
(Page Servers) e :

s >
L] = . .
A A e »(_—_ Azure Standard Storage (XStore) N'Checkpomt/Backup
'd =
Synchr Asynchronous e — A e P51 - /.\
Azure S‘l'orqge action  Interaction e PS 2: i |
I ’ PS N: \\—j

(Standalone Service)
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Compute Layer

« One primary node (writer) and
multiple secondary nodes
(readers)

« Compute nodes cache data in
memory and local SSDs
(ephemeral) if any

« Support SQL engine, optimization,
buffer, transactions

« Send only logs to XLOG service

APPLICATION

|---$*ﬁ/&t_----*-ma-d-]--
1

l Primary Secondary I
-l-b SQL Server SQL Server 4—'—‘
I Resilient Getlage@LSN
GetPageIJLSlN Cache L | Cache
Log Flushmap-i ¢ * ologApply
e ® % 0 0 0 0 0 8 0 0 00 -LO{-.ZA;JDIV oooooooooooo -
X A 4 \ 4

Page Server #1

SQL Server

Page Server #2

SQL Server

Page Server #N

SQL Server

@ aCil
L]
. = i B °
= A ;
& i L ><?__ Azure Standard Storage (XStore) N'Checkpomt/Backup
( 9.
Synchronous Asynchronous —“~—~—_ | A _A__//FTS L = -
Interaction Interaction S PS2: -
l B PS N:

. 4
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Log Layer (XLOG)

For fast durability

Expensive but small SSDs
- Persist recent logs
- Three replicas

Logs are flushed to XStore

Page servers consume the logs
INn an asynchronous way

APPLICATION

tRead/Write

* Read

Primary

GetPage@LSN

Cache

SQL Server
Resilient

! L]
I Log Flushwpp-

L---‘---

XLOG SERVICE
L T, T S, S, T,y l
\ 4 A 4

Secondary

SQL Server 4—‘

Cache

GetPage@LSN

Page Server #1

SQL Server

SQL Server

Page Server #2

eee
@
_-‘l = <‘l =
L
) P _Y/_v- G
= / =
A A oo »g__ Azure Standard Storage (XStore) )
Synchronous Asynchronous \v—-\\___& = P51
Interaction  Interaction o PS 2:
I PS N:

+ * o logApply I

Page Server #N

SQL Server

\
'M'Checkpoint/Backup

e
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Storage Layer

« Store the actual pages
« Replay the logs

« Each page server stores a
partition of the database

 Has local SSDs

* No replicas in this layer
- Backup via the XStore

APPLICATION

tRead/Write

* Read

Primary

SQL Server

Resilient
GetPage@LSN Cache

Secondary

SQL Server

Cache

B

GetPage@LSN
@ .
Log Flush-’ XLOG SERVICE ’ Log Apply
g
.000005 oooooo LOADD'V oooooooooooo

Page Server #1

SQL Server

Resilient

Page Server #2

SQL Server

Page Server #N

SQL Server

L ]
h o L J
A A
Synchronous Asynchronous

Interaction Interaction
L]

B —

— A
———— _\\_4——/

\

/FS 1:
PS 2:
PS N:

]
W sousener
]
]
L--—-----T-----------

a

>
__ Azure Standard Storage (XStore) ) M ‘Checkpoint/Backup

-
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Azure Storage (XStore) = ' -

« Highly scalable, durable, and
cheap storage service based
on slow hard disks

« Compute nodes and page
servers are stateless and they
can fail at any time without
data loss

 The “fruth” of the database is
stored in XStore and XLOG

APPLICATION

I—P SQL Server SQL Server 4—‘

GetPage@LSlN Cache L Cache

Resilient GetPage@LSN
Log Flushmepe -
ooooooooooooo [-.O:., A})ply ® o0 000 000 00 0
v \ 4
Page Server #1 Page Server #2 Page Server #N

SQL Server SQL Server SQL Server

eee

S ielbtellel bl bkl

® o < b - 5%
. // "\

>
o — A :
‘I A ¢ ® »(_—_ Azure Standard Storage (XStoch N'Checkpomt/Backup I
7 —
Synchroflous Asynchronous I‘\-r-»\________\__\ A _‘__/_/ﬁs 1: o= - I
|nt€rac'ﬁﬂ‘ﬁ;fﬁn-----aa--ﬂﬁ---v -

PS N: \\—j
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Google AlloyDB Architecture

Zone 1 ; Zone 2 Zone 3
. . Primary WAL Logs - Replica
° S| m ||Or ‘I'O AU roro Instance » .‘ Instances
« Log-as-the-database I f T
Blocks Low-latency, regional log storage Blocks

* One primary and multiple

o L D0 o

« The storage layer is Logs
bgsed On GFS (CO'OSSUS) Shared, regional block storage

» Public informationis limited (no papers yet)
- Product released in 2022

https://cloud.google.com/blog/products/databases/alloydb-for-postgresgl-intelligent-scalable-storage 34



https://cloud.google.com/blog/products/databases/alloydb-for-postgresql-intelligent-scalable-storage

Application Application Application
Cloud Server Cloud Server - Cloud Server
(ECS) (ECS) (ECS)

Alibaba PolarDB § resanure sover |

-

Read/Write Splitter

. -0 b
 SImilar to Aurora "'*'

Write

Y Read

Y Failover

e Differences DB Server

(Primary)

DB Server
(Replica)

DB Server
(Replica)

- Send both data and logs
Scale User Space

- Use RDMA for fast data Up/Down [ File System

Data Router Data Router Data Router
TI’CI nSfer & Cache & Cache & Cache

- Based on PolarFS (ho need i Read Only Read Only
log replay etc.)

- Support memory
disaggregation and HTAP

User Space
File System

User Space Scale
File System Out/In

Data Chunk
Server

]

Data Chunk
Server

HEN

Data Chunk
Server

il

Li. Cloud-Native Database Systems at Alibaba: Opportunities 7T T 3}
and Challenges. VLDB 2019. Parallel-Raft Protocol & Storage Serverless



http://www.vldb.org/pvldb/vol12/p2263-li.pdf
http://www.vldb.org/pvldb/vol12/p2263-li.pdf

Outline - . oL1p databases

- Amazon Aurora

. Infroduction and motivation - Microsoft Socrates
. . - Google AlloyDB

- Storage disaggregation _ Alibaba PolarDB

 Additional discussions on PM « OLAP databases

- Snowflake

e Memory disagaregation
4 SEE - Amazon Redshift

« Additional discussions on CXL
e Future directions
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Snowflake Data Warehouse

Storage compute separation and distributed shared-storage

' N
Authentication and Access Control

Cloud Infrastructure o Transaction

COnh’Ol quer Services Manager Optimizer Manager Security
6 6 E’j ffj Ej Metadata Storage

\_ J
e G T e
Warehouse Warehouse Warehouse Warehouse
Compuvute Layer |[OOoO0 00 Ooog| ([O00
Cache Cache Cache Cache
\& %

Storage Layer sﬂﬂie @ @ @ @ @ @

Dageville et al. The Snowflake Elastic Data Warehouse. SIGMOD 2016.



https://dl.acm.org/doi/10.1145/2882903.2903741

Storage Layer

» Based on S3 for high availability and durabllity
- Slow but reliable and cheap
- Rely on caching in the compute layer for high performance

« Parfifion table into files (micro-partitions)
- Each file is around 16MB

« PAX hybrid columnar storage format within each file
« Storage is shared by all the compute nodes

EEEEEERD)

38



Computer Layer

* Virtual Warehouse (VW)

- A set of EC2 instances (worker nodes) for the actual query

processing and execution
- Similar to MPP databases

» Elasticity

- Created, destroyed, resized on demand

- Users may shut down all warehouses when they have nothing to run

- Sizing from X-Small fo XX-Large

Warehouse

(" Virtual )

P
Virtual ) [

Warehouse

Virtual )

Warehouse

Hijmju|n

L0

Hijm|u|N

Cache

Cache

Cache

(" Virtual )

Warehouse

NN

N\

/

S

AN

Cache

/
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Control Layer

* The brain of the system to control and manage the system

* [t's a collection of services that manage virtual
warehouses, queries, fransactions, concurrency control,
mulfi-tenancy...

« Metadata information, e.g., min-maxinfo for pruning

4 R
Authentication and Access Control

Cloud | Infrastructure . Transaction
. Optimizer
Services Manager Manager

Ej Ej Ej 6 6 Metadata Storage

Security




Amazon Redshift

 |nitially, an MPP database (shared- Ed
nothing) o | o | | o
- Now support storage-compute £ = K
separation with RMS to moves data | e
_______________________________________ 2

from local storage to S3
automatically (storage scaling)

Spectrum

« Also Infroduces many optimizatiors, ,
e.g., compression, query S e —— A— e
compilation, offloading, FPGA
acceleration, ML...

External
Cache (*.0)

Spectrum
Node

celeration

Redshift Managed Storage

Q© i« v ML Ny ‘v, ®, v, v, v, w, v, ‘v

Storage

Armenafzoglou ef al. Amazon Redshift Re-invented. SIGMOD 2022. 4]
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Outline

 Infroduction and motivation
e Storage disaggregation

» Additional discussions on PM
 Memory disaggregation

» Additional discussions on CXL
» Future directions
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Persistent Memory (PM)

* PM (or non-volatile main memory) is a new storage
technology (many research papers in the last few years)
- Performance is similar to DRAM
- But durable as SSDs

* As we have storage disaggregation, how about PM
disaggregation? What're the benefitse

43



PM Disaggregation

» Besides of the benefits of storage disaggregation, e.g.,
independent and elastic scaling, what're new benefitse

- PM server is expensive = disaggregation enables sharing, which
takes lower amortized cost

- Can be cheaper overall as compute nodes do not need so

much local memory anymore
« Can leverage the cloud instances with leftover CPUs but limited memory

- Can support faster recovery with huge dafta in PM (faster warm
up)

Compute Node

PM Node

44



Challenges of PM Disaggregation

» Shall we have a dedicated PM node (layer)e

Storage Disaggregation No Dedicated PM Layer

(Just add PM 1o existing
storage Ser\/ers) With Dedicated PM Layer

(Need faster ne’rworkin%




Challenges of PM Disaggregation

 How fo leverage the CPU in the PM node®e
-Can be alot (not limited CPU as In storage
disaggregation)
-E.g., Intel Optane PM needs high-end CPUs (3rd Gen
Intel Xeon)

Compute Node

PM Node

46
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Challenges of PM Disaggregation

 Limited write bandwidth (still slower than reads)

« Remote persistency is fricky
- Simple RDMA write to PM will not guarantee persistency
- It requires one more RDMA read

NIC L3 PM
RDMA write N

Kaliaet al. Challenges and Solutions for Fast Remote Persistent Memory Access. SoCC'20.



https://dl.acm.org/doi/10.1145/3419111.3421294

PilotDB: Persistent Memory Disaggregation
for Cloud-Native Relational Databases

DB instance

Sample

Compute Layer

PM Layer (Logs)

Storage Layer (Pages)

32 vCPUs

20GB
DRAM

200GB
PM

1B
SSD

(CNs/PMNs/SNs)

CPU CPU | .. CPU

DRAM DRAM DRAM

LB §F §F OF §F § § § §
PM PM PM
PM PM PM

I I N .

SSD | SSD SSD

HHD | | HHD HHD

Disaggregated resource pools

o]
—-—
=0 =
& 2
o &
|

PilotDB

components

[ DB engine

| SQL/TXN |]
|

LBP

®
et

 PM daemon

CDLog store

i

RBP

1) 4
-——-—w—-l-

file system

[ Distributed |

Data pages

Figure 2: PilotDB architecture overview

Ruan et al. Persistent Memory Disaggregation for Cloud-Native Relational Databases. ASPLOS 2023.
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* Reads
- Check local buffer (LBP)
- Then remote PM buffer (RBP)

» Write redo logs to PMN

« Replay the log in the PMN
- To use the CPUs

 PMN flushes cold page to storage
layer, when it is under space

pressure

PilotDB Architecture

v | Compute

Storage 1

layer 1 layer

layer |

Sample Disaggregated resource pools
DB instance (CNs/PMNs/SNs)
b cPU  cPu|... | cpPu
DRAM DRAM DRAM DRAM
CR BB R R § O§ § § §
e PM PM PM
PM
PM PM PM
Iy I I . I I .
1B SSD| SSD SSD
SsD
HHD | | HHD HHD

PilotDB
components

([ DB engine |
[ SQL/TXN |
LBP

([ PM daemonl_

|CDLog store

RBP |T_

(" Distributed )
file system

I— L3}

®

| Data pages |
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PilotDB Optimized RDMA Reads

« Compute hode uses one-sided

RDMA read to fefch pages from
PM node

* BUt how to guarantee the page
Is already replayed?

- The CN checks the LSN of the page
against the LSN in PMT

- If the page is outdated, the CN pulls
relevant logs and performs replay

User requests

!

[ SQL/TXN engine ]‘ﬂv—b N

Page metadata table (PMT)

LBP page

Addr0

Dirty-bit vector

Addr1

Local LSN vector

Addr2

RBP page

Addr3

2N
3N
4N

xN
16384

Page in LBP CN

[ LSN[0,1,2..] |
Dirty: 0101...1 |

L J
Commit
Log write

Figure 3: PilotDB CN architecture and page structure
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PilotDB Replication and Recovery

» Replication
- Logs are replicated in PM layer
- Pages are stored only once (PM is still expensive)

 Recovery

- If CN fails, recover quickly from PM layer (fast warm-up)
- |If PM fails:

 |f PM back online directly, just recover the connection and the system is
good to go

« If PM node not available anymore, refetch the page from the storage
layer and reply the logs

o1



Outline

 Infroduction and motivation
« Storage disaggregation

« Additional discussions on PM
- Memory disaggregation

» Additional discussions on CXL
» FUture directions

- Jianguo Wang

- Qizhen Zhang
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Memory-disaggregated
DBMSs

Qizhen Zhang

University of Toronto



Outline

» Introduction to memory disaggregation

» Performance implications for DBMSs

- Memory-disaggregated transactional systems
- Memory-disaggregated analytical systems

» CXL-based memory disaggregation

» Future directions
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Covered Work

Understanding the effect on production DBMSs [VLDB 20] Implications

LegoBase [VLDB 21] Transactions

TELEPORT [SIGMOD 22] Analytics

DirectCXL [ATC 22]

55 55



Introduction to
memory disaggregation
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Storage Disaggregation

- Separating compute and storage

Compute servers

C IV [
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Storage Disaggregation

- Separating compute and storage

» Compute and memory are still coupled
- Inflexible compute and memory allocation

1.00 ° °

- I_ é Not allocated ;tICIty

2 0.75 1 Neither ecljllocated .

+= nor use °
-$8,.. NPrtE e/t fSilures

£ Translated to hardware cost

E 0.25 -

8 0.00

20 40 60 80
Percentage of Memory [%]
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Memory Disaggregation

 Separate compute, memory, and storage into
resource pools that are connected by a fast

networlk Compute pool Memory pool
- - Fast network g
C 'C (2 sl TM M
c [ C|° SN Y
s s
§ll s s

Storage pool



Memory Disaggregation

 Separate compute, memory, and storage into

resource pools that are connected by a fast
network

« Complete compute and data decoupling
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Operational Benefits

* Independent failures

QU | CPU
Network )< RAM
SSD




Operational Benefits

* Independent failures
 Independent expansion

C

More memory

M

Network )<

S
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Operational Benefits

* Independent failures
 Independent expansion
* Independent allocation

Cl C2
Cl C2
M1 M2 Network M1 M2
S1 S2
S1 S2
VM1 VM2

Physical resource pools
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Enabling Technique: RDMA

« Remote Direct Memory Access

Queue Pair

Send Queue
Recv Queue

Client Machine

, CPU
,l

RDMA ,%>sided |

" NIC wed:
Mem

Server Machine

Good fit
 Low CPU utilization
« High network speed
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Types of Memory Disaggregation
» Kernel-space approaches

Pros

App - Unmodified applications
« Transparentinfra evolution
Page fault, Remote
swapping memory Cons
0OS Paging = « High performance cost

« High development cost
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Types of Memory Disaggregation

 User-space approaches

App

OS

Remote
memory

Pros

* No kernel overhead

« Fine-grained control

« Customized optimizations

Cons
« Application modifications
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Implications for DBMSs

* Performance overhead
- Memory access becoming network communication

 Data consistency
- Consistent and concurrent remote memory access

« Remote memory abstraction
- Offering remote memory with RDMA
* Reliability

- Partial failures of compute and memory
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Performance Implications for
DBMSs
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Covered Work

Understanding the effect on production DBMSs [VLDB 20] Implications

69 69



Methodology of Study

« Evaluate production DBMSs
« MonetDB
« PostgreSQL

in a real cluster
« Inifiniband network
« LegoOS

with complex queries
« All 22 TPC-H queries

Xeon E5-2450
(8 cores, 2.1GHz)

Testbed

16GB RAM

56 Gbps Infiniband

500GB HDD

LegoOS [OSDI 2018]

MonetDB PostgreSQL
Execution In-memory Out-of-core
Storage Column-based Row-based

Architecture

Client/Server

Client/Server

Buffer Pool Size

min(Capacity, Demand)

Customizable

Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs

Q.Zhang et al., VLDB 2020
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Disaggregation Cost

« What is the cost of memory disaggregation for complex queries?

» Evaluate DBMS performance slowdown in a disaggregated OS
compared to Linux with the same hardware capacity
« In-memory execution
» Cold out-of-core execution (disk I/O involved)
« Hot out-of-core execution (data cached)

Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs
Q.Zhang et al., VLDB 2020
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Cost for In-memory Execution

« MonetDB

1.7x slowdown 18x slowdown

100 100

176X

10 10

Slowdown to Linux
Slowdown to Linux

QU2 72777777773

1 Hmnnnnﬂnﬂnﬂnﬂnﬂﬂﬂﬂﬂﬂﬂﬂ , H HHHHHH H
5855858888555858585558588 S05558888s500a8cac58¢88
LegoOS (low degree of disaggregation) LegoOS (high degree of disaggregation*)

T *low local memory size
Flndlngs on compute node

1. This confirmsthe cost of disaggregation for complex queries
2. The costincreases with the degree of disaggregation
3. The slowdown can be higher than 100x

Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs 72
Q.Zhang et al., VLDB 2020



Cost for Out-of-core Execution

 PostgreSQL (cold, disk /0O is involved)

1.08x slowdown

100

10

Slowdown to Linux

mmmmmmmmmmmmmmmmmmmmmm
QQQQQQQQQQQQQQQQQQQQQQ
(= =N e oo e e e e ieieie e e e le e lNe e el

LegoOS (low degree of disaggregation)

Finding - most queries experience no cost from disaggregation

Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs
Q.Zhang et al., VLDB 2020
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Cost for Out-of-core Execution

 PostgreSQL (hot, data is cached)

2x slowdown

100

Slowdown to Linux
=
[

Len0000n0nn. 0 l0alln .

mmmmmmmmmmmmmmmmmmmmmm
GGGGGGGGGGGGGGGGGGGGGG

OOOOOOOOOOOOOOOOOOOOOO

LegoOS (low degree of disaggregation)

Findings
1. Hot execution has higher cost than cold execution
2. The slowdown is even higher than in-memory execution (1.7x)

Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs 74
Q.Zhang et al., VLDB 2020



Summary of Disaggregation Cost

* In-memory execution
- Moderate if working set fits into compute-local memory
- Significant, otherwise

» Out-of-core execution
- Dominated by other factors (disk I/O, cache design,

etc.), and thus less sensitive to (the degree of)
disaggregation

Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs
Q.Zhang et al., VLDB 2020

79



Another Perspective: Elasticity

« Consolidates the same type of resources

 Provides the opportunity of DBMSs using “infinite” resources
without any application modifications

spill to memory pool

Compute Pool
K Data Center

Memory Pool Monolithic Server

>SS spill to disk

Interconnect

The difference can be huge (an order of magnitude)

Storage Pool

Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs 76 76
Q.Zhang et al., VLDB 2020



Memory-disaggregated
transactional systems
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Covered Work

LegoBase [VLDB 21] Transactions
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LegoBase

A transactional DB design for memory
disaggregation with tiered memory management
and recovery

Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y.Zhang et al., VLDB 2021
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Compute node

Primary trlbutlons

anagement back to DBMS

gtow es a wo- ler fault tolerance protocol

SQL engine (MySQL)

Read
Read Write <
Local buffer
manager Light fault Flush

tolerance

Remote buffer daemon
agent

1 Read

I Read/Write Log

Persistent shared storage

Memory cluster

Remote buffer Remote
manager buffer pool

Heavy fault tolerance daemon

1 Flush

Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation

Y.Zhang et al., VLDB 2021
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Memory Management Motivation

« Existing memory disaggregation has been OS-

based
- Infiniswap [NSDI 17], LegoOS [OSDI 18]

* Issue #1: OS overhead on remote memory access

-4KB page transfer: 4-6 us RDMA vs. 40 ps Infiniswap

Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y.Zhang et al., VLDB 2021
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Memory Management Motivation

- Existing memory disaggregation has been OS-based
- Infiniswap [NSDI 17], LegoOS [OSDI 18]

* Issue #2: low cache hit ratios with unified memory
- Small but important data might be evicted, e.g., session info
- OS LRU is less effective than DB-optimized LRU
- Page size mismatch: 4KB in OS vs. 16KB in DBMS

Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y.Zhang et al., VLDB 2021
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Splitting Buffer Pool

Local Buffer Pool (LBP) vs. Remote Buffer Pool (RBP)
-LBP is a cache of RBP

s 000 s IO0O0O00
Allocator Allocator 000

LBP (predefined) RBP (configured per DB)

Compute node Memory node

Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y.Zhang et al., VLDB 2021
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Page Organization

Every page has a meta frame

-Page id, local address, and remote address

1

I
see (0D e LTI OTD
Allocator Allocator 000

LBP (predefined) RBP (configured per DB)

Compute node Memory node

Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y.Zhang et al., VLDB 2021
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Page Organization

Two LRU lists of meta frames on the compute node
- LRU_LBP: MySQL-style LRU for local pages

- LRU_RBP: caching remote address for evicted pages

trurep | ][] J[| [ ]|
ru_tep | ][I [ 1]

s 000 s IO0O0O00
Allocator Allocator 000

LBP (predefined)

RBP (configured per DB)

Compute node Memory node

Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y.Zhang et al., VLDB 2021
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Page Lookup

Locating pages with hash lookups
-PHASH_LBP: pointing to the locations in the two LRU

lists

—| [ ewren miimiiEi :ing to lo id [ location

prasH_tep | (][ (] LI PHASH_RBP

a2 | 1000 e IODOOO0
Allocator Allocator eee
LBP (predefined) RBP (configured per DB)
Compute node Memory node

Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y.Zhang et al., VLDB 2021
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User-space Paging

Direct RDMA access from compute to memory
- Register and DeRegister: BP cache misses and evictions

- Read and Flush: compute cache misses and evictions

id | location | - [ JfJ[ [I] [ I id | location
RDMA
pasHep | [[I[ [[][ [ E PHASH_RBP
Local Page D D D Remote Page D D D D D D
Allocator Allocator cee
LBP (predefined) RBP (configured per DB)
Compute node Memory node

Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y.Zhang et al., VLDB 2021



Result (TPC-C)

1 MySQL-100% [ LegoBase-75% [ LegoBase-50%
B [nfiniswap-75% B Infiniswap-50%

Number of Threads

50 T I T T I ] 50
%) - a0 |
tE’ 40 | .§,40
o
> 30 | &30y
e 5
I..;ZO - ] :‘? 20 f
Lyl 1| ARSI
0 [[Thm HT. 0
1 2 4 8 16 1 2 4 8 16
Number of Threads
(a) Throughput

(b) P99-Latency

LegoBase outperforms Infiniswap

- Up to 2x on throughput and 2.3x on tail latency (p99)

Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation

Y.Zhang et al., VLDB 2021
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Result (TPC-H)

[ MySQL-100% [ LegoBase-75% I LegoBase-50%
I Infiniswap-75% W Infiniswap-50%

2500

2000 |
£,500
g
1000 |

500 I I
0 L

Q1 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12Q14Q15Q18Q19 Q21

Laten

LegoBase query latency is close to monolithic MySQL

- But can be 2x higher for memory-intensive queries
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Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y.Zhang et al., VLDB 2021



Fault Tolerance Motivation

* Independent compute-memory failures introduce
recovery opportunities

- States saved in mamarv can ecnaad nin rampute recovery

Rec0\;ery I
Warm-up
150 - 1
0
100 |
.§100
[
3.9x fast y
50 . . 5.5x faster BP warm-up
0
MySQL I1s-75% Is-50% LegoBase-50%
Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation 90

Y.Zhang et al., VLDB 2021



Two-tier ARIES

« Read the paper to figure this out
« Most importantly, data is checkpointed to memory

Transaction manager

LX)

Local buffef pool (LBP)

Remote buffer pool (RBP)

5 6 8
FLUSH_LBP l—»M 7 FLUSH_RBP

1 s

Compute 12 Memory |
commit 13 10

' 11
Checkpoints

Storage

Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y.Zhang et al., VLDB 2021



If Compute Fails...

« Recover fast from tier-1 checkpoints

1. Connect

a
\S \N \S i \S \N \S \S \S \S
LN )

Remote buffer pool (RBP)

ru_tep | {1 111 [l] 2. Read
=3
Compute Memory

3. Traverse & Apply

Storage

Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation 92 92
Y.Zhang et al., VLDB 2021



If Both Fall...

 Recover slowly from tier-2 checkpoints

trutep | ][ I[] [ ] S

A A A A A A
eecoe

Remote buffer pool (RBP)

trurep | If[ ([ ]

Compute Memory

Storage

Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation 93 93
Y.Zhang et al., VLDB 2021



Result

— MySQL —— LegoBase-10% LegoBase-25%
50 LegoBase-50% —— LegoBase-10% (all memory crash)
)
% a0 LegoBase i
(3]
o ;
5 30 A ,w——\/“\-w“ww
5
£ 20
S MySQL Ap
© 10t
L
h J/
0 | 1
0 50 100 150 200 250 300
Time/s

Recovery time
- 50s for MySQL and LegoBase from tier-2
- 2s for LegoBase from tier-1

Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y.Zhang et al., VLDB 2021
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Summary

« MySQL customized for disaggregated memory

« DBMS-optimized memory management removes
OS overhead and achieves more effective caching

» Two-tier fault tolerance leverages failure
independence for fast recovery

Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y.Zhang et al., VLDB 2021
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Other Recent Work

 PolarDB Serverless [SIGMOD 21]: multi-compute

« Sherman [SIGMOD 22]: B+tree optimized for writes
* FlexChain [VLDB 23]: an XOV blockchain design

« dLSM [ICDE 23]: LSM indexing

- DSM-DB [VLDB 23]: distributed shared-memory DB
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Memory-disaggregated
analytical systems
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Covered Work

TELEPORT [SIGMOD 22] Analytics
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TELEPORT

A compute pushdown framework that moves
operators from compute to memory

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q.Zhang et al., SIGMOD 2022
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In-memory Query Performance

Monolithic vs. memory-disaggregated
MonetDB with TPC-H scale factor 50 (query 9)

A
57 Can we remove most of this high
Scale-out cost “cost of disaggregation” to
unlock all its benefits?
\/

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q.Zhang et al., SIGMOD 2022
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TELEPORT Motivation

Monolithic vs. memory-disaggregated
MonetDB with TPC-H scale factor 50 (query 9)

Monolithic B Memory-disaggregated
— 1000
N7
0 100 Execute them in the memory pool to
= remove data movements
= Compute pushdown
- 10
.9
5
)
x
o0l
Projection Hash MergelJoin Expression  Selection
Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT 01 101

Q.Zhang et al., SIGMOD 2022



TELEPORT Overview

« Compute pushdown framework for memory disaggregation

Data processing workers Data processing states
In-mem
o @ @ @ .
1. Provide simple and data 2. Execute arbitrary
general interface 10perat0r 10Perat0r operators fast
TELEPORT (OS)
3. Guarantee memory
consistency _
PN
5 5
O
Compute pool Memory pool
Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT 102

Q.Zhang et al., SIGMOD 2022



Compute Pushdown Interface

« System call: pushdown(fn, arg, flags)

Function pointer
Argument pointer

Customization

// implementation of aggregation

}

void main() {
//...
ags(t, r);

}

void agg(table *input_table, double *result) {

N

TELEPORT

void agg(table *input_table, double *result) {
// implementation of aggregation

}

void main() {

/]...

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q.Zhang et al., SIGMOD 2022
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Compute Pushdown Interface

« System call: pushdown(fn, arg, flags)

Function pointer  Customization
Argument pointer

« Ported MonetDB (in-memory DBMS, 400,000 lines in total)

- Projection, 117 lines

- Aggregation, 214 lines To unlock all disaggregation benefits
- Selection, 302 lines
- Hash, 75 lines

As well as PowerGraph (graph processing) and Phoenix (MapReduce)

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT 104
Q.Zhang et al., SIGMOD 2022



Memory Pool Execution

« Arbitrary and fast function execution
« Akin to POSIX vfork

Entire virtual memory space
(text segment, stack, heap)

© (]
1 Temporary context @ fn(arg) Limit the number of contexts
pushdown(fn, arg, flags) T
Fast network
TELEPORT (compute) > TELEPORT (memory)
Compute pool Memory pool
Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT 105

Q.Zhang et al., SIGMOD 2022



Data Synchronization

« Memory consistency between compute and memory
« Inconsistent time points: before pushdown after pushdown during pushdown

« Without proper synchronization, pushdown may be executed incorrectly

Compute-local cache

@@ Kd LY E
@ fn(arg)
pushdown(fn, arg, flags) T
TELEPORT (compute) > TELEPORT (memory)
Compute pool Memory pool

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q.Zhang et al., SIGMOD 2022
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Baseline Approach

« Evict all local pages and push down all threads in the same process

 Performance issues

- Not all compute-local pages are accessed in pushdown
- Overwhelm memory pool’ s limited compute resource
Compute-local cache

@ @ BBb A BB -
@ @ fn(arg)
pushdown(fn, arg, flags) T
TELEPORT (compute) > TELEPORT (memory)
Compute pool Memory pool
Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT 107

Q.Zhang et al., SIGMOD 2022



On-demand Coherence Protocol

 Synchronize pages only when they are needed

* Invariant: only one writable copy of a page between pools at any
moment

Compute-local cache

@ @ "B B R [ [ -
n B e S (Jo(JuJ] A Bsreremovec
Listofpages e @ fn(arg)
pushdown(fn, arg, flags) A, B T
TELEPORT (compute) > TELEPORT (memory)
Compute pool Memory pool
Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT 108

Q.Zhang et al., SIGMOD 2022



Evaluation Setup

« Compute: 8 CPU cores (16 threads) with 1 GB local cache
* Memory: 128 GB memory with 2 cores for pushdown
- Storage: 1 TB SSD

« Connected by an InfiniBand network: 56 Gbps bandwidth and 1.2 us
latency

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT 109
Q.Zhang et al., SIGMOD 2022



TELEPORT Minimizes Overhead

MonetDB with TPC-H scale factor 50 (query 9)

661s

Vertica (distriputed): 2.3x
Baseling: 95«

Scale-out cpst 1.97 x

11.5s 22.7s

Monolithic Baseline memory TELEPORT
disaggregation

TELEPORT removes most of the “cost of disaggregation”

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT 110
Q.Zhang et al., SIGMOD 2022



Summary

- Memory disaggregation lacks good support for data-intensive
applications, such as data analytics systems

« TELEPORT enables general and fast compute pushdown

» Distributing operators between compute and memory must take
care of data consistency

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT 111
Q.Zhang et al., SIGMOD 2022



Other Recent Work

» Google Big Query [VLDB 20]: large-scale shuffling through

disaggregated memory

« Redy [VLDB 22]: utilizing stranded memory in cloud data

centers as remote cache

* Farview [CIDR 22]: compute offloading with FPGAs for

disaggregated memory
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CXL-based
memory disaggregation



Covered Work

DirextCXL [ATC 22]
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DirectCXL

An alternative approach to disaggregating memory
using CXL

Direct Access, High-Performance Memory Disaggregation with DirectCXL 115
D.Gouket al., ATC2022



Motivation: RDMA Cost

 Data is copied over the network
- Network latency
- DMA operations on both sides

 Data is copied between applications and NIC-
registered memory regions

Direct Access, High-Performance Memory Disaggregation with DirectCXL 116
D.Gouket al., ATC2022



Compute eXpress Link (CXL)

 Cache-coherent interconnects for connectivity
between CPUs, accelerators, and I/O devices

« Supports all devices, from accelerators to memory

~eley dh other's memory
- Type 3: host accessing device memory

Direct Access, High-Performance Memory Disaggregation with DirectCXL 117
D.Gouket al., ATC2022



Compared to RDMA

Direct PCle access through load/store instructions
- No network latency
- No extra data copies

PCle lMemory
/ANetwork EICPU cache

DN 7277
\‘eo\ __ B~ x83 faster
R0 300 2400 2700
Latency (cycles)

Direct Access, High-Performance Memory Disaggregation with DirectCXL 118
D.Gouket al., ATC2022



Memory Disaggregation with CXL

« How to enable direct access to CXL memory?
* How to enable flexible memory configuration?
« How to present CXL memory to applications?

CPU

CXL memory CXL memory m

Direct Access, High-Performance Memory Disaggregation with DirectCXL 19 119
D.Gouket al, ATC2022



DirextCXL Design

How to enable direct access to CXL memory?
- Convert load and store instructions to CXL packets
- An FPGA-based controller converts them back

Load/store CXL packets Load/store
Memory
-HETE

Compute blade PCle Memory blade

Direct Access, High-Performance Memory Disaggregation with DirectCXL 120 120
D.Gouket al, ATC2022



DirextCXL Design

How to enable flexible memory configuration?
- A CXL switch with a reconfigurable crossbar

CXL Switch
CXL memory
Sr ’\’
CXL memory
PCle PCle

Direct Access, High-Performance Memory Disaggregation with DirectCXL 121 121
D.Gouket al, ATC2022



DirextCXL Design

How to present CXL memory to applications?
- Leveraging Linux virtual memory system

mmap()
A Character CXL device CXL memor
PP device driver driver y

ioctl()
Compute blade PCle
Direct Access, High-Performance Memory Disaggregation with DirectCXL 122 122

D.Gouket al, ATC2022



Result on Real Workloads

“E’ KVS W DirectCXL
= 1.0- Q 4
: | cl
o ci-
S’jJ 0.5- S 0
i ' Z §1<J
= =50"

* DirectCXL outperforms RDMA

- 3x faster than kernel-space RDMA (Swap)
- 2.2x faster than user-space RDMA (KVS)

Direct Access, High-Performance Memory Disaggregation with DirectCXL 123 123
D.Gouket al, ATC2022



Summary

- RDMA-based memory disaggregation incurs
networking overhead and extra memory copies

* DirectCXL provides a CXL solution via direct PCle
access, a CXL switch, and a software runtime

» Application performance is significantly improved
without modifications, showing CXL potentials

Direct Access, High-Performance Memory Disaggregation with DirectCXL 124
D.Gouket al., ATC2022



Other Recent Work

« SAP HANA on CXL-expanded memory [DaMon 22]: evaluating
iIn-memory database system performance with CXL as the

storage backend

« Active area in systems and architecture communities
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Future directions of
disaggregated DBMSs
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Future Directions

« Comprehensive performance evaluation of
disaggregated databases

- Scalable transactions in disaggregated databases
« Automatic resource provisioning

« CXL-optimized databases
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Q&A
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