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About Me

• Assistant Professor @ Purdue CS (01/2021 ~)

• Senior Researcher (07/2020 ~ 12/2020)

− Milvus Vector Database

• Software Engineer (03/2019 ~ 07/2020)

− Amazon Aurora Cloud Database
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• Research Area: Database Systems for Non-traditional Architecture 

and Non-traditional Data

− Disaggregated Databases; Vector Databases

www.cs.purdue.edu/homes/csjgwang/

http://www.cs.purdue.edu/homes/csjgwang/
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SIGMOD’23 Panel
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VLDB’22 Panel
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What’re Disaggregated Databases?

• Designed explicitly for resource disaggregation (RD)

• RD is a new trend in cloud data centers that decouples 
resources (such as compute, storage, and memory) into 
separated resource pools connected via networking
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DRAM

CPU

Disk

memory bus

PCIe bus

Traditional Data Center

Monolithic "converged" servers with 

compute/memory/storage tightly 

coupled in physical servers

Disaggregated Data Center

Separate resources into resource 

pools connected via networking

Memory Node

Compute Node

Storage Node

networking

networking

CPU

DRAM

Disk

Compute Pool Memory Pool Storage Pool
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Resource Disaggregation
• Compute Node

− High computing power (e.g., 100s cores)

− Limited local memory and local storage (flexible)

• Memory Node

− Huge memory (e.g., 100s GBs)

− Weak computing power (flexible)

• Storage Node

− Huge storage (e.g., TBs)

− Weak computing and limited memory (flexible)

Memory Node

Compute Node

Storage Node

networking

networking

CPU

DRAM

Disk

• Resources are separated into different types of servers and each 
type may include limited (yet flexible) amount of other resources 
(partial disaggregation)
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Benefits of Resource Disaggregation

• Independent and elastic resource scaling

− Users can request any combinations of compute, memory, storage 
based on their needs

− Very important in the cloud

• Increase resource utilization and reduce resource 

fragmentation

− Due to resource pooling

− Lead to lower cost

• Other benefits

− Independent failure and upgrades, near-infinite pool of resources
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Applications of Resource Disaggregation

• Many cloud vendors have adopted resource 
disaggregation to some extent and have re-designed 
their databases explicitly for resource disaggregation
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Classification of Resource Disaggregation

Memory

Compute

Storage

RDMA

TCP/IP

Compute & Memory

Storage

TCP/IP

Storage Disaggregation Memory Disaggregation

Only separate storage from compute & memory Further separate compute and memory

Networking is usually based on TCP/IP

Widely used in cloud-native databases

Networking is usually based on high-

speed networks, e.g., RDMA 

Under active investigation
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Implications of Resource Disaggregation 
to Database Systems

• What’s the big deal to databases?

• Isn’t same as traditional storage hierarchy?

• Implication 1: How to reduce networking
overhead?
− Use caching, compression (same as traditional storage 

hierarchy)

− But can also use near-data computing (both the memory node 
and storage node have CPUs), e.g., log-as-the-database
• Different from traditional storage hierarchy

− This is partial disaggregation

Memory

Compute

Storage

RDMA

TCP/IP
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Implications of Resource Disaggregation 
to Database Systems

• Implication 2: How to distribute and share resources?

− Resources are disaggregated ➔ enable sharing, e.g., different compute 

nodes can share the same storage or memory

− Use distributed shared-storage (or shared-memory) architecture for distributed 

databases, instead of the golden standard of shared-nothing

− Support much better elasticity and independent resource scaling ➔ key to 

implement serverless databases

CPU

DRAM

Disk

CPU

DRAM

Disk

CPU

DRAM

CPU

DRAM

Disk Disk

CPU

DRAM DRAM

CPU

Disk Disk

Distributed Shared-Nothing Distributed Shared-Storage Distributed Shared-Memory
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CPU

DRAM

Disk

CPU

DRAM

Disk

CPU

DRAM

CPU

DRAM

Disk Disk

CPU

DRAM DRAM

CPU

Disk Disk

Distributed Shared-Nothing Distributed Shared-Storage Distributed Shared-Memory

Wang et al. The Case for Distributed Shared-Memory Databases with RDMA-Enabled 
Memory Disaggregation. VLDB 2023.

VLDB’23

https://www.vldb.org/pvldb/vol16/p15-wang.pdf
https://www.vldb.org/pvldb/vol16/p15-wang.pdf
https://www.vldb.org/pvldb/vol16/p15-wang.pdf
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Why Storage-Compute Disaggregation?

• Independent scaling of compute and storage

− Best for any workload, lower cost

• Easy for serverless

− Can shut down all compute nodes and 

start quickly

• Faster scaling & crash recovery

− If you switch to a bigger instance 

(or a new instance due to crash), no need to move data 

➔ much faster
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Compute (master) Compute (replica)

Distributed Cloud Storage

SQL

Transactions

Caching

Transactions

SQL

Caching

Storage Engine

Goal
Reduce network I/O

Aurora System Architecture

Designed for storage & compute disaggregation

Verbitski et al. Amazon Aurora: Design Considerations for High Throughput Cloud-Native
Relational Databases. SIGMOD 2017.

https://dl.acm.org/doi/10.1145/3035918.3056101
https://dl.acm.org/doi/10.1145/3035918.3056101
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Main Ideas in Aurora

Compute (master)

SQL

Transactions

Caching

Storage Engine

ONLY LOGS

(not data pages)

• Log is the database

− Only write logs on network

− Push log applicator to storage tier

• Asynchronous processing

− Materialize pages in background 

(storage engine)

• Buffer cache

− To avoid network I/O

− Can read pages upon cache miss
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How Does Database Work with Logs?

Read Write

CommitCache

Replication Recovery
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Writes

• DB generates logs for all trxns

• Writes (trxns) send logs to storage asynchronously

• Durability: each log is durable (ack) with 4/6 quorums

• Volume Durable LSN (VDL)
− As log records can be lost, out of order

− VDL: the largest one with all prior LSNs are durable

LSN3

(not ack)

LSN5 

(cur LSN)

LSN4

(ack)

LSN0

(ack)

LSN1

(ack)

LSN2

(ack)

VDL
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Transaction Commits

• Transaction commits asynchronously

• When a transaction commits, mark its commit LSN

• Commit only if VDL >= commit LSN

LSN3

(not ack)

LSN4

(commit LSN)

LSN0

(ack)

LSN1

(ack)

LSN2

(ack)

VDL
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Replication: Scalability

• 1 writer and up to 15 reader instances

• How to keep data consistent between writer and readers?
− The writer sends logs to readers at the same time

− Once the reader receives logs, it will check if the page is in the 
cache
• If yes, apply the log; Otherwise, discard it

− Replication lag: 20ms

Writer …Reader1 R2 R15

Distributed Shared Storage
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Reads (Caching)

• Each reader instance has a buffer (cache)

• Upon reads, check cache first

− The cache is supposed to contain the latest data pages

− Except replication lags

• What if the cache is full?

− Always evict a clean page: a page that’s durable (pageLSN <= 

VDL)

− Why? Otherwise, need to write dirty pages to storage, which 

increases network overhead
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Crash Recovery

Traditional Databases

• Have to replay logs since the last 
checkpoint

• Typically 5 minutes between 
checkpoints

• Single-threaded in MySQL; requires a 
large number of disk accesses

Aurora

• No need to replay logs and 
generate pages during recovery 
(very fast)

• Just need to re-establish some states 
(e.g., VDL) ➔ make sure storage is 
consistent

• Generate pages asynchronously, in 
parallel

• Typically a few seconds
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Aurora Storage

• Why not using S3 or EBS? Why developing a new 

distributed storage?

−Highly available, 6-way replication

• 2 copies per AZ

• Write quorum 4/6; read quorum 3/6

−Offloading logs (and allow other optimizations)
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Experiments

Up to 5x faster than Cloud MySQL
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Microsoft Socrates

• Similar to Amazon Aurora, it’s also designed for storage-
compute disaggregation

• Key difference: separate log service from page service

− Philosophy: separate durability (implemented by logs) from 

availability (implemented by pages)

− Allow customized optimizations for logs and pages

• Durability does not require copies in fast storage

• Availability does not require a fixed number of replicas

Antonopoulos et al. Socrates: The New SQL Server in the Cloud. SIGMOD 2019.

https://dl.acm.org/doi/10.1145/3299869.3314047
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Socrates Architecture

Compute Layer

Log Layer

Storage Layer 
(Page Servers)

Azure Storage
(Standalone Service)
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Compute Layer

• One primary node (writer) and 

multiple secondary nodes 

(readers)

• Compute nodes cache data in 

memory and local SSDs 

(ephemeral) if any

• Support SQL engine, optimization, 

buffer, transactions

• Send only logs to XLOG service
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• For fast durability

• Expensive but small SSDs

− Persist recent logs

− Three replicas

• Logs are flushed to XStore

• Page servers consume the logs 

in an asynchronous way

Log Layer (XLOG)



32

• Store the actual pages

• Replay the logs

• Each page server stores a 

partition of the database

• Has local SSDs

• No replicas in this layer

− Backup via the XStore

Storage Layer
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• Highly scalable, durable, and 

cheap storage service based 

on slow hard disks

• Compute nodes and page 

servers are stateless and they 

can fail at any time without 

data loss

• The “truth” of the database is 

stored in XStore and XLOG

Azure Storage (XStore)
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Google AlloyDB Architecture

• Similar to Aurora

• Log-as-the-database

• One primary and multiple 

replicas

• The storage layer is 

based on GFS (Colossus)

• Public information is limited (no papers yet)

− Product released in 2022

https://cloud.google.com/blog/products/databases/alloydb-for-postgresql-intelligent-scalable-storage 

https://cloud.google.com/blog/products/databases/alloydb-for-postgresql-intelligent-scalable-storage
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Alibaba PolarDB
• Similar to Aurora

• Differences

− Send both data and logs

− Use RDMA for fast data 

transfer

− Based on PolarFS (no need 

log replay etc.)

− Support memory 

disaggregation and HTAP

Li. Cloud-Native Database Systems at Alibaba: Opportunities 
and Challenges. VLDB 2019.

http://www.vldb.org/pvldb/vol12/p2263-li.pdf
http://www.vldb.org/pvldb/vol12/p2263-li.pdf
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Snowflake Data Warehouse

Dageville et al. The Snowflake Elastic Data Warehouse. SIGMOD 2016.

Compute Layer

Storage compute separation and distributed shared-storage

Storage Layer

Control Layer

https://dl.acm.org/doi/10.1145/2882903.2903741
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Storage Layer

• Based on S3 for high availability and durability

− Slow but reliable and cheap

− Rely on caching in the compute layer for high performance

• Partition table into files (micro-partitions)

− Each file is around 16MB

• PAX hybrid columnar storage format within each file

• Storage is shared by all the compute nodes
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Computer Layer

• Virtual Warehouse (VW)

− A set of EC2 instances (worker nodes) for the actual query 

processing and execution

− Similar to MPP databases

• Elasticity

− Created, destroyed, resized on demand

− Users may shut down all warehouses when they have nothing to run

− Sizing from X-Small to XX-Large
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Control Layer

• The brain of the system to control and manage the system

• It's a collection of services that manage virtual 
warehouses, queries, transactions, concurrency control, 
multi-tenancy…

• Metadata information, e.g., min-max info for pruning
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Amazon Redshift

• Initially, an MPP database (shared-

nothing)

• Now support storage-compute 

separation with RMS to moves data 

from local storage to S3 

automatically (storage scaling)

• Also introduces many optimizations, 

e.g., compression, query 

compilation, offloading, FPGA 

acceleration, ML…

Armenatzoglou et al. Amazon Redshift Re-invented. SIGMOD 2022.

https://dl.acm.org/doi/10.1145/3514221.3526045
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Persistent Memory (PM)

• PM (or non-volatile main memory) is a new storage 
technology (many research papers in the last few years)

− Performance is similar to DRAM

− But durable as SSDs

• As we have storage disaggregation, how about PM 
disaggregation? What’re the benefits?
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PM Disaggregation

• Besides of the benefits of storage disaggregation, e.g., 
independent and elastic scaling, what’re new benefits?

− PM server is expensive ➔ disaggregation enables sharing, which 

takes lower amortized cost

− Can be cheaper overall as compute nodes do not need so 

much local memory anymore

• Can leverage the cloud instances with leftover CPUs but limited memory

− Can support faster recovery with huge data in PM (faster warm 

up)

PM Node

Compute Node
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Challenges of PM Disaggregation

• Shall we have a dedicated PM node (layer)?

CPU

DRAM

CPU

DRAM

Disk Disk

Storage Disaggregation

CPU

DRAM

CPU

DRAM

Disk Disk

No Dedicated PM Layer

(Just add PM to existing 

storage servers)

PM

CPU

DRAM

CPU

DRAM

Disk Disk

With Dedicated PM Layer

(Need faster networking)

PM PM

RDMA
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Challenges of PM Disaggregation

• How to leverage the CPU in the PM node?

−Can be a lot (not limited CPU as in storage 
disaggregation)

−E.g., Intel Optane PM needs high-end CPUs (3rd Gen 
Intel Xeon)

PM Node

Compute Node

https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-persistent-memory-200-series-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-persistent-memory-200-series-brief.html
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Challenges of PM Disaggregation

• Limited write bandwidth (still slower than reads)

• Remote persistency is tricky

− Simple RDMA write to PM will not guarantee persistency

− It requires one more RDMA read

Kalia et al. Challenges and Solutions for Fast Remote Persistent Memory Access. SoCC'20.

RDMA write

NIC L3 PM

ACK

DMA

https://dl.acm.org/doi/10.1145/3419111.3421294
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PilotDB: Persistent Memory Disaggregation 
for Cloud-Native Relational Databases

Ruan et al. Persistent Memory Disaggregation for Cloud-Native Relational Databases. ASPLOS 2023.

Compute Layer

PM Layer (Logs)

Storage Layer (Pages)

https://dl.acm.org/doi/10.1145/3582016.3582055
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PilotDB Architecture

• Reads

− Check local buffer (LBP)

− Then remote PM buffer (RBP)

• Write redo logs to PMN

• Replay the log in the PMN

− To use the CPUs

• PMN flushes cold page to storage 

layer, when it is under space 

pressure
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PilotDB Optimized RDMA Reads

• Compute node uses one-sided 
RDMA read to fetch pages from 
PM node

• But how to guarantee the page 
is already replayed?

− The CN checks the LSN of the page 

against the LSN in PMT

− If the page is outdated, the CN pulls 

relevant logs and performs replay
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PilotDB Replication and Recovery

• Replication

− Logs are replicated in PM layer

− Pages are stored only once (PM is still expensive)

• Recovery

− If CN fails, recover quickly from PM layer (fast warm-up)

− If PM fails:

• If PM back online directly, just recover the connection and the system is 

good to go

• If PM node not available anymore, refetch the page from the storage 

layer and reply the logs
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Outline

• Introduction to memory disaggregation

• Performance implications for DBMSs

• Memory-disaggregated transactional systems

• Memory-disaggregated analytical systems

• CXL-based memory disaggregation

• Future directions

54
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DirectCXL [ATC 22]

TELEPORT [SIGMOD 22]

LegoBase [VLDB 21]

Covered Work

55

Transactions

Analytics

CXL

Understanding the effect on production DBMSs [VLDB 20] Implications
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Introduction to 

memory disaggregation 

56
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Storage Disaggregation

• Separating compute and storage

57

Data center 
network

Compute servers

MC

Storage servers

SS
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Storage Disaggregation

• Separating compute and storage

• Compute and memory are still coupled
− Inflexible compute and memory allocation

−Limited memory elasticity

−Slow recovery on compute server failures

58

Unused memory in Azure

Translated to hardware cost
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Memory Disaggregation

• Separate compute, memory, and storage into 
resource pools that are connected by a fast 
network

59
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Memory Disaggregation

• Separate compute, memory, and storage into 
resource pools that are connected by a fast 
network

• Complete compute and data decoupling

60
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Operational Benefits

• Independent failures

61

Network

CPU

RAM

SSD

✖ CPU
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Operational Benefits

• Independent failures

• Independent expansion

62

C

M

S

Network

More memory
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Operational Benefits

• Independent failures

• Independent expansion

• Independent allocation

63

Network

C1

M1

S1

C1

M1

S1

C2

M2

S2

VM1 VM2

C2

M2

S2

Physical resource pools
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Enabling Technique: RDMA

• Remote Direct Memory Access

64

App
RDMA

NIC

Mem

CPU
Send Queue

Recv Queue

Queue Pair

RDMA
NIC

2-sided

1-sided

Client Machine Server Machine

Good fit
• Low CPU utilization
• High network speed
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Types of Memory Disaggregation

• Kernel-space approaches

65

Remote
memory

PagingOS

Page fault, 
swapping

Pros
• Unmodified applications
• Transparent infra evolution

Cons
• High performance cost
• High development cost

App
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Types of Memory Disaggregation

• User-space approaches

66

Remote
memory

RM Lib

OS

Pros
• No kernel overhead
• Fine-grained control
• Customized optimizations

Cons
• Application modifications

App
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Implications for DBMSs

• Performance overhead
− Memory access becoming network communication

• Data consistency
− Consistent and concurrent remote memory access

• Remote memory abstraction
− Offering remote memory with RDMA

• Reliability
− Partial failures of compute and memory

67
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Performance Implications for 
DBMSs

68
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Covered Work

69

Understanding the effect on production DBMSs [VLDB 20] Implications
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Methodology of Study

70

• Evaluate production DBMSs
• MonetDB

• PostgreSQL

  in a real cluster
• Inifiniband network

• LegoOS

  with complex queries
• All 22 TPC-H queries

MonetDB PostgreSQL

Execution In-memory Out-of-core

Storage Column-based Row-based

Architecture Client/Server Client/Server

Buffer Pool Size min(Capacity, Demand) Customizable

Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs
Q. Zhang et al., VLDB 2020
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Disaggregation Cost

71

• What is the cost of memory disaggregation for complex queries?

• Evaluate DBMS performance slowdown in a disaggregated OS 
compared to Linux with the same hardware capacity
• In-memory execution

• Cold out-of-core execution (disk I/O involved)

• Hot out-of-core execution (data cached)

Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs
Q. Zhang et al., VLDB 2020
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Cost for In-memory Execution

72

• MonetDB

LegoOS (low degree of disaggregation) LegoOS (high degree of disaggregation*)

1.7x slowdown 18x slowdown

Findings
1. This confirms the cost of disaggregation for complex queries
2. The cost increases with the degree of disaggregation
3. The slowdown can be higher than 100x

*low local memory size 
on compute node 

Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs
Q. Zhang et al., VLDB 2020
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Cost for Out-of-core Execution

73

• PostgreSQL (cold, disk I/O is involved)

LegoOS (low degree of disaggregation)

1.08x slowdown

Finding - most queries experience no cost from disaggregation

Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs
Q. Zhang et al., VLDB 2020
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Cost for Out-of-core Execution

74

• PostgreSQL (hot, data is cached)

LegoOS (low degree of disaggregation)

2x slowdown

Findings
1. Hot execution has higher cost than cold execution
2. The slowdown is even higher than in-memory execution (1.7x)

Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs
Q. Zhang et al., VLDB 2020
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Summary of Disaggregation Cost

• In-memory execution
−Moderate if working set fits into compute-local memory

−Significant, otherwise

• Out-of-core execution
−Dominated by other factors (disk I/O, cache design, 

etc.), and thus less sensitive to (the degree of) 
disaggregation

75Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs
Q. Zhang et al., VLDB 2020
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Another Perspective: Elasticity

76

• Consolidates the same type of resources

• Provides the opportunity of DBMSs using “infinite” resources 
without any application modifications

Data Center
Interconnect

C

C

M

M

S S

Compute Pool Memory Pool

Storage Pool

C

M

S

Monolithic Server

>> spill to disk

spill to memory pool

The difference can be huge (an order of magnitude)

Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs
Q. Zhang et al., VLDB 2020
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Memory-disaggregated 
transactional systems

77
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LegoBase [VLDB 21]

Covered Work

78

Transactions
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LegoBase

79Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

A transactional DB design for memory 
disaggregation with tiered memory management 
and recovery
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LegoBase

80Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

Compute node Memory cluster

SQL engine (MySQL)

Local buffer 
manager

Remote buffer 
agent 

Light fault 
tolerance 
daemon

Read Write
Remote buffer 

manager
Remote 

buffer pool

Heavy fault tolerance daemon

Persistent shared storage

Read

Flush

Read Read/Write Log Flush

Primary contributions
• Moves memory management back to DBMS
• Provides a two-tier fault tolerance protocol
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Memory Management Motivation

• Existing memory disaggregation has been OS-

based

− Infiniswap [NSDI 17], LegoOS [OSDI 18]

• Issue #1: OS overhead on remote memory access

−4KB page transfer: 4-6 µs RDMA vs. 40 µs Infiniswap

81Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021
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Memory Management Motivation

• Existing memory disaggregation has been OS-based

− Infiniswap [NSDI 17], LegoOS [OSDI 18]

• Issue #2: low cache hit ratios with unified memory

− Small but important data might be evicted, e.g., session info

− OS LRU is less effective than DB-optimized LRU

− Page size mismatch: 4KB in OS vs. 16KB in DBMS

82Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021
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Splitting Buffer Pool

Local Buffer Pool (LBP) vs. Remote Buffer Pool (RBP)

−LBP is a cache of RBP

83Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

Compute node Memory node

LBP (predefined) RBP (configured per DB)

…
Local Page 
Allocator

Remote Page 
Allocator
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Page Organization

Every page has a meta frame

−Page id, local address, and remote address

84Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

Compute node Memory node

LBP (predefined) RBP (configured per DB)

…
Local Page 
Allocator

Remote Page 
Allocator

id

Meta Frame
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Page Organization

Two LRU lists of meta frames on the compute node

−LRU_LBP: MySQL-style LRU for local pages

−LRU_RBP: caching remote address for evicted pages

85Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

Compute node Memory node

LBP (predefined) RBP (configured per DB)

…
Local Page 
Allocator

Remote Page 
Allocator

LRU_LBP

LRU_RBP
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Page Lookup

Locating pages with hash lookups

−PHASH_LBP: pointing to the locations in the two LRU 

lists

−PHASH_RBP: pointing to local pages

86Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

Compute node Memory node

LBP (predefined) RBP (configured per DB)

…
Local Page 
Allocator

Remote Page 
Allocator

id location 

PHASH_LBP

… …

id location 

PHASH_RBP

… …
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User-space Paging

Direct RDMA access from compute to memory

−Register and DeRegister: BP cache misses and evictions

−Read and Flush: compute cache misses and evictions

87Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

Compute node Memory node

LBP (predefined) RBP (configured per DB)

…
Local Page 
Allocator

Remote Page 
Allocator

id location 

PHASH_LBP

… …

id location 

PHASH_RBP

… …
RDMA
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Result (TPC-C)

LegoBase outperforms Infiniswap

− Up to 2× on throughput and 2.3× on tail latency (p99)

88Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021
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Result (TPC-H)

LegoBase query latency is close to monolithic MySQL

− But can be 2× higher for memory-intensive queries

89Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021
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Fault Tolerance Motivation

• Independent compute-memory failures introduce 

recovery opportunities

−States saved in memory can speed up compute recovery

90Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

3.9× faster recovery
5.5× faster BP warm-up
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Two-tier ARIES

91Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

Local buffer pool (LBP) Remote buffer pool (RBP)

…

Transaction manager

FLUSH_LBP

Log buffer

LFT Daemon

Checkpoints FLUSH_RBP

HFT Daemon

Compute Memory

Storage
WAL Checkpoints Data

1

2

3

4

5 6

7

8

9

10

11

12

13commit

• Read the paper to figure this out
• Most importantly, data is checkpointed to memory
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If Compute Fails...

92Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

• Recover fast from tier-1 checkpoints

Remote buffer pool (RBP)

…

Checkpoints

Compute Memory

Storage
WAL Checkpoints Data

LFT Daemon

LRU_LBP

1. Connect

2. Read

3. Traverse & Apply



93

If Both Fail...

93Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

• Recover slowly from tier-2 checkpoints

Remote buffer pool (RBP)

…

Compute Memory

Storage
WAL Checkpoints Data

LRU_LBP

LRU_RBP
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Result

Recovery time
−50s for MySQL and LegoBase from tier-2

−2s for LegoBase from tier-1

94Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021
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Summary

• MySQL customized for disaggregated memory

• DBMS-optimized memory management removes 
OS overhead and achieves more effective caching

• Two-tier fault tolerance leverages failure 
independence for fast recovery

95Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021
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Other Recent Work

• PolarDB Serverless [SIGMOD 21]: multi-compute

• Sherman [SIGMOD 22]: B+tree optimized for writes

• FlexChain [VLDB 23]: an XOV blockchain design

• dLSM [ICDE 23]: LSM indexing

• DSM-DB [VLDB 23]: distributed shared-memory DB

96
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Memory-disaggregated 
analytical systems

97
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TELEPORT [SIGMOD 22]

Covered Work

98

Analytics
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TELEPORT

99Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022

A compute pushdown framework that moves 
operators from compute to memory
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In-memory Query Performance

100

Monolithic vs. memory-disaggregated
MonetDB with TPC-H scale factor 50 (query 9)

Monolithic

11.5s

Memory 
disaggregated

661s

TELEPORT
(scale-out)

22.7s

57×
Scale-out cost

Can we remove most of this high 
“cost of disaggregation” to 
unlock all its benefits?

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022



101

TELEPORT Motivation

101

189 
GB 87 

GB

Execute them in the memory pool to 
remove data movements

Compute pushdown

Monolithic Memory-disaggregated

Monolithic vs. memory-disaggregated
MonetDB with TPC-H scale factor 50 (query 9)

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022
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TELEPORT Overview

• Compute pushdown framework for memory disaggregation

102

C
a

ch
e

C
o

n
tr

o
lle

r

Compute pool Memory pool

TELEPORT (OS)

In-mem 
data

Data processing workers Data processing states

1. Provide simple and 
general interface

2. Execute arbitrary 
operators fast

3. Guarantee memory 
consistency

operator operator

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022
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Compute Pushdown Interface

• System call: pushdown(fn, arg, flags)

103

Function pointer
Argument pointer

Customization

void agg(table *input_table, double *result) {
    // implementation of aggregation
}

void main() {
    //...
    agg(t, r);
}

void agg(table *input_table, double *result) {
    // implementation of aggregation
}

struct agg_arg {
    table *input_table;
    double *result;
};

void fn(void *arg) {
    // execute the operator
}

void main() {
    //...
    struct agg_arg *arg;
    // contruct arg
    pushdown(fn, arg, flags);
}

Define 
argument

Define 
function

Execute 
pushdown

TELEPORT

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022
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Compute Pushdown Interface

• System call: pushdown(fn, arg, flags)

• Ported MonetDB (in-memory DBMS, 400,000 lines in total)

− Projection, 117 lines

− Aggregation, 214 lines

− Selection, 302 lines

− Hash, 75 lines

As well as PowerGraph (graph processing) and Phoenix (MapReduce)

104

To unlock all disaggregation benefits

ቐ
Function pointer

Argument pointer
Customization

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022
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Memory Pool Execution

• Arbitrary and fast function execution

• Akin to POSIX vfork

105

pushdown(fn, arg, flags)

TELEPORT (compute) TELEPORT (memory)

Entire virtual memory space 
(text segment, stack, heap)

fn(arg)

Fast network

Limit the number of contexts

Compute pool Memory pool

Page table 

Temporary context

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022
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Data Synchronization

• Memory consistency between compute and memory

• Inconsistent time points:

• Without proper synchronization, pushdown may be executed incorrectly

106

pushdown(fn, arg, flags)

TELEPORT (compute) TELEPORT (memory)

fn(arg)

…

Compute pool Memory pool

A B C DA BA B

Compute-local cache

before pushdown during pushdownafter pushdown

B C D

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022
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Baseline Approach

• Evict all local pages and push down all threads in the same process

• Performance issues

− Not all compute-local pages are accessed in pushdown

− Overwhelm memory pool’s limited compute resource

107

pushdown(fn, arg, flags)

TELEPORT (compute) TELEPORT (memory)

fn(arg)

…

Compute pool Memory pool

A B C DA BA B

Compute-local cache

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022
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On-demand Coherence Protocol

• Synchronize pages only when they are needed

• Invariant: only one writable copy of a page between pools at any 
moment

108

pushdown(fn, arg, flags)

TELEPORT (compute) TELEPORT (memory)

fn(arg)

…

Compute pool Memory pool

A B C DA BA

Compute-local cache

A, B
List of pages

A, B

A, B are removed
Page fault

× ×B

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022
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Evaluation Setup

• Compute: 8 CPU cores (16 threads) with 1 GB local cache

• Memory: 128 GB memory with 2 cores for pushdown

• Storage: 1 TB SSD

• Connected by an InfiniBand network: 56 Gbps bandwidth and 1.2 𝜇s 
latency

109Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022
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TELEPORT Minimizes Overhead

110

Monolithic

11.5s

Baseline memory 
disaggregation

661s

TELEPORT

22.7s

29×

Vertica (distributed): 2.3×
Baseline: 57×

Scale-out cost 1.97×

TELEPORT removes most of the “cost of disaggregation”

MonetDB with TPC-H scale factor 50 (query 9)

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022
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Summary

• Memory disaggregation lacks good support for data-intensive 
applications, such as data analytics systems

• TELEPORT enables general and fast compute pushdown

• Distributing operators between compute and memory must take 
care of data consistency

111Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022
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Other Recent Work

• Google Big Query [VLDB 20]: large-scale shuffling through 

disaggregated memory

• Redy [VLDB 22]: utilizing stranded memory in cloud data 

centers as remote cache

• Farview [CIDR 22]: compute offloading with FPGAs for 

disaggregated memory

112
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CXL-based

memory disaggregation

113
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DirextCXL [ATC 22]

Covered Work

114

CXL
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DirectCXL

115Direct Access, High-Performance Memory Disaggregation with DirectCXL
D. Gouk et al., ATC 2022

An alternative approach to disaggregating memory 
using CXL
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Motivation: RDMA Cost

116Direct Access, High-Performance Memory Disaggregation with DirectCXL
D. Gouk et al., ATC 2022

• Data is copied over the network
−Network latency

−DMA operations on both sides

• Data is copied between applications and NIC-
registered memory regions
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Compute eXpress Link (CXL)

117Direct Access, High-Performance Memory Disaggregation with DirectCXL
D. Gouk et al., ATC 2022

• Cache-coherent interconnects for connectivity 
between CPUs, accelerators, and I/O devices

• Supports all devices, from accelerators to memory
−Type 1: device accessing host memory

−Type 2: device and host accessing each other's memory

−Type 3: host accessing device memory



118

Compared to RDMA

118Direct Access, High-Performance Memory Disaggregation with DirectCXL
D. Gouk et al., ATC 2022

Direct PCIe access through load/store instructions
−No network latency

−No extra data copies
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Memory Disaggregation with CXL

119Direct Access, High-Performance Memory Disaggregation with DirectCXL
D. Gouk et al., ATC 2022

• How to enable direct access to CXL memory?

• How to enable flexible memory configuration?

• How to present CXL memory to applications?

CXL memory

CPU

CXL memory

CPU

App

CXL memory
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DirextCXL Design

120Direct Access, High-Performance Memory Disaggregation with DirectCXL
D. Gouk et al., ATC 2022

How to enable direct access to CXL memory?
−Convert load and store instructions to CXL packets

−An FPGA-based controller converts them back

CPUApp

Load/store

DRAM
Memory 

controller

Load/storeCXL packets

Compute blade Memory bladePCIe
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DirextCXL Design

121Direct Access, High-Performance Memory Disaggregation with DirectCXL
D. Gouk et al., ATC 2022

How to enable flexible memory configuration?
−A CXL switch with a reconfigurable crossbar

CPU

CXL memory

CPU

CXL memory

CXL memory

CXL Switch

PCIe PCIe
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DirextCXL Design

122Direct Access, High-Performance Memory Disaggregation with DirectCXL
D. Gouk et al., ATC 2022

How to present CXL memory to applications?
−Leveraging Linux virtual memory system

Compute blade

App CXL memory
CXL device 

driver
Character 

device driver
ioctl()

mmap()

PCIe
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Result on Real Workloads

123Direct Access, High-Performance Memory Disaggregation with DirectCXL
D. Gouk et al., ATC 2022

• DirectCXL outperforms RDMA
− 3× faster than kernel-space RDMA (Swap)
−  2.2× faster than user-space RDMA (KVS)
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Summary

124Direct Access, High-Performance Memory Disaggregation with DirectCXL
D. Gouk et al., ATC 2022

• RDMA-based memory disaggregation incurs 
networking overhead and extra memory copies

• DirectCXL provides a CXL solution via direct PCIe 
access, a CXL switch, and a software runtime

• Application performance is significantly improved 
without modifications, showing CXL potentials
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Other Recent Work

• SAP HANA on CXL-expanded memory [DaMon 22]: evaluating 

in-memory database system performance with CXL as the 

storage backend

• Active area in systems and architecture communities

125
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Future directions of 
disaggregated DBMSs

126
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Future Directions

• Comprehensive performance evaluation of 
disaggregated databases

• Scalable transactions in disaggregated databases

• Automatic resource provisioning

• CXL-optimized databases

127
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Q & A
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