
Disaggregated Database Systems

Jianguo Wang Qizhen Zhang

2

Outline

• Introduction and motivation

• Storage disaggregation

• Additional discussions on PM

• Memory disaggregation

• Additional discussions on CXL

• Future directions

Jianguo Wang

Qizhen Zhang

3

About Me

• Assistant Professor @ Purdue CS (01/2021 ~)

• Senior Researcher (07/2020 ~ 12/2020)

− Milvus Vector Database

• Software Engineer (03/2019 ~ 07/2020)

− Amazon Aurora Cloud Database

• PhD @ UC San Diego (09/2013 ~ 12/2018)

• Research Area: Database Systems for Non-traditional Architecture

and Non-traditional Data

− Disaggregated Databases; Vector Databases

www.cs.purdue.edu/homes/csjgwang/

http://www.cs.purdue.edu/homes/csjgwang/

4

SIGMOD’23 Panel

5

VLDB’22 Panel

6

7

What’re Disaggregated Databases?

• Designed explicitly for resource disaggregation (RD)

• RD is a new trend in cloud data centers that decouples
resources (such as compute, storage, and memory) into
separated resource pools connected via networking

8

DRAM

CPU

Disk

memory bus

PCIe bus

Traditional Data Center

Monolithic "converged" servers with

compute/memory/storage tightly

coupled in physical servers

Disaggregated Data Center

Separate resources into resource

pools connected via networking

Memory Node

Compute Node

Storage Node

networking

networking

CPU

DRAM

Disk

Compute Pool Memory Pool Storage Pool

9

Resource Disaggregation
• Compute Node

− High computing power (e.g., 100s cores)

− Limited local memory and local storage (flexible)

• Memory Node

− Huge memory (e.g., 100s GBs)

− Weak computing power (flexible)

• Storage Node

− Huge storage (e.g., TBs)

− Weak computing and limited memory (flexible)

Memory Node

Compute Node

Storage Node

networking

networking

CPU

DRAM

Disk

• Resources are separated into different types of servers and each
type may include limited (yet flexible) amount of other resources
(partial disaggregation)

10

Benefits of Resource Disaggregation

• Independent and elastic resource scaling

− Users can request any combinations of compute, memory, storage
based on their needs

− Very important in the cloud

• Increase resource utilization and reduce resource

fragmentation

− Due to resource pooling

− Lead to lower cost

• Other benefits

− Independent failure and upgrades, near-infinite pool of resources

11

Applications of Resource Disaggregation

• Many cloud vendors have adopted resource
disaggregation to some extent and have re-designed
their databases explicitly for resource disaggregation

12

Classification of Resource Disaggregation

Memory

Compute

Storage

RDMA

TCP/IP

Compute & Memory

Storage

TCP/IP

Storage Disaggregation Memory Disaggregation

Only separate storage from compute & memory Further separate compute and memory

Networking is usually based on TCP/IP

Widely used in cloud-native databases

Networking is usually based on high-

speed networks, e.g., RDMA

Under active investigation

13

Implications of Resource Disaggregation
to Database Systems

• What’s the big deal to databases?

• Isn’t same as traditional storage hierarchy?

• Implication 1: How to reduce networking
overhead?
− Use caching, compression (same as traditional storage

hierarchy)

− But can also use near-data computing (both the memory node
and storage node have CPUs), e.g., log-as-the-database
• Different from traditional storage hierarchy

− This is partial disaggregation

Memory

Compute

Storage

RDMA

TCP/IP

14

Implications of Resource Disaggregation
to Database Systems

• Implication 2: How to distribute and share resources?

− Resources are disaggregated ➔ enable sharing, e.g., different compute

nodes can share the same storage or memory

− Use distributed shared-storage (or shared-memory) architecture for distributed

databases, instead of the golden standard of shared-nothing

− Support much better elasticity and independent resource scaling ➔ key to

implement serverless databases

CPU

DRAM

Disk

CPU

DRAM

Disk

CPU

DRAM

CPU

DRAM

Disk Disk

CPU

DRAM DRAM

CPU

Disk Disk

Distributed Shared-Nothing Distributed Shared-Storage Distributed Shared-Memory

15

CPU

DRAM

Disk

CPU

DRAM

Disk

CPU

DRAM

CPU

DRAM

Disk Disk

CPU

DRAM DRAM

CPU

Disk Disk

Distributed Shared-Nothing Distributed Shared-Storage Distributed Shared-Memory

Wang et al. The Case for Distributed Shared-Memory Databases with RDMA-Enabled
Memory Disaggregation. VLDB 2023.

VLDB’23

https://www.vldb.org/pvldb/vol16/p15-wang.pdf
https://www.vldb.org/pvldb/vol16/p15-wang.pdf
https://www.vldb.org/pvldb/vol16/p15-wang.pdf

16

Outline

• Introduction and motivation

• Storage disaggregation

• Additional discussions on PM

• Memory disaggregation

• Additional discussions on CXL

• Future directions

• OLTP databases

− Amazon Aurora

− Microsoft Socrates

− Google AlloyDB

− Alibaba PolarDB

• OLAP databases

− Snowflake

− Amazon Redshift

17

Why Storage-Compute Disaggregation?

• Independent scaling of compute and storage

− Best for any workload, lower cost

• Easy for serverless

− Can shut down all compute nodes and

start quickly

• Faster scaling & crash recovery

− If you switch to a bigger instance

(or a new instance due to crash), no need to move data

➔ much faster

18

Compute (master) Compute (replica)

Distributed Cloud Storage

SQL

Transactions

Caching

Transactions

SQL

Caching

Storage Engine

Goal
Reduce network I/O

Aurora System Architecture

Designed for storage & compute disaggregation

Verbitski et al. Amazon Aurora: Design Considerations for High Throughput Cloud-Native
Relational Databases. SIGMOD 2017.

https://dl.acm.org/doi/10.1145/3035918.3056101
https://dl.acm.org/doi/10.1145/3035918.3056101

19

Main Ideas in Aurora

Compute (master)

SQL

Transactions

Caching

Storage Engine

ONLY LOGS

(not data pages)

• Log is the database

− Only write logs on network

− Push log applicator to storage tier

• Asynchronous processing

− Materialize pages in background

(storage engine)

• Buffer cache

− To avoid network I/O

− Can read pages upon cache miss

20

How Does Database Work with Logs?

Read Write

CommitCache

Replication Recovery

21

Writes

• DB generates logs for all trxns

• Writes (trxns) send logs to storage asynchronously

• Durability: each log is durable (ack) with 4/6 quorums

• Volume Durable LSN (VDL)
− As log records can be lost, out of order

− VDL: the largest one with all prior LSNs are durable

LSN3

(not ack)

LSN5

(cur LSN)

LSN4

(ack)

LSN0

(ack)

LSN1

(ack)

LSN2

(ack)

VDL

22

Transaction Commits

• Transaction commits asynchronously

• When a transaction commits, mark its commit LSN

• Commit only if VDL >= commit LSN

LSN3

(not ack)

LSN4

(commit LSN)

LSN0

(ack)

LSN1

(ack)

LSN2

(ack)

VDL

23

Replication: Scalability

• 1 writer and up to 15 reader instances

• How to keep data consistent between writer and readers?
− The writer sends logs to readers at the same time

− Once the reader receives logs, it will check if the page is in the
cache
• If yes, apply the log; Otherwise, discard it

− Replication lag: 20ms

Writer …Reader1 R2 R15

Distributed Shared Storage

24

Reads (Caching)

• Each reader instance has a buffer (cache)

• Upon reads, check cache first

− The cache is supposed to contain the latest data pages

− Except replication lags

• What if the cache is full?

− Always evict a clean page: a page that’s durable (pageLSN <=

VDL)

− Why? Otherwise, need to write dirty pages to storage, which

increases network overhead

25

Crash Recovery

Traditional Databases

• Have to replay logs since the last
checkpoint

• Typically 5 minutes between
checkpoints

• Single-threaded in MySQL; requires a
large number of disk accesses

Aurora

• No need to replay logs and
generate pages during recovery
(very fast)

• Just need to re-establish some states
(e.g., VDL) ➔ make sure storage is
consistent

• Generate pages asynchronously, in
parallel

• Typically a few seconds

26

Aurora Storage

• Why not using S3 or EBS? Why developing a new

distributed storage?

−Highly available, 6-way replication

• 2 copies per AZ

• Write quorum 4/6; read quorum 3/6

−Offloading logs (and allow other optimizations)

27

Experiments

Up to 5x faster than Cloud MySQL

28

Microsoft Socrates

• Similar to Amazon Aurora, it’s also designed for storage-
compute disaggregation

• Key difference: separate log service from page service

− Philosophy: separate durability (implemented by logs) from

availability (implemented by pages)

− Allow customized optimizations for logs and pages

• Durability does not require copies in fast storage

• Availability does not require a fixed number of replicas

Antonopoulos et al. Socrates: The New SQL Server in the Cloud. SIGMOD 2019.

https://dl.acm.org/doi/10.1145/3299869.3314047

29

Socrates Architecture

Compute Layer

Log Layer

Storage Layer
(Page Servers)

Azure Storage
(Standalone Service)

30

Compute Layer

• One primary node (writer) and

multiple secondary nodes

(readers)

• Compute nodes cache data in

memory and local SSDs

(ephemeral) if any

• Support SQL engine, optimization,

buffer, transactions

• Send only logs to XLOG service

31

• For fast durability

• Expensive but small SSDs

− Persist recent logs

− Three replicas

• Logs are flushed to XStore

• Page servers consume the logs

in an asynchronous way

Log Layer (XLOG)

32

• Store the actual pages

• Replay the logs

• Each page server stores a

partition of the database

• Has local SSDs

• No replicas in this layer

− Backup via the XStore

Storage Layer

33

• Highly scalable, durable, and

cheap storage service based

on slow hard disks

• Compute nodes and page

servers are stateless and they

can fail at any time without

data loss

• The “truth” of the database is

stored in XStore and XLOG

Azure Storage (XStore)

34

Google AlloyDB Architecture

• Similar to Aurora

• Log-as-the-database

• One primary and multiple

replicas

• The storage layer is

based on GFS (Colossus)

• Public information is limited (no papers yet)

− Product released in 2022

https://cloud.google.com/blog/products/databases/alloydb-for-postgresql-intelligent-scalable-storage

https://cloud.google.com/blog/products/databases/alloydb-for-postgresql-intelligent-scalable-storage

35

Alibaba PolarDB
• Similar to Aurora

• Differences

− Send both data and logs

− Use RDMA for fast data

transfer

− Based on PolarFS (no need

log replay etc.)

− Support memory

disaggregation and HTAP

Li. Cloud-Native Database Systems at Alibaba: Opportunities
and Challenges. VLDB 2019.

http://www.vldb.org/pvldb/vol12/p2263-li.pdf
http://www.vldb.org/pvldb/vol12/p2263-li.pdf

36

Outline

• Introduction and motivation

• Storage disaggregation

• Additional discussions on PM

• Memory disaggregation

• Additional discussions on CXL

• Future directions

• OLTP databases

− Amazon Aurora

− Microsoft Socrates

− Google AlloyDB

− Alibaba PolarDB

• OLAP databases

− Snowflake

− Amazon Redshift

37

Snowflake Data Warehouse

Dageville et al. The Snowflake Elastic Data Warehouse. SIGMOD 2016.

Compute Layer

Storage compute separation and distributed shared-storage

Storage Layer

Control Layer

https://dl.acm.org/doi/10.1145/2882903.2903741

38

Storage Layer

• Based on S3 for high availability and durability

− Slow but reliable and cheap

− Rely on caching in the compute layer for high performance

• Partition table into files (micro-partitions)

− Each file is around 16MB

• PAX hybrid columnar storage format within each file

• Storage is shared by all the compute nodes

39

Computer Layer

• Virtual Warehouse (VW)

− A set of EC2 instances (worker nodes) for the actual query

processing and execution

− Similar to MPP databases

• Elasticity

− Created, destroyed, resized on demand

− Users may shut down all warehouses when they have nothing to run

− Sizing from X-Small to XX-Large

40

Control Layer

• The brain of the system to control and manage the system

• It's a collection of services that manage virtual
warehouses, queries, transactions, concurrency control,
multi-tenancy…

• Metadata information, e.g., min-max info for pruning

41

Amazon Redshift

• Initially, an MPP database (shared-

nothing)

• Now support storage-compute

separation with RMS to moves data

from local storage to S3

automatically (storage scaling)

• Also introduces many optimizations,

e.g., compression, query

compilation, offloading, FPGA

acceleration, ML…

Armenatzoglou et al. Amazon Redshift Re-invented. SIGMOD 2022.

https://dl.acm.org/doi/10.1145/3514221.3526045

42

Outline

• Introduction and motivation

• Storage disaggregation

• Additional discussions on PM

• Memory disaggregation

• Additional discussions on CXL

• Future directions

43

Persistent Memory (PM)

• PM (or non-volatile main memory) is a new storage
technology (many research papers in the last few years)

− Performance is similar to DRAM

− But durable as SSDs

• As we have storage disaggregation, how about PM
disaggregation? What’re the benefits?

44

PM Disaggregation

• Besides of the benefits of storage disaggregation, e.g.,
independent and elastic scaling, what’re new benefits?

− PM server is expensive ➔ disaggregation enables sharing, which

takes lower amortized cost

− Can be cheaper overall as compute nodes do not need so

much local memory anymore

• Can leverage the cloud instances with leftover CPUs but limited memory

− Can support faster recovery with huge data in PM (faster warm

up)

PM Node

Compute Node

45

Challenges of PM Disaggregation

• Shall we have a dedicated PM node (layer)?

CPU

DRAM

CPU

DRAM

Disk Disk

Storage Disaggregation

CPU

DRAM

CPU

DRAM

Disk Disk

No Dedicated PM Layer

(Just add PM to existing

storage servers)

PM

CPU

DRAM

CPU

DRAM

Disk Disk

With Dedicated PM Layer

(Need faster networking)

PM PM

RDMA

46

Challenges of PM Disaggregation

• How to leverage the CPU in the PM node?

−Can be a lot (not limited CPU as in storage
disaggregation)

−E.g., Intel Optane PM needs high-end CPUs (3rd Gen
Intel Xeon)

PM Node

Compute Node

https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-persistent-memory-200-series-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-persistent-memory-200-series-brief.html

47

Challenges of PM Disaggregation

• Limited write bandwidth (still slower than reads)

• Remote persistency is tricky

− Simple RDMA write to PM will not guarantee persistency

− It requires one more RDMA read

Kalia et al. Challenges and Solutions for Fast Remote Persistent Memory Access. SoCC'20.

RDMA write

NIC L3 PM

ACK

DMA

https://dl.acm.org/doi/10.1145/3419111.3421294

48

PilotDB: Persistent Memory Disaggregation
for Cloud-Native Relational Databases

Ruan et al. Persistent Memory Disaggregation for Cloud-Native Relational Databases. ASPLOS 2023.

Compute Layer

PM Layer (Logs)

Storage Layer (Pages)

https://dl.acm.org/doi/10.1145/3582016.3582055

49

PilotDB Architecture

• Reads

− Check local buffer (LBP)

− Then remote PM buffer (RBP)

• Write redo logs to PMN

• Replay the log in the PMN

− To use the CPUs

• PMN flushes cold page to storage

layer, when it is under space

pressure

50

PilotDB Optimized RDMA Reads

• Compute node uses one-sided
RDMA read to fetch pages from
PM node

• But how to guarantee the page
is already replayed?

− The CN checks the LSN of the page

against the LSN in PMT

− If the page is outdated, the CN pulls

relevant logs and performs replay

51

PilotDB Replication and Recovery

• Replication

− Logs are replicated in PM layer

− Pages are stored only once (PM is still expensive)

• Recovery

− If CN fails, recover quickly from PM layer (fast warm-up)

− If PM fails:

• If PM back online directly, just recover the connection and the system is

good to go

• If PM node not available anymore, refetch the page from the storage

layer and reply the logs

52

Outline

• Introduction and motivation

• Storage disaggregation

• Additional discussions on PM

• Memory disaggregation

• Additional discussions on CXL

• Future directions

Qizhen Zhang

Jianguo Wang

Memory-disaggregated
DBMSs

Qizhen Zhang

University of Toronto

54

Outline

• Introduction to memory disaggregation

• Performance implications for DBMSs

• Memory-disaggregated transactional systems

• Memory-disaggregated analytical systems

• CXL-based memory disaggregation

• Future directions

54

55

DirectCXL [ATC 22]

TELEPORT [SIGMOD 22]

LegoBase [VLDB 21]

Covered Work

55

Transactions

Analytics

CXL

Understanding the effect on production DBMSs [VLDB 20] Implications

56

Introduction to

memory disaggregation

56

57

Storage Disaggregation

• Separating compute and storage

57

Data center
network

Compute servers

MC

Storage servers

SS

58

Storage Disaggregation

• Separating compute and storage

• Compute and memory are still coupled
− Inflexible compute and memory allocation

−Limited memory elasticity

−Slow recovery on compute server failures

58

Unused memory in Azure

Translated to hardware cost

59

Memory Disaggregation

• Separate compute, memory, and storage into
resource pools that are connected by a fast
network

59

M

M

M

M

S

S

S

S

C
a
ch

e

C
o

n
tr

o
lle

r
C

o
n

tr
o

lle
r

C

C

C

C

Compute pool Memory pool

Storage pool

Fast network

60

Memory Disaggregation

• Separate compute, memory, and storage into
resource pools that are connected by a fast
network

• Complete compute and data decoupling

60

61

Operational Benefits

• Independent failures

61

Network

CPU

RAM

SSD

✖ CPU

62

Operational Benefits

• Independent failures

• Independent expansion

62

C

M

S

Network

More memory

63

Operational Benefits

• Independent failures

• Independent expansion

• Independent allocation

63

Network

C1

M1

S1

C1

M1

S1

C2

M2

S2

VM1 VM2

C2

M2

S2

Physical resource pools

64

Enabling Technique: RDMA

• Remote Direct Memory Access

64

App
RDMA

NIC

Mem

CPU
Send Queue

Recv Queue

Queue Pair

RDMA
NIC

2-sided

1-sided

Client Machine Server Machine

Good fit
• Low CPU utilization
• High network speed

65

Types of Memory Disaggregation

• Kernel-space approaches

65

Remote
memory

PagingOS

Page fault,
swapping

Pros
• Unmodified applications
• Transparent infra evolution

Cons
• High performance cost
• High development cost

App

66

Types of Memory Disaggregation

• User-space approaches

66

Remote
memory

RM Lib

OS

Pros
• No kernel overhead
• Fine-grained control
• Customized optimizations

Cons
• Application modifications

App

67

Implications for DBMSs

• Performance overhead
− Memory access becoming network communication

• Data consistency
− Consistent and concurrent remote memory access

• Remote memory abstraction
− Offering remote memory with RDMA

• Reliability
− Partial failures of compute and memory

67

68

Performance Implications for
DBMSs

68

69

Covered Work

69

Understanding the effect on production DBMSs [VLDB 20] Implications

70

Methodology of Study

70

• Evaluate production DBMSs
• MonetDB

• PostgreSQL

 in a real cluster
• Inifiniband network

• LegoOS

 with complex queries
• All 22 TPC-H queries

MonetDB PostgreSQL

Execution In-memory Out-of-core

Storage Column-based Row-based

Architecture Client/Server Client/Server

Buffer Pool Size min(Capacity, Demand) Customizable

Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs
Q. Zhang et al., VLDB 2020

71

Disaggregation Cost

71

• What is the cost of memory disaggregation for complex queries?

• Evaluate DBMS performance slowdown in a disaggregated OS
compared to Linux with the same hardware capacity
• In-memory execution

• Cold out-of-core execution (disk I/O involved)

• Hot out-of-core execution (data cached)

Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs
Q. Zhang et al., VLDB 2020

72

Cost for In-memory Execution

72

• MonetDB

LegoOS (low degree of disaggregation) LegoOS (high degree of disaggregation*)

1.7x slowdown 18x slowdown

Findings
1. This confirms the cost of disaggregation for complex queries
2. The cost increases with the degree of disaggregation
3. The slowdown can be higher than 100x

*low local memory size
on compute node

Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs
Q. Zhang et al., VLDB 2020

73

Cost for Out-of-core Execution

73

• PostgreSQL (cold, disk I/O is involved)

LegoOS (low degree of disaggregation)

1.08x slowdown

Finding - most queries experience no cost from disaggregation

Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs
Q. Zhang et al., VLDB 2020

74

Cost for Out-of-core Execution

74

• PostgreSQL (hot, data is cached)

LegoOS (low degree of disaggregation)

2x slowdown

Findings
1. Hot execution has higher cost than cold execution
2. The slowdown is even higher than in-memory execution (1.7x)

Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs
Q. Zhang et al., VLDB 2020

75

Summary of Disaggregation Cost

• In-memory execution
−Moderate if working set fits into compute-local memory

−Significant, otherwise

• Out-of-core execution
−Dominated by other factors (disk I/O, cache design,

etc.), and thus less sensitive to (the degree of)
disaggregation

75Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs
Q. Zhang et al., VLDB 2020

76

Another Perspective: Elasticity

76

• Consolidates the same type of resources

• Provides the opportunity of DBMSs using “infinite” resources
without any application modifications

Data Center
Interconnect

C

C

M

M

S S

Compute Pool Memory Pool

Storage Pool

C

M

S

Monolithic Server

>> spill to disk

spill to memory pool

The difference can be huge (an order of magnitude)

Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs
Q. Zhang et al., VLDB 2020

77

Memory-disaggregated
transactional systems

77

78

LegoBase [VLDB 21]

Covered Work

78

Transactions

79

LegoBase

79Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

A transactional DB design for memory
disaggregation with tiered memory management
and recovery

80

LegoBase

80Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

Compute node Memory cluster

SQL engine (MySQL)

Local buffer
manager

Remote buffer
agent

Light fault
tolerance
daemon

Read Write
Remote buffer

manager
Remote

buffer pool

Heavy fault tolerance daemon

Persistent shared storage

Read

Flush

Read Read/Write Log Flush

Primary contributions
• Moves memory management back to DBMS
• Provides a two-tier fault tolerance protocol

81

Memory Management Motivation

• Existing memory disaggregation has been OS-

based

− Infiniswap [NSDI 17], LegoOS [OSDI 18]

• Issue #1: OS overhead on remote memory access

−4KB page transfer: 4-6 µs RDMA vs. 40 µs Infiniswap

81Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

82

Memory Management Motivation

• Existing memory disaggregation has been OS-based

− Infiniswap [NSDI 17], LegoOS [OSDI 18]

• Issue #2: low cache hit ratios with unified memory

− Small but important data might be evicted, e.g., session info

− OS LRU is less effective than DB-optimized LRU

− Page size mismatch: 4KB in OS vs. 16KB in DBMS

82Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

83

Splitting Buffer Pool

Local Buffer Pool (LBP) vs. Remote Buffer Pool (RBP)

−LBP is a cache of RBP

83Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

Compute node Memory node

LBP (predefined) RBP (configured per DB)

…
Local Page
Allocator

Remote Page
Allocator

84

Page Organization

Every page has a meta frame

−Page id, local address, and remote address

84Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

Compute node Memory node

LBP (predefined) RBP (configured per DB)

…
Local Page
Allocator

Remote Page
Allocator

id

Meta Frame

85

Page Organization

Two LRU lists of meta frames on the compute node

−LRU_LBP: MySQL-style LRU for local pages

−LRU_RBP: caching remote address for evicted pages

85Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

Compute node Memory node

LBP (predefined) RBP (configured per DB)

…
Local Page
Allocator

Remote Page
Allocator

LRU_LBP

LRU_RBP

86

Page Lookup

Locating pages with hash lookups

−PHASH_LBP: pointing to the locations in the two LRU

lists

−PHASH_RBP: pointing to local pages

86Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

Compute node Memory node

LBP (predefined) RBP (configured per DB)

…
Local Page
Allocator

Remote Page
Allocator

id location

PHASH_LBP

… …

id location

PHASH_RBP

… …

87

User-space Paging

Direct RDMA access from compute to memory

−Register and DeRegister: BP cache misses and evictions

−Read and Flush: compute cache misses and evictions

87Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

Compute node Memory node

LBP (predefined) RBP (configured per DB)

…
Local Page
Allocator

Remote Page
Allocator

id location

PHASH_LBP

… …

id location

PHASH_RBP

… …
RDMA

88

Result (TPC-C)

LegoBase outperforms Infiniswap

− Up to 2× on throughput and 2.3× on tail latency (p99)

88Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

89

Result (TPC-H)

LegoBase query latency is close to monolithic MySQL

− But can be 2× higher for memory-intensive queries

89Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

90

Fault Tolerance Motivation

• Independent compute-memory failures introduce

recovery opportunities

−States saved in memory can speed up compute recovery

90Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

3.9× faster recovery
5.5× faster BP warm-up

91

Two-tier ARIES

91Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

Local buffer pool (LBP) Remote buffer pool (RBP)

…

Transaction manager

FLUSH_LBP

Log buffer

LFT Daemon

Checkpoints FLUSH_RBP

HFT Daemon

Compute Memory

Storage
WAL Checkpoints Data

1

2

3

4

5 6

7

8

9

10

11

12

13commit

• Read the paper to figure this out
• Most importantly, data is checkpointed to memory

92

If Compute Fails...

92Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

• Recover fast from tier-1 checkpoints

Remote buffer pool (RBP)

…

Checkpoints

Compute Memory

Storage
WAL Checkpoints Data

LFT Daemon

LRU_LBP

1. Connect

2. Read

3. Traverse & Apply

93

If Both Fail...

93Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

• Recover slowly from tier-2 checkpoints

Remote buffer pool (RBP)

…

Compute Memory

Storage
WAL Checkpoints Data

LRU_LBP

LRU_RBP

94

Result

Recovery time
−50s for MySQL and LegoBase from tier-2

−2s for LegoBase from tier-1

94Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

95

Summary

• MySQL customized for disaggregated memory

• DBMS-optimized memory management removes
OS overhead and achieves more effective caching

• Two-tier fault tolerance leverages failure
independence for fast recovery

95Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation
Y. Zhang et al., VLDB 2021

96

Other Recent Work

• PolarDB Serverless [SIGMOD 21]: multi-compute

• Sherman [SIGMOD 22]: B+tree optimized for writes

• FlexChain [VLDB 23]: an XOV blockchain design

• dLSM [ICDE 23]: LSM indexing

• DSM-DB [VLDB 23]: distributed shared-memory DB

96

97

Memory-disaggregated
analytical systems

97

98

TELEPORT [SIGMOD 22]

Covered Work

98

Analytics

99

TELEPORT

99Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022

A compute pushdown framework that moves
operators from compute to memory

100

In-memory Query Performance

100

Monolithic vs. memory-disaggregated
MonetDB with TPC-H scale factor 50 (query 9)

Monolithic

11.5s

Memory
disaggregated

661s

TELEPORT
(scale-out)

22.7s

57×
Scale-out cost

Can we remove most of this high
“cost of disaggregation” to
unlock all its benefits?

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022

101

TELEPORT Motivation

101

189
GB 87

GB

Execute them in the memory pool to
remove data movements

Compute pushdown

Monolithic Memory-disaggregated

Monolithic vs. memory-disaggregated
MonetDB with TPC-H scale factor 50 (query 9)

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022

102

TELEPORT Overview

• Compute pushdown framework for memory disaggregation

102

C
a

ch
e

C
o

n
tr

o
lle

r

Compute pool Memory pool

TELEPORT (OS)

In-mem
data

Data processing workers Data processing states

1. Provide simple and
general interface

2. Execute arbitrary
operators fast

3. Guarantee memory
consistency

operator operator

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022

103

Compute Pushdown Interface

• System call: pushdown(fn, arg, flags)

103

Function pointer
Argument pointer

Customization

void agg(table *input_table, double *result) {
 // implementation of aggregation
}

void main() {
 //...
 agg(t, r);
}

void agg(table *input_table, double *result) {
 // implementation of aggregation
}

struct agg_arg {
 table *input_table;
 double *result;
};

void fn(void *arg) {
 // execute the operator
}

void main() {
 //...
 struct agg_arg *arg;
 // contruct arg
 pushdown(fn, arg, flags);
}

Define
argument

Define
function

Execute
pushdown

TELEPORT

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022

104

Compute Pushdown Interface

• System call: pushdown(fn, arg, flags)

• Ported MonetDB (in-memory DBMS, 400,000 lines in total)

− Projection, 117 lines

− Aggregation, 214 lines

− Selection, 302 lines

− Hash, 75 lines

As well as PowerGraph (graph processing) and Phoenix (MapReduce)

104

To unlock all disaggregation benefits

ቐ
Function pointer

Argument pointer
Customization

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022

105

Memory Pool Execution

• Arbitrary and fast function execution

• Akin to POSIX vfork

105

pushdown(fn, arg, flags)

TELEPORT (compute) TELEPORT (memory)

Entire virtual memory space
(text segment, stack, heap)

fn(arg)

Fast network

Limit the number of contexts

Compute pool Memory pool

Page table

Temporary context

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022

106

Data Synchronization

• Memory consistency between compute and memory

• Inconsistent time points:

• Without proper synchronization, pushdown may be executed incorrectly

106

pushdown(fn, arg, flags)

TELEPORT (compute) TELEPORT (memory)

fn(arg)

…

Compute pool Memory pool

A B C DA BA B

Compute-local cache

before pushdown during pushdownafter pushdown

B C D

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022

107

Baseline Approach

• Evict all local pages and push down all threads in the same process

• Performance issues

− Not all compute-local pages are accessed in pushdown

− Overwhelm memory pool’s limited compute resource

107

pushdown(fn, arg, flags)

TELEPORT (compute) TELEPORT (memory)

fn(arg)

…

Compute pool Memory pool

A B C DA BA B

Compute-local cache

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022

108

On-demand Coherence Protocol

• Synchronize pages only when they are needed

• Invariant: only one writable copy of a page between pools at any
moment

108

pushdown(fn, arg, flags)

TELEPORT (compute) TELEPORT (memory)

fn(arg)

…

Compute pool Memory pool

A B C DA BA

Compute-local cache

A, B
List of pages

A, B

A, B are removed
Page fault

× ×B

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022

109

Evaluation Setup

• Compute: 8 CPU cores (16 threads) with 1 GB local cache

• Memory: 128 GB memory with 2 cores for pushdown

• Storage: 1 TB SSD

• Connected by an InfiniBand network: 56 Gbps bandwidth and 1.2 𝜇s
latency

109Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022

110

TELEPORT Minimizes Overhead

110

Monolithic

11.5s

Baseline memory
disaggregation

661s

TELEPORT

22.7s

29×

Vertica (distributed): 2.3×
Baseline: 57×

Scale-out cost 1.97×

TELEPORT removes most of the “cost of disaggregation”

MonetDB with TPC-H scale factor 50 (query 9)

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022

111

Summary

• Memory disaggregation lacks good support for data-intensive
applications, such as data analytics systems

• TELEPORT enables general and fast compute pushdown

• Distributing operators between compute and memory must take
care of data consistency

111Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT
Q. Zhang et al., SIGMOD 2022

112

Other Recent Work

• Google Big Query [VLDB 20]: large-scale shuffling through

disaggregated memory

• Redy [VLDB 22]: utilizing stranded memory in cloud data

centers as remote cache

• Farview [CIDR 22]: compute offloading with FPGAs for

disaggregated memory

112

113

CXL-based

memory disaggregation

113

114

DirextCXL [ATC 22]

Covered Work

114

CXL

115

DirectCXL

115Direct Access, High-Performance Memory Disaggregation with DirectCXL
D. Gouk et al., ATC 2022

An alternative approach to disaggregating memory
using CXL

116

Motivation: RDMA Cost

116Direct Access, High-Performance Memory Disaggregation with DirectCXL
D. Gouk et al., ATC 2022

• Data is copied over the network
−Network latency

−DMA operations on both sides

• Data is copied between applications and NIC-
registered memory regions

117

Compute eXpress Link (CXL)

117Direct Access, High-Performance Memory Disaggregation with DirectCXL
D. Gouk et al., ATC 2022

• Cache-coherent interconnects for connectivity
between CPUs, accelerators, and I/O devices

• Supports all devices, from accelerators to memory
−Type 1: device accessing host memory

−Type 2: device and host accessing each other's memory

−Type 3: host accessing device memory

118

Compared to RDMA

118Direct Access, High-Performance Memory Disaggregation with DirectCXL
D. Gouk et al., ATC 2022

Direct PCIe access through load/store instructions
−No network latency

−No extra data copies

119

Memory Disaggregation with CXL

119Direct Access, High-Performance Memory Disaggregation with DirectCXL
D. Gouk et al., ATC 2022

• How to enable direct access to CXL memory?

• How to enable flexible memory configuration?

• How to present CXL memory to applications?

CXL memory

CPU

CXL memory

CPU

App

CXL memory

120

DirextCXL Design

120Direct Access, High-Performance Memory Disaggregation with DirectCXL
D. Gouk et al., ATC 2022

How to enable direct access to CXL memory?
−Convert load and store instructions to CXL packets

−An FPGA-based controller converts them back

CPUApp

Load/store

DRAM
Memory

controller

Load/storeCXL packets

Compute blade Memory bladePCIe

121

DirextCXL Design

121Direct Access, High-Performance Memory Disaggregation with DirectCXL
D. Gouk et al., ATC 2022

How to enable flexible memory configuration?
−A CXL switch with a reconfigurable crossbar

CPU

CXL memory

CPU

CXL memory

CXL memory

CXL Switch

PCIe PCIe

122

DirextCXL Design

122Direct Access, High-Performance Memory Disaggregation with DirectCXL
D. Gouk et al., ATC 2022

How to present CXL memory to applications?
−Leveraging Linux virtual memory system

Compute blade

App CXL memory
CXL device

driver
Character

device driver
ioctl()

mmap()

PCIe

123

Result on Real Workloads

123Direct Access, High-Performance Memory Disaggregation with DirectCXL
D. Gouk et al., ATC 2022

• DirectCXL outperforms RDMA
− 3× faster than kernel-space RDMA (Swap)
− 2.2× faster than user-space RDMA (KVS)

124

Summary

124Direct Access, High-Performance Memory Disaggregation with DirectCXL
D. Gouk et al., ATC 2022

• RDMA-based memory disaggregation incurs
networking overhead and extra memory copies

• DirectCXL provides a CXL solution via direct PCIe
access, a CXL switch, and a software runtime

• Application performance is significantly improved
without modifications, showing CXL potentials

125

Other Recent Work

• SAP HANA on CXL-expanded memory [DaMon 22]: evaluating

in-memory database system performance with CXL as the

storage backend

• Active area in systems and architecture communities

125

126

Future directions of
disaggregated DBMSs

126

127

Future Directions

• Comprehensive performance evaluation of
disaggregated databases

• Scalable transactions in disaggregated databases

• Automatic resource provisioning

• CXL-optimized databases

127

128

Q & A

128

	Slide 1
	Slide 2: Outline
	Slide 3: About Me
	Slide 4
	Slide 5
	Slide 6
	Slide 7: What’re Disaggregated Databases?
	Slide 8
	Slide 9: Resource Disaggregation
	Slide 10: Benefits of Resource Disaggregation
	Slide 11: Applications of Resource Disaggregation
	Slide 12: Classification of Resource Disaggregation
	Slide 13: Implications of Resource Disaggregation to Database Systems
	Slide 14: Implications of Resource Disaggregation to Database Systems
	Slide 15
	Slide 16: Outline
	Slide 17: Why Storage-Compute Disaggregation?
	Slide 18: Aurora System Architecture
	Slide 19: Main Ideas in Aurora
	Slide 20: How Does Database Work with Logs?
	Slide 21: Writes
	Slide 22: Transaction Commits
	Slide 23: Replication: Scalability
	Slide 24: Reads (Caching)
	Slide 25: Crash Recovery
	Slide 26: Aurora Storage
	Slide 27: Experiments
	Slide 28: Microsoft Socrates
	Slide 29: Socrates Architecture
	Slide 30: Compute Layer
	Slide 31: Log Layer (XLOG)
	Slide 32: Storage Layer
	Slide 33: Azure Storage (XStore)
	Slide 34: Google AlloyDB Architecture
	Slide 35: Alibaba PolarDB
	Slide 36: Outline
	Slide 37: Snowflake Data Warehouse
	Slide 38: Storage Layer
	Slide 39: Computer Layer
	Slide 40: Control Layer
	Slide 41: Amazon Redshift
	Slide 42: Outline
	Slide 43: Persistent Memory (PM)
	Slide 44: PM Disaggregation
	Slide 45: Challenges of PM Disaggregation
	Slide 46: Challenges of PM Disaggregation
	Slide 47: Challenges of PM Disaggregation
	Slide 48: PilotDB: Persistent Memory Disaggregation for Cloud-Native Relational Databases
	Slide 49: PilotDB Architecture
	Slide 50: PilotDB Optimized RDMA Reads
	Slide 51: PilotDB Replication and Recovery
	Slide 52: Outline
	Slide 53: Memory-disaggregated DBMSs
	Slide 54: Outline
	Slide 55: Covered Work
	Slide 56
	Slide 57: Storage Disaggregation
	Slide 58: Storage Disaggregation
	Slide 59: Memory Disaggregation
	Slide 60: Memory Disaggregation
	Slide 61: Operational Benefits
	Slide 62: Operational Benefits
	Slide 63: Operational Benefits
	Slide 64: Enabling Technique: RDMA
	Slide 65: Types of Memory Disaggregation
	Slide 66: Types of Memory Disaggregation
	Slide 67: Implications for DBMSs
	Slide 68
	Slide 69: Covered Work
	Slide 70: Methodology of Study
	Slide 71: Disaggregation Cost
	Slide 72: Cost for In-memory Execution
	Slide 73: Cost for Out-of-core Execution
	Slide 74: Cost for Out-of-core Execution
	Slide 75: Summary of Disaggregation Cost
	Slide 76: Another Perspective: Elasticity
	Slide 77
	Slide 78: Covered Work
	Slide 79: LegoBase
	Slide 80: LegoBase
	Slide 81: Memory Management Motivation
	Slide 82: Memory Management Motivation
	Slide 83: Splitting Buffer Pool
	Slide 84: Page Organization
	Slide 85: Page Organization
	Slide 86: Page Lookup
	Slide 87: User-space Paging
	Slide 88: Result (TPC-C)
	Slide 89: Result (TPC-H)
	Slide 90: Fault Tolerance Motivation
	Slide 91: Two-tier ARIES
	Slide 92: If Compute Fails...
	Slide 93: If Both Fail...
	Slide 94: Result
	Slide 95: Summary
	Slide 96: Other Recent Work
	Slide 97
	Slide 98: Covered Work
	Slide 99: TELEPORT
	Slide 100: In-memory Query Performance
	Slide 101: TELEPORT Motivation
	Slide 102: TELEPORT Overview
	Slide 103: Compute Pushdown Interface
	Slide 104: Compute Pushdown Interface
	Slide 105: Memory Pool Execution
	Slide 106: Data Synchronization
	Slide 107: Baseline Approach
	Slide 108: On-demand Coherence Protocol
	Slide 109: Evaluation Setup
	Slide 110: TELEPORT Minimizes Overhead
	Slide 111: Summary
	Slide 112: Other Recent Work
	Slide 113
	Slide 114: Covered Work
	Slide 115: DirectCXL
	Slide 116: Motivation: RDMA Cost
	Slide 117: Compute eXpress Link (CXL)
	Slide 118: Compared to RDMA
	Slide 119: Memory Disaggregation with CXL
	Slide 120: DirextCXL Design
	Slide 121: DirextCXL Design
	Slide 122: DirextCXL Design
	Slide 123: Result on Real Workloads
	Slide 124: Summary
	Slide 125: Other Recent Work
	Slide 126
	Slide 127: Future Directions
	Slide 128: Q & A

