
Milvus: A Purpose-Built Vector Data Management System
Jianguo Wang*, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xiangyu Wang,

Xiangzhou Guo, Chengming Li, Xiaohai Xu, Kun Yu, Yuxing Yuan, Yinghao Zou, Jiquan Long,
Yudong Cai, Zhenxiang Li, Zhifeng Zhang, Yihua Mo, Jun Gu, Ruiyi Jiang, Yi Wei, Charles Xie

* Zilliz & Purdue University Zilliz
* csjgwang@{zilliz.com; purdue.edu} {firstname.lastname}@zilliz.com

ABSTRACT
Recently, there has been a pressing need tomanage high-dimensional
vector data in data science and AI applications. This trend is fueled
by the proliferation of unstructured data and machine learning
(ML), where ML models usually transform unstructured data into
feature vectors for data analytics, e.g., product recommendation.
Existing systems and algorithms for managing vector data have
two limitations: (1) They incur serious performance issue when
handling large-scale and dynamic vector data; and (2) They pro-
vide limited functionalities that cannot meet the requirements of
versatile applications.

This paper presents Milvus, a purpose-built data management
system to efficiently manage large-scale vector data. Milvus sup-
ports easy-to-use application interfaces (including SDKs and REST-
ful APIs); optimizes for the heterogeneous computing platformwith
modern CPUs and GPUs; enables advanced query processing be-
yond simple vector similarity search; handles dynamic data for fast
updates while ensuring efficient query processing; and distributes
data across multiple nodes to achieve scalability and availability.
We first describe the design and implementation of Milvus. Then
we demonstrate the real-world use cases supported by Milvus. In
particular, we build a series of 10 applications (e.g., image/video
search, chemical structure analysis, COVID-19 dataset search, per-
sonalized recommendation, biological multi-factor authentication,
intelligent question answering) on top of Milvus. Finally, we exper-
imentally evaluate Milvus with a wide range of systems including
two open source systems (Vearch and Microsoft SPTAG) and three
commercial systems. Experiments show that Milvus is up to two
orders of magnitude faster than the competitors while providing
more functionalities. Now Milvus is deployed by hundreds of orga-
nizations worldwide and it is also recognized as an incubation-stage
project of the LF AI & Data Foundation. Milvus is open-sourced at
https://github.com/milvus-io/milvus.

CCS CONCEPTS
• Information systems� Database management system en-
gines; Data access methods;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00
https://doi.org/10.1145/3448016.3457550

KEYWORDS
Vector database; High-dimensional similarity search; Heteroge-
neous computing; Data science; Machine learning

ACM Reference Format:
Jianguo Wang*, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li,
Xiangyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, Kun Yu, Yux-
ing Yuan, Yinghao Zou, Jiquan Long, YudongCai, Zhenxiang Li, Zhifeng Zhang,
Yihua Mo, Jun Gu, Ruiyi Jiang, Yi Wei, Charles Xie. 2021. Milvus: A Purpose-
Built Vector Data Management System. In Proceedings of the 2021 Inter-
national Conference on Management of Data (SIGMOD ’21), June 20–25,
2021, Virtual Event, China. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3448016.3457550

1 INTRODUCTION
At Zilliz, we have experienced a growing need from various cus-
tomers to manage large-scale high-dimensional vector data (rang-
ing from 10s to 1000s of dimensions) in many data science and
AI applications. This is largely due to two trends. The first one is
an explosive growth of unstructured data such as images, videos,
texts, medical data, and housing data due to the prevalence of
smartphones, IoT devices, and social media apps. According to IDC,
80% of data will be unstructured by 2025 [36]. The second trend
is the rapid development of machine learning that can effectively
transform unstructured data into learned feature vectors for data
analytics. In particular, a recent popular approach in recommender
systems is called vector embedding that converts an item to a fea-
ture vector (such as item2vec [11], word2vec [52], doc2vec [37],
graph2vec [26]) and provides recommendations via finding similar
vectors [13, 15, 25, 51]. For example, YouTube embeds videos to
vectors [15]; Airbnb models houses with vectors [25]; Bioscientists
describe the molecular structural information of drug compounds
using vectors [13, 51]. Besides that, images and texts are also natu-
rally represented by vectors [8, 53].

Those applications present unique requirements and challenges
for designing a scalable vector data management system. These
include: (1) The need to support not only fast query processing
on large-scale vector data but also the efficient handling of dy-
namic vector data (such as insertions and deletions). As an example,
Youtube uploads 500 hours of user-generated videos per minute and
meanwhile offers real-time recommendations [67]. (2) The need to
provide advanced query processing such as attribute filtering [65]
and multi-vector query processing [10] beyond simple vector simi-
larity search. Here attribute filtering is to only search vectors that
satisfy a given filtering condition, which is useful in e-commerce
applications [65], e.g., finding the T-shirts similar to a given image
vector that also cost less than $100. And multi-vector query pro-
cessing targets for the scenario where each object is described by
multiple vectors, e.g., profiling a person using a face vector and a
posture vector in many computer vision applications [10, 56].

https://github.com/milvus-io/milvus
https://doi.org/10.1145/3448016.3457550
https://doi.org/10.1145/3448016.3457550
https://doi.org/10.1145/3448016.3457550


SIGMOD ’21, June 20–25, 2021, Virtual Event, China Wang et al.

Table 1: System comparison

Billion-Scale Data Dynamic Data GPU Attribute Filtering Multi-Vector Query Distributed System
Facebook Faiss [3, 35] ✓ ✗ ✓ ✗ ✗ ✗

Microsoft SPTAG [14] ✓ ✗ ✗ ✗ ✗ ✗

ElasticSearch [2] ✗ ✓ ✗ ✓ ✗ ✓

Jingdong Vearch [4, 39] ✗ ✓ ✓ ✓ ✗ ✓

Alibaba AnalyticDB-V [65] ✓ ✓ ✗ ✓ ✗ ✓

Alibaba PASE (PostgreSQL) [68] ✗ ✓ ✗ ✓ ✗ ✗

Milvus (this paper) ✓ ✓ ✓ ✓ ✓ ✓

Existing works on vector data management mainly focus on vec-
tor similarity search [14, 20, 22, 33, 35, 39, 45, 46, 48, 49, 57, 65, 68],
but they cannot meet the above requirements due to poor per-
formance (on large-scale and dynamic vector data) and limited
functionalities (e.g., not being capable of supporting attribute filter-
ing and multi-vector queries) to support versatile data science and
AI applications.

More specifically, we classify existing works into two categories:
algorithms and systems. For the algorithmic works on vector simi-
larity search, e.g., [20, 22, 33, 45, 46, 48, 49, 57], together with their
open-source implementation libraries (exemplified by Facebook
Faiss [35] and Microsoft SPTAG [14]), there are several limitations.
(1) They are algorithms and libraries, not a full-fledged system that
manages vector data. They cannot handle large amount of data
very well since they assume that all the data and index are stored in
main memory and cannot span multiple machines. (2) Those works
usually assume data to be static once ingested into the system and
cannot easily handle dynamic data while ensuring fast real-time
searches. (3) They do not support advanced query processing. (4)
Those works are not optimized for the heterogeneous computing
architecture with CPUs and GPUs.

For the system works on vector similarity search, e.g., Alibaba
AnalyticDB-V [65] and Alibaba PASE (PostgreSQL) [68], they fol-
low the one-size-fits-all approach to extend relational databases for
supporting vector data by adding a table column called “vector col-
umn” to store vectors. However, those systems are not specialized
for managing vector data and they do not treat vectors as first-class
citizens. (1) Legacy database components such as optimizer and
storage engine prevent fine-tuned optimizations for vectors, e.g.,
the query optimizer misses significant opportunity to best leverage
CPU and GPU for processing vector data. (2) They do not support
advanced query processing such as multi-vector queries.

Another relevant system is Vearch [4, 39], which is designed
for vector search. But Vearch is not efficient on large-scale data.
Experiments (Figure 8 and Figure 15) show that Milvus, the system
introduced in this paper, is 6.4× ∼ 47.0× faster than Vearch. Also,
Vearch does not support multi-vector query processing.

This paper presents Milvus, a purpose-built data management
system to efficiently store and search large-scale vector data for
data science and AI applications. It is a specialized system for
high-dimensional vectors following the design practice of one-size-
not-fits-all [60] in contrast to generalizing relational databases to
support vectors. Milvus provides many application interfaces (in-
cluding SDKs in Python/Java/Go/C++ and RESTful APIs) that can
be easily used by applications. Milvus is highly tuned for the het-
erogeneous computing architecture with modern CPUs and GPUs
(multiple GPU devices) for the best efficiency. It supports versatile
query types such as vector similarity search with various similarity

functions, attribute filtering, and multi-vector query processing.
It provides different types of indexes (e.g., quantization-based in-
dexes [33, 35] and graph-based indexes [20, 49]) and develops an ex-
tensible interface to easily incorporate new indexes into the system.
Milvus manages dynamic vector data (e.g., insertions and deletions)
via an LSM-based structure while providing consistent real-time
searches with snapshot isolation. Milvus is also a distributed data
management system deployed across multiple nodes to achieve
scalability and availability. Table 1 highlights the main differences
between Milvus and other systems.

In terms of implementation, Milvus is built on top of Facebook
Faiss [3, 35], an open-source C++ library for vector similarity search.
But Milvus significantly enhances Faiss with improved performance
(e.g., optimizing for the heterogeneous computing platform in Sec. 3,
supporting dynamic data management efficiently in Sec. 2.3 and
distributed query processing in Sec. 5.3), enhanced functionalities
(e.g., attribute filtering and multi-vector query processing in Sec. 4),
and better usability (e.g., application interfaces in Sec. 2.1) to be a
full-fledged easy-to-use vector data management system.

Product impact. Milvus is adopted by hundreds of organiza-
tions and institutions worldwide in various fields such as image
processing, computer vision, natural language processing, voice
recognition, recommender systems, and drug discovery. More im-
portantly, Milvus was accepted as an incubation-stage project of
the LF AI & Data Foundation in January 2020.1

Contributions. This paper makes the following contributions:
• System design and implementation (Sec. 2 and Sec. 5):
The overall contribution is the design and implementation
of Milvus, a purpose-built vector data management system
for managing large-scale and dynamic vector data to enable
data science and AI applications. Milvus is open-sourced at
https://github.com/milvus-io/milvus.
• Heterogeneous computing (Sec. 3): We optimize Milvus
for the heterogeneous hardware platformwith modern CPUs
and GPUs for fast query processing. For CPU-oriented de-
sign, we propose both cache-aware and SIMD-aware (e.g.,
SSE, AVX, AVX2, AVX512) optimizations. For GPU-oriented
design, we design a new hybrid index that takes advantages
of the best of CPU and GPU, and we also develop a new
scheduling strategy to support multiple GPU devices.
• Advanced query processing (Sec. 4): We support attribute
filtering and multi-vector query processing beyond simple
vector similarity search in Milvus. In particular, we design
a new partition-based algorithm for attribute filtering and
two algorithms (vector fusion and iterative merging) for
multi-vector query processing.

1https://lfaidata.foundation/projects/milvus

https://github.com/milvus-io/milvus
https://lfaidata.foundation/projects/milvus


Milvus: A Purpose-Built Vector Data Management System SIGMOD ’21, June 20–25, 2021, Virtual Event, China

• Novel applications (Sec. 6): We describe novel applications
powered by Milvus. In particular, we build a series of 10 ap-
plications2 on top of Milvus to demonstrate its broad appli-
cability including image search, video search, chemical struc-
ture analysis, COVID-19 dataset search, personalized recom-
mendation, biological multi-factor authentication, intelligent
question answering, image-text retrieval, cross-modal pedes-
trian search, and recipe-food search.

2 SYSTEM DESIGN
In this section, we present an overview of Milvus. Figure 1 shows
the architecture of Milvus with three major components: query
engine, GPU engine, and storage engine. The query engine sup-
ports efficient query processing over vector data and it is optimized
for modern CPUs by reducing cache misses and leveraging SIMD
instructions. The GPU engine is a co-processing engine that accel-
erates performance with vast parallelism. It also supports multiple
GPU devices for efficiency. The storage engine enables data dura-
bility and incorporates an LSM-based structure for dynamic data
management. It runs on various file systems (including local file
systems, Amazon S3, and HDFS) with a bufferpool in memory.

2.1 Query Processing
We first present the concept of entity used in Milvus and then
explain query types, similarity functions, and application interfaces.

Entity. To best capture versatile data science and AI applica-
tions, Milvus supports query processing over both vector data and
non-vector data. We define the term entity as follows to incorporate
the two. Each entity in Milvus is described as one or more vectors
and optionally some numerical attributes (non-vector data). For
example, in the image search application, the numerical attributes
can represent the age and height of a person in addition to possibly
multiple machine-learned feature vectors of his/her photos (e.g., de-
scribing front-face, side-face, or posture [10]). In the current version
of Milvus, we only support numerical attributes as observed from
many applications. But in the future, we plan to support categorical
attributes with indexes like inverted lists or bitmaps [64].

Query types.Milvus supports three primitive query types:
• Vector query: This query type is the traditional vector simi-
larity search [33, 41, 48, 49], where each entity is described
as a single vector. The system returns 𝑘 most similar vectors
where 𝑘 is a user-input parameter.
• Attribute filtering: Each entity is specified by a single vector
and some attributes [65]. The system returns 𝑘 most similar
vectors while adhering to the attributes constraints. As an
example in recommender systems, users want to find similar
clothes to a given query image while the price is below $100.
• Multi-vector query: Each entity is stored as multiple vec-
tors [10]. The query returns top-𝑘 similar entities according
to an aggregation function (e.g., weighted sum) between
multiple vectors.

Similarity functions. Milvus offers commonly used similarity
metrics, including Euclidean distance, inner product, cosine similar-
ity, Hamming distance, and Jaccard distance, allowing applications
to explore vector similarity in the most effective approach.

2https://github.com/milvus-io/bootcamp/tree/master/EN_solutions

Storage

Engine

Query

Engine

attribute filtering

multi-vector query

vector similarity search

graph-based index

tree-based index

quantization-based idx

GPU Engine

data science / AI applications

co-processing

hybrid index

multi-GPU

SDK / RESTful APIs

cache- & SIMD-aware (SSE, AVX, AVX2, AVX512) 

query processing indexing

multi-storage (S3 / HDFS)bufferpool manager

…
index / data files index / data files

segment segment

Final

GPU kernel

Figure 1: System architecture of Milvus

Application interfaces.Milvus provides easy-to-use SDK (soft-
ware development kit) interfaces that can be directly called in ap-
plications written in various languages including Python, Java, Go,
and C++. Milvus also supports RESTful APIs for web applications.

2.2 Indexing
Indexing is of tremendous importance to query processing inMilvus.
But a challenging issue we face is to decide which indexes to support
in Milvus, because there are numerous indexes developed for vector
similarity search. The latest benchmark [41] shows that there is
no winner in all scenarios and each index comes with tradeoffs in
performance, accuracy, and space overhead.

InMilvus, wemainly support two types of indexes:3 quantization-
based indexes (including IVF_FLAT [3, 33, 35], IVF_SQ8 [3, 35],
and IVF_PQ [3, 22, 33, 35]) and graph-based indexes (including
HNSW [49] and RNSG [20]) to serve different applications. The
design decision is based on factors including the latest literature
review [41], industrial-strength systems (e.g., Alibaba PASE [68],
Alibaba AnalyticDB-V [65], Jingdong Vearch [39]), open-source li-
braries (e.g., Facebook Faiss [3, 35]), and inputs from customers. We
exclude LSH-based approaches because they have lower accuracy
than quantization-based approaches on billion-scale data [65, 68].

Considering there are many new indexes coming out every year,
Milvus is designed to easily incorporate the new indexes with a
high-level abstraction. Developers only need to implement a few
pre-defined interfaces for adding a new index. Our hope is that
Milvus can eventually become a standard platform for vector data
management with versatile indexes.

2.3 Dynamic Data Management
Milvus supports efficient insertions and deletions by adopting the
idea of LSM-tree [47]. Newly inserted entities are stored in memory
first as MemTable. Once the accumulated size reaches a threshold,
or once every second, the MemTable becomes immutable and then
gets flushed to disk as a new segment. Smaller segments are merged
into larger ones for fast sequential access. Milvus implements a
tiered merge policy (also used in Apache Lucene) that aims to
merge segments of approximately equal sizes until a configurable
size limit (e.g., 1GB) is reached. Deletions are supported in the
same out-of-place approach except that the obsoleted vectors are
3Milvus also supports tree-based indexes, e.g., ANNOY [1].

https://github.com/milvus-io/bootcamp/tree/master/EN_solutions


SIGMOD ’21, June 20–25, 2021, Virtual Event, China Wang et al.

removed during segment merge. Updates are supported by deletions
and insertions. By default, Milvus builds indexes only for large
segments (e.g., > 1GB) but users are allowed to manually build
indexes for segments of any size if necessary. Both index and data
are stored in the same segment. Thus, the segment is the basic unit
of searching, scheduling, and buffering.

Milvus offers snapshot isolation to make sure reads and writes
share a consistent view and do not interfere with each other. We
present the details of snapshot isolation in Sec. 5.2.

2.4 Storage Management
As mentioned in Sec. 2.1, each entity is expressed as one or more
vectors and optionally some attributes. Thus, each entity can be
regarded as a row in an entity table. To facilitate query processing,
Milvus physically stores the entity table in a columnar fashion.

Vector storage. For single-vector entities, Milvus stores all the
vectors continuously without explicitly storing the row IDs. In this
way, all the vectors are sorted by row IDs. Given a row ID, Milvus
can directly access the corresponding vector since each vector is of
the same length. For multi-vector entities, Milvus stores the vectors
of different entities in a columnar fashion. For example, assuming
that there are three entities (𝐴, 𝐵, and 𝐶) in the database and each
entity has two vectors v1 and v2, then all the v1 of different entities
are stored together and all the v2 are stored together. That is, the
storage format is {𝐴.v1, 𝐵.v1, 𝐶.v1, 𝐴.v2, 𝐵.v2, 𝐶.v2}.

Attribute storage. The attributes are stored column by col-
umn. In particular, each attribute column is stored as an array of
⟨key ,value⟩ pairs where the key is the attribute value and value is
the row ID, sorted by the key . Besides that, we build skip pointers
(i.e., min/max values) following Snowflake [16] as indexing for the
data pages on disk. This allows efficient point query and range
query in that column, e.g., price is less than $100.

Bufferpool.Milvus assumes that most (if not all) data and index
are resident in memory for high performance. If not, it relies on
an LRU-based buffer manager. In particular, the caching unit is a
segment, which is the basic searching unit as explained in Sec. 2.3.

Multi-storage. For flexibility and reliability, Milvus supports
multiple file systems including local file systems, Amazon S3, and
HDFS for the underlying data storage. This also facilitates the de-
ployment of Milvus in the cloud.

2.5 Heterogeneous Computing
Milvus is highly optimized for the heterogeneous computing plat-
form that includes CPUs and GPUs. Sec. 3 presents the details.

2.6 Distributed System
Milvus can function as a distributed system deployed across multi-
ple nodes. It adopts modern design practices in distributed systems
and cloud systems such as storage/compute separation, shared stor-
age, read/write separation, and single-writer-multi-reader. Sec. 5.3
explains more.

3 HETEROGENEOUS COMPUTING
In this section, we present the optimizations for Milvus to best
leverage the heterogeneous computing platform involving both
CPUs and GPUs to achieve high performance.

q

v0

v1

v2

v3

c0

v4

v5 v6

v7

v8

v9

c1

c2

Figure 2: An example of quantization

As explained in Sec. 2.2, Milvus mainly supports quantization-
based indexes (including IVF_FLAT [3, 33, 35], IVF_SQ8 [3, 35],
and IVF_PQ [3, 22, 33, 35]) and graph-based indexes (including
HNSW [49] and RNSG [20]). In this section, we use quantization-
based indexes to illustrate our optimizations because they consume
much less memory and are much faster to build index while achiev-
ing decent query performance when compared to graph-based
indexes [65, 68]. Note that many optimizations (such as SIMD and
GPU optimizations) can be applied to graph-based indexes.

3.1 Background
Before diving into optimizations, we explain vector quantization
and quantization-based indexes. The main idea of vector quantiza-
tion is to apply a quantizer 𝑧 to map a vector v to a codeword 𝑧 (v)
chosen from a codebook C [33]. The K-means clustering algorithm
is commonly used to construct the codebook C where each code-
word is the centroid and 𝑧 (v) is the closest centroid to v. Figure 2
shows an example of 10 vectors (v0 to v9) of three clusters with
centroids being c0 to c2, then 𝑧 (v0), 𝑧 (v1), 𝑧 (v2), or 𝑧 (v3) is c0.

Quantization-based indexes (such as IVF_FLAT [3, 33, 35], IVF_SQ8
[3, 35], and IVF_PQ [3, 22, 33, 35]) use two quantizers: coarse quan-
tizer and fine quantizer. The coarse quantizer applies the 𝐾-means
algorithm (e.g., 𝐾 is 16384 in Milvus and Faiss [3]) to cluster vec-
tors into 𝐾 buckets. And the fine quantizer encodes the vectors
within each bucket. Different indexes may use different fine quan-
tizers. IVF_FLAT uses the original vector representation; IVF_SQ8
uses a compressed representation for the vectors by adopting one-
dimensional quantizer (called “scalar quantizer”) to compress a
4-byte float value to a 1-byte integer; and IVF_PQ uses product
quantization that splits each vector into multiple sub-vectors and
applies 𝐾-means for each sub-space.

Query processing (of a query q) over quantization-based indexes
takes two steps: (1) Find the closest 𝑛𝑝𝑟𝑜𝑏𝑒 buckets (or clusters)
based on the distance between q and the centroid of each bucket.
For example, assuming 𝑛𝑝𝑟𝑜𝑏𝑒 is 2 in Figure 2, then the closest
two buckets of q are centered at c0 and c1. The parameter 𝑛𝑝𝑟𝑜𝑏𝑒
controls the tradeoff between accuracy and performance. Higher
𝑛𝑝𝑟𝑜𝑏𝑒 produces better accuracy but worse performance. (2) Search
within each of the 𝑛𝑝𝑟𝑜𝑏𝑒 relevant buckets based on different fine
quantizers. For example, if the index in Figure 2 is IVF_FLAT, then
it needs to scan the vectors v0 to v6 in the two buckets.

3.2 CPU-oriented Optimizations
3.2.1 Cache-aware Optimizations in Milvus

The fundamental problem for query processing over quantization-
based indexes is that, given a collection of𝑚 queries {q1, q2, ..., q𝑚}
and a collection of 𝑛 data vectors {v1, v2, ..., v𝑛}, how to quickly



Milvus: A Purpose-Built Vector Data Management System SIGMOD ’21, June 20–25, 2021, Virtual Event, China

find for each query q𝑖 its top-𝑘 similar vectors? In practice, users
can submit batch queries so that𝑚 ≥ 1.

This operation happens in finding the relevant buckets as well as
searching within each relevant bucket. The original implementation
in Facebook Faiss [3], which Milvus is built on top of, is inefficient
because it incurs many CPU cache misses as explained below. Thus,
Milvus develops an optimized approach to significantly reduce data
movement between main memory and CPU caches.

Original implementation in Facebook Faiss [3]. Faiss uses
the OpenMP multi-threading to process queries in parallel. Each
thread is assigned to work on a single query at a time. The thread
is released (for next query) once the current task is finished. Each
task compares q𝑖 with all the 𝑛 data vectors and maintains a 𝑘-sized
heap to store the results.

The above solution in Faiss has two performance issues: (1) It
incurs many CPU cache misses, because for each query the entire
data needs to be streamed through CPU caches and cannot be
reused for the next query. Thus, each thread accesses𝑚/𝑡 times of
the entire data where 𝑡 is the total number of threads. (2) It cannot
fully leverage multi-core parallelism when the batch size𝑚 is small.

Optimizations in Milvus. Milvus develops two ideas to tackle
the issues. First, it reuses the accessed data vectors as much as possi-
ble for multiple queries to minimize CPU cache misses. Specifically,
it optimizes for reducing L3 cache misses because the penalty to
access memory is high and also L3 cache size (typically 10s MB)
is much bigger than L1/L2 cache, leaving more room for optimiza-
tions. Second, it uses fine-grained parallelism that assigns threads
to data vectors instead of query vectors to best leverage multi-core
parallelism, because the data size 𝑛 is usually much bigger than the
query size𝑚 in practice.

Figure 3 shows the overall design. Specifically, let 𝑡 be the num-
ber of threads, then each thread 𝑇𝑖 is assigned 𝑏 = 𝑛/𝑡 data vec-
tors:4 {v(𝑖−1)∗𝑏 , v(𝑖−1)∗𝑏+1, ..., v𝑖∗𝑏−1}. Milvus then partitions the
𝑚 queries into query blocks of size 𝑠 such that each query block
(together with its associated heaps) can always fit in the L3 CPU
cache. We decide 𝑠 later on in Equation (1). Here we assume that𝑚
is divisible by 𝑠 . Milvus computes the top-𝑘 results of each query
block at a time with multiple threads. Whenever each thread loads
its assigned data vectors to L3 cache, they will be compared against
the entire query block (with 𝑠 queries) in the cache. To minimize
the synchronization overhead, Milvus assigns a heap per query
per thread. In particular, assuming the 𝑖-th query block {q(𝑖−1)∗𝑠 ,
q(𝑖−1)∗𝑠+1, ...,q𝑖∗𝑠−1} is in cache,Milvus dedicates the heap𝐻𝑟−1, 𝑗−1
for the 𝑗-th query q(𝑖−1)∗𝑠+𝑗−1 on the 𝑟 -th thread 𝑇𝑟−1. Thus, the
results of a query q𝑖 are spread over 𝑡 threads of heaps. Thus, it
needs to merge the heaps of each thread to obtain the final top-𝑘
results.

Next, we discuss how to determine the query block size 𝑠 such
that 𝑠 queries and their associated heaps can always fit in L3 cache.
Let 𝑑 be the dimensionality, then the size of each query is 𝑑 ×
sizeof(float). Since each heap entry contains a pair of vector ID and
similarity, then the total size of the heaps (per query) is 𝑡 × 𝑘 ×
(sizeof(int64) + sizeof(float)) where 𝑡 is the number of threads. Thus,
𝑠 is computed as follows:

𝑠 =
L3’s cache size

𝑑 × sizeof(float) + 𝑡 × 𝑘 × (sizeof(int64) + sizeof(float)) . (1)

4We assume that 𝑛 is divisible by 𝑡 .

v(t-1)*b+1
…

vt*b-1

v(t-1)*b

vb+1
…

v2b-1

vb

v1
…

vb-1

v0

…

data vectors query vectors

q(w-1)*s+1
…

qw*s-1

q(w-1)*s

qs+1
…

q2s-1

qs

q1
…

qs-1

q0

…

heaps

H0,1
…

H0,s-1

H0,0

H1,1
…

H1,s-1

H1,0

Ht-1,1
…

Ht-1,s-1

Ht-1,0

…

thread T0

thread T1

thread Tt-1

…

Figure 3: Cache-aware design in Milvus

In this way, each thread only accesses𝑚/(𝑠∗𝑡) times of the entire
data, which is 𝑠 times smaller than the original implementation in
Facebook Faiss [3]. Experiments (Sec. 7.4) show that this improves
performance by a factor of 1.5× to 2.7×.

3.2.2 SIMD-aware Optimizations in Milvus
Modern CPUs support increasingly wider SIMD instructions.

Thus, it is not surprising that Facebook Faiss [3] implements SIMD-
aware algorithms to accelerate vector similarity search. We make
two engineering optimizations in Milvus: (1) Supporting AVX512;
and (2) Automatic SIMD-instruction selection.

Supporting AVX512. Faiss [3] does not support AVX512, which
is now available inmainstreamCPUs. Thus, we extend the similarity
computing functionwithAVX512 instructions, such as _mm512_add_ps,
_mm512_mul_ps, and _mm512_extractf32x8_ps. Now Milvus sup-
ports SIMD SSE, AVX, AVX2, and AVX512.

Automatic SIMD-instruction selection. Milvus is designed
to work well on a wide spectrum of CPU processors (both on-
premises and cloud platforms) with different SIMD instructions
(e.g., SIMD SSE, AVX, AVX2, and AVX512). Thus the challenge is,
given a single piece of software binary (i.e., Milvus), how to make
it automatically invoke the suitable SIMD instructions on any CPU
processor? Faiss [3] does not support it and users need to manually
specify the SIMD flag (e.g., “-msse4”) during compilation time. In
Milvus, we take a considerable amount of engineering effort to
refactor the codebase of Faiss. We factor out the common functions
(e.g., similarity computing) that rely on SIMD accelerations. Then
for each function, we implement four versions (i.e., SSE, AVX, AVX2,
AVX512) and put each one into a separated source file, which is
further compiled individually with the corresponding SIMD flag.
During runtime, Milvus can automatically choose the suitable SIMD
instructions based on the current CPU flags and then link the right
function pointers using hooking.

3.3 GPU-oriented Optimizations
GPU is known for vast parallelism and Faiss [3] supports GPU for
query processing over vector data. Milvus enhances Faiss in two
aspects: (1) Supporting bigger 𝑘 in the GPU kernel; (2) Supporting
multi-GPU devices.

Supporting bigger 𝑘 in GPU kernel. The original implemen-
tation in Faiss [3] does not support top-𝑘 query processing where
𝑘 is greater than 1024 due to the limit of shared memory. But many



SIGMOD ’21, June 20–25, 2021, Virtual Event, China Wang et al.

application such as video surveillance and recommender systems
may need bigger 𝑘 for further verification or re-ranking [69, 71].

Milvus overcomes this limitation and supports 𝑘 up to 16384
although technically Milvus can support any 𝑘 .5 When 𝑘 is larger
than 1024, Milvus executes the query in multiple rounds to cumu-
latively produce the final results. In the first round, Milvus behaves
the same as Faiss and gets the top 1024 results. For the second
and later rounds, Milvus first checks the distance of the last re-
sult (denoted as 𝑑𝑙 ) in the previous round. Apparently, 𝑑𝑙 is so far
the largest distance in the partial results. To handle vectors with
equivalent distance to the query, Milvus also records vector IDs in
the result whose distances are equal to 𝑑𝑙 . Then Milvus filters out
vectors whose distances are smaller than 𝑑𝑙 or IDs are recorded.
From the remaining data, Milvus gets the next 1024 results. By
doing so, Milvus ensures that results in previous rounds will not
appear in the current round. After that, the new results are merged
with the partial results obtained in earlier rounds. Milvus processes
the query in a round-by-round fashion until a sufficient number of
results are collected.

Supporting multi-GPU devices. Faiss [3] supports multiple
GPU devices since they are usually found in modern servers. But
Faiss needs to declare all the GPU devices in advance during com-
pilation time. That means if the Faiss codebase is compiled using a
server with 𝑐 GPUs, then the software binary can only be running
in a server that has at least 𝑐 GPUs.

Milvus overcomes this limitation by allowing users to select any
number of GPU devices during runtime (instead of compilation
time). As a result, once the Milvus codebase is compiled into a
software binary, it can run at any server. Under the hood, Milvus
introduces a segment-based scheduling that assigns segment-based
search tasks to the available GPU devices. Each segment can only
be served by a single GPU device. This is particularly a good fit for
the cloud environment with dynamic resource management where
GPU devices can be elastically added or removed. For example,
if there is a new GPU device installed, Milvus can immediately
discover it and assign the next available search task to it.

3.4 GPU and CPU Co-design
In this mode, the GPU memory is not large enough to store the
entire data. Facebook Faiss [3] alleviates the problem by using a
low-footprint compressed index (called IVF_SQ8 [3])6 and mov-
ing data from CPU memory to GPU memory (via PCIe bus) on
demand. However, we find that there are two limitations: (1) The
PCIe bandwidth is not fully utilized, e.g., our experiments show
that the measured I/O bandwidth is only 1∼2GB/s while PCIe 3.0
(16x) supports up to 15.75GB/s. (2) It is not always beneficial to
execute queries on GPU (than CPU) considering the data transfer.

Milvus develops a new index called SQ8H (where ‘H’ stands for
hybrid) to address the above limitations (Algorithm 1).

Addressing the first limitation. We investigate the codebase
of Faiss and figure out that Faiss copies data (from CPU to GPU)
bucket by bucket, which underutilizes the PCIe bandwidth since
each bucket can be small. So the natural idea is to copy multiple

5In Milvus, we purposely limit 𝑘 to 16384 to prevent large data movement over net-
works. Also, that number is sufficient for the applications we have seen so far.
6Note that IVF_SQ8 takes 1/4 the space of IVF_FLAT while losing only 1% recall.
But the design principle and optimizations in Sec. 3.4 can be applicable to other
quantization-based indexes such as IVF_FLAT and IVF_PQ.

Algorithm 1: SQ8H
1 let 𝑛𝑞 be the batch size;
2 if 𝑛𝑞 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
3 run all the queries entirely in GPU (load multiple buckets

to GPU memory on the fly);
4 else
5 execute the step 1 of SQ8 in GPU: finding 𝑛𝑝𝑟𝑜𝑏𝑒 buckets;
6 execute the step 2 of SQ8 in CPU: scanning every relevant

bucket;

buckets simultaneously. But the downside of such multi-bucket-
copying is the handling of deletions where Faiss uses a simple in-
place update approach because each bucket is copied (and stored)
individually. Fortunately, deletions (and updates) are easily handled
in Milvus since Milvus adopts an efficient LSM-based out-of-place
approach (Sec. 2.3). As a result, Milvus improves the I/O utilization
by copying multiple buckets if possible (line 3 of Algorithm 1).

Addressing the second limitation.We observe that GPU out-
performs CPU only if the query batch size is large enough consid-
ering the expensive data movement. That is because more queries
make the workload more computation-intensive since they search
the same data. Thus, if the batch size is bigger than a threshold
(e.g., 1000), Milvus executes all the queries in GPU and loads neces-
sary buckets if GPU memory is insufficient (line 2 of Algorithm 1).
Otherwise, Milvus executes the query in a hybrid manner as fol-
lows. As mentioned in Sec. 3.1, there are two steps for searching
quantization-based indexes: finding 𝑛𝑝𝑟𝑜𝑏𝑒 relevant (closest) buck-
ets and scanning each relevant bucket. Milvus executes step 1 in
GPU and step 2 in CPU because we observe that step 1 has a much
higher computation-to-I/O ratio than step 2 (line 5 and 6 in Algo-
rithm 1). That is because in step 1, all the queries compare against
the same 𝐾 centroids to find 𝑛𝑝𝑟𝑜𝑏𝑒 nearest buckets, and also the 𝐾
centroids are small enough to be resident in the GPU memory. By
contrast, data accesses in step 2 are more scattered since different
queries do not necessarily access the same buckets.

4 ADVANCED QUERY PROCESSING
4.1 Attribute Filtering
As mentioned in Sec. 2.1, attribute filtering is a hybrid query type
that involves both vector data and non-vector data [65]. It only
searches vectors that satisfy the attributes constraints. It is crucial
to many applications [65], e.g., finding similar houses (vector data)
whose sizes are within a specific range (non-vector data). For pre-
sentation purpose, we assume that each entity is associated with
a single vector and a single attribute since it is straightforward to
extend the algorithms to multiple attributes. We defer multi-vector
query processing to Sec. 4.2.

Formally, each such query involves two conditions C𝐴 and C𝑉
where C𝐴 specifies the attribute constraint and C𝑉 is the normal
vector query constraint that returns top-𝑘 similar vectors. Without
loss of generality, C𝐴 is represented in the form of 𝑎 >= 𝑝1 &&
𝑎 <= 𝑝2 where 𝑎 is the attribute (e.g., size, price) and 𝑝1 and 𝑝2 are
two boundaries of a range condition (e.g., 𝑝1 = 100 and 𝑝2 = 500).

There are several approaches to solve attribute filtering as re-
cently studied in AnalyticDB-V [65]. In Milvus, we implement those



Milvus: A Purpose-Built Vector Data Management System SIGMOD ’21, June 20–25, 2021, Virtual Event, China

attribute search

vector full-scan

attribute search

vector search 

(e.g., IVF_FLAT)
attribute full-scan

vector search 

(e.g., IVF_FLAT)

Strategy A Strategy B Strategy C

Strategy D Strategy E (Milvus)

A B C

cost-based partition-based

D D…

Figure 4: Different strategies for attribute filtering

approaches (i.e., strategies A, B, C, D as explained below). We then
propose a partition-based approach (i.e., strategy E), which is up
to 13.7× faster than the strategy D (i.e., state-of-the-art solution)
according to the experiments in Sec. 7.5. Figure 4 shows a summary
and we present the details next.

Strategy A: attribute-first-vector-full-scan. It only uses the
attribute constraint C𝐴 to obtain relevant entities via index search.
Since the data is stored mostly in memory, we use binary search,
but a B-tree index is also possible. When data cannot fit in memory,
we use skip pointers for fast search. After that, all the entities
in the result set are fully scanned to compare against the query
vector to produce the final top-𝑘 results. Although simple, this
approach is suitable when C𝐴 is highly selective such that only a
small number of candidates are required for further verification.
Another interesting property of this strategy is that it produces the
exact results.

StrategyB: attribute-first-vector-search.The differencewith
the strategy A is that after it obtains the relevant entities according
to attribute constraint C𝐴 , it produces a bitmap of the resultant en-
tity IDs. Then it conducts the normal vector query processing based
on C𝑉 and checks the bitmap whenever a vector is encountered.
Only vectors that pass bitmap testing are included in the final top-𝑘
results. This strategy is suitable in many cases when C𝐴 or C𝑉 is
moderately selective.

Strategy C: vector-first-attribute-full-scan. In contrast to
the strategy A, this approach only uses the vector constraint C𝑉
to obtain the relevant entities via vector indexing like IVF_FLAT.
Then the resultant entities are fully scanned to verify if they satisfy
the attribute constraint C𝐴 . To make sure there are 𝑘 final results, it
searches for 𝜃 ·𝑘 (𝜃 > 1) results during the vector query processing.
This strategy is suitable when the vector constraint C𝑉 is highly
selective that the number of candidates is relatively small.

Strategy D: cost-based. It is a cost-based approach that esti-
mates the cost of the strategy A, B, C, and picks up the one with
the least cost as proposed in AnalyticDB-V [65]. From [65] and our
experiments, the cost-based strategy is suitable in almost all cases.

Strategy E: partition-based. This is a partition-based approach
that we develop in Milvus. The main idea is that it partitions the
dataset based on the frequently searched attribute and applies the
cost-based approach (i.e., the strategy D) for each partition. In
particular, we maintain the frequency of each searched attribute in

a hash table and increase the counter whenever a query refers to
that attribute. Given a query of attribute filtering, it only searches
the partitions whose attribute-ranges overlap with the query range.
More importantly, if the range of a specific partition is covered
by the query range, then this strategy does not need to check the
attribute constraint (C𝐴) anymore and only focuses on vector query
processing (C𝑉 ) in that partition, because all the vectors in that
partition satisfy the attribute constraint.

As an example, suppose that there are many queries involving
the attribute ‘price’ and the strategy E splits the dataset into five
partitions: P0[1∼100], P1[101∼200], P2[201∼300], P3[301∼400],
P4[401∼500]. Then if the attribute constraint (C𝐴) of the query is
[50∼250], then only P0, P1, and P2 are necessary for searching
because their ranges overlap with the query range. And when
searching P1, there is no need to check the attribute constraint
since its range is completely covered by the query range. This can
significantly improve the query performance.

In the current version of Milvus, we create the partitions offline
based on historical data and serve query processing online. The
number of partitions (denoted as 𝜌) is a parameter configured by
users. Choosing a proper 𝜌 is subtle: If 𝜌 is too small, then each
partition contains too many vectors and it becomes hard to prune
irrelevant partitions for this strategy; If 𝜌 is too big, then the number
of vectors in each partition is so small that the vector indexing
deteriorates towards linear search. Based on our experience, we
recommend 𝜌 to be chosen such that each partition contains roughly
1 million vectors. For example, on a billion-scale dataset, there are
around 1000 partitions. However, it is an interesting future work to
investigate the use of machine learning and statistics to dynamically
partition the data and decide the right number of partitions.

4.2 Multi-vector Queries
In many applications, each entity is specified by multiple vectors for
accuracy. For example, intelligent video surveillance applications
use different vectors to describe the front face, side face, and posture
for each person captured by camera [10]. Recipe search applications
use multiple vectors to represent text description and associated
images for each recipe [56]. Another source of multi-vector is that
many applications use more than one machine learning model even
for the same object to best describe that object [30, 69].

Formally, each entity contains 𝜇 vectors v0, v1, ..., v𝜇−1. Then a
multi-vector query finds top-𝑘 entities according to an aggregated
scoring function𝑔 over the similarity function 𝑓 (e.g., inner product)
of each individual vector v𝑖 . Specifically, the similarity of two enti-
ties𝑋 and𝑌 is computed as𝑔(𝑓 (𝑋 .v0, 𝑌 .v0), ..., 𝑓 (𝑋 .v𝜇−1, 𝑌 .v𝜇−1))
where 𝑋 .v𝑖 means the vector v𝑖 of the entity 𝑋 . To capture a wide
range of applications, we assume the aggregation function 𝑔 to be
monotonic in the sense that 𝑔 is non-decreasing with respect to
every 𝑓 (𝑋 .v𝑖 , 𝑌 .v𝑖 ) [19]. In practice, many commonly used aggrega-
tion functions are monotonic, e.g., weighted sum, average/median,
and min/max.

Naive solution. LetD be the dataset andD𝑖 is a collection of v𝑖
of all the entities, i.e.,D𝑖 = {𝑒.v𝑖 |𝑒 ∈ D}. Given a query 𝑞, the naive
solution is to issue an individual top-𝑘 query for each vector 𝑞.v𝑖
on D𝑖 to produce a set of candidates, which are further computed
to obtain the final top-𝑘 results. Although simple, it can miss many
true results leading to extremely low recall (e.g., 0.1). This approach



SIGMOD ’21, June 20–25, 2021, Virtual Event, China Wang et al.

was widely used in the area of AI and machine learning to support
effective recommendations, e.g., [29, 70].

In Milvus, we develop two new approaches, namely vector fusion
and interactive merging that target for different scenarios.

Vector fusion. We illustrate the vector fusion approach assum-
ing that the similarity function is inner product and we will explain
how to extend to other similarity functions afterwards. Let 𝑒 be an
arbitrary entity in the dataset and v0, v1, ..., v𝜇−1 be the 𝜇 vectors
that each entity contains, this approach stores for each entity 𝑒 its
𝜇 vectors as a concatenated vector v = [𝑒.v0, 𝑒 .v1, ..., 𝑒 .v𝜇−1]. Let 𝑞
be a query entity, during query processing, this approach applies
the aggregation function 𝑔 to the 𝜇 vectors of 𝑞, producing an ag-
gregated query vector. For example, if the aggregation function is
weighted sum with𝑤𝑖 for each weight, then the aggregated query
vector is: [𝑤0 ×𝑞.v0,𝑤1 ×𝑞.v1, ...,𝑤𝜇−1 ×𝑞.v𝜇−1]. Then it searches
the aggregated query vector against the concatenated vectors in
the dataset to obtain the final results. It is straightforward to prove
the correctness of vector fusion because the similarity function of
inner product is decomposable.

The vector fusion approach is simple and efficient because it only
needs to invoke the vector query processing once. But it requires
a decomposable similarity function such as inner product. This
sounds restrictive but when the underlying data is normalized,
many similarity functions such as cosine similarity and Euclidean
distance can be converted to inner product equivalently.

Iterative merging. If the underlying data is not normalized
and the similarity function is not decomposable (e.g., Euclidean
distance), then the above vector fusion approach is not applica-
ble. Then we develop another algorithm called iterative merging
(see Algorithm 2) that is built on top of Fagin’s well-known NRA
algorithm [19], a general technique for top-𝑘 query processing.7

Our initial try is actually to use the NRA algorithm [19] by
treating the results of each 𝑞.v𝑖 on D𝑖 as a stream provided by
Milvus. However, we quickly find that it is inefficient because NRA
frequently calls getNext() to obtain the next result of 𝑞.v𝑖 in-
teractively. However, existing vector indexing techniques such as
quantization-based indexes and graph-based indexes do not support
getNext() efficiently. A full search is required to get the next result.
Another drawback of NRA is that, it incurs significant overhead to
maintain the heap since every access in NRA needs to update the
scores of the current objects in the heap.

Thus, iterative merging makes two optimizations over NRA: (1)
It does not rely on getNext() and instead calls VectorQuery(𝑞.v𝑖 ,
D𝑖 , 𝑘 ′) with adaptive 𝑘 ′ to get the top-𝑘 ′ query results of 𝑞.v𝑖 . As
a result, it does not need to invoke the vector query processing
for every access as NRA does. It can also eliminate the expensive
overhead of the heap maintenance as in NRA. (2) It introduces an
upper bound of the maximum number of steps to access since the
query results in Milvus are approximate.

Algorithm 2 shows iterative merging. The main idea is that it
iteratively issues a top-𝑘 ′ query processing for each 𝑞.v𝑖 on D𝑖

and puts the results to R𝑖 , where D𝑖 is a collection of v𝑖 of all the
entities in the dataset D, i.e., D𝑖 = {𝑒.v𝑖 |𝑒 ∈ D}, see line 3 and 4
in Algorithm 2. Then it executes the NRA algorithm over all the R𝑖 .
If at least 𝑘 results can be fully determined (line 5), i.e., NRA can
safely stop, then the algorithm can terminate since top-𝑘 results

7Note that the TA algorithm in [19] cannot be applied in this setting because TA
requires random access that is not available here.

Algorithm 2: Iterative merging
1 𝑘 ′ ← 𝑘 ;
2 while 𝑘 ′ < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 do

// run top-𝑘 ′ processing for each 𝑞.v𝑖 on D𝑖

3 foreach 𝑖 do
4 R𝑖 ← VectorQuery(𝑞.v𝑖 , D𝑖 , 𝑘 ′);
5 if 𝑘 results are fully determined with NRA [19] on all R𝑖

then
6 return top-𝑘 results;
7 else
8 𝑘 ′ ← 𝑘 ′ × 2;

9 return top-𝑘 results from ∪𝑖R𝑖 ;

can be produced. Otherwise, it doubles 𝑘 ′ and iterates the process
until 𝑘 ′ reaches to a pre-defined threshold (line 2).

In contrast to the vector fusion approach, the iterative merging
approach makes no assumption on the data and similarity func-
tions, thus it can be used in a wide spectrum of scenarios. But the
performance will be worse than vector fusion when the similarity
function is decomposable.

Note that in the database field, there are many top-𝑘 algorithms
proposed, e.g., [5, 12, 31, 42, 62]. However, those algorithms can-
not be directly used to solve the multi-vector query processing,
because the underlying vector indexes cannot support getNext()
efficiently as mentioned earlier. The proposed iterative merging
approach (Algorithm 2) is a generic framework so that it is possible
to incorporate other top-𝑘 algorithms (e.g., [42]) by replacing line 5.
But it remains an open question in terms of optimality and it is also
interesting to optimize multi-vector query processing in the future.

5 SYSTEM IMPLEMENTATION
In this section, we present the implementation details of asynchro-
nous processing, snapshot isolation, and distributed computing.

5.1 Asynchronous Processing
Milvus is designed to minimize the foreground processing via asyn-
chronous processing to improve throughput. When Milvus receives
heavy write requests, it first materializes the operations (similar to
database logs) to disk and then acknowledges to users. There is a
background thread that consumes the operations. As a result, users
may not immediately see the inserted data. To prevent this, Milvus
provides an API flush() that blocks all the incoming requests until
the system finishes processing all the pending operations. Besides
that, Milvus builds indexes asynchronously.

5.2 Snapshot Isolation
Milvus provides snapshot isolation to make sure reads and writes
see a consistent view since Milvus supports dynamic data manage-
ment. Every query only works on the snapshot when the query
starts. Subsequent updates to the system will create new snapshots
and do not interfere with the on-going queries.

Milvus manages dynamic data following the LSM-style. All the
new data are inserted to memory first and then flushed to disk as
immutable segments. Each segment has multiple versions and a new



Milvus: A Purpose-Built Vector Data Management System SIGMOD ’21, June 20–25, 2021, Virtual Event, China

distributed shared storage

Milvus instance

(writer)

Milvus instance

(reader)

Milvus instance

(reader)
…

Milvus coordinator (HA)

Milvus coordinator (HA)

Figure 5: Milvus distributed system

version is generated whenever the data or index in that segment
is changed (e.g., upon flushing, merging, or building index). All
the latest segments at any time form a snapshot. Each segment
can be referenced by one or more snapshots. When the system
starts, there are no segments. Assuming that there are some inserts
flushed to disk at 𝑡1, which forms segment 1. Later on at 𝑡2, segment
2 is generated. Now there are two snapshots in the system where
snapshot 1 points to segment 1 and snapshot 2 points to both
segment 1 and segment 2. So the segment 1 is referenced by two
snapshots. All the queries before 𝑡2 work on snapshot 1 and all the
queries after 𝑡2 work on snapshot 2. There is a background thread
to garbage collect the obsolete segments if they are not referenced.

Note that the snapshot isolation is applied to the internal data
reorganizations in the LSM structure. In this way, all the (internal)
reads are not blocked by writes.

5.3 Distributed System
For scalability and availability, Milvus is a distributed system that
supports data management across multiple nodes. From the high
level, Milvus is a shared-storage distributed system that separates
computing from storage to achieve the best elasticity. The shared-
storage architecture is widely used in modern cloud systems such
as Snowflake [16] and Aurora [63].

Figure 5 shows the overall architecture consisting of three layers.
The storage layer is based onAmazon S3 (also used in Snowflake [16])
because S3 is highly available. The computing layer processes user
requests such as data insertions and queries. It also has local mem-
ory and SSDs for caching data to minimize frequent accesses to S3.
Besides that, there is a coordinator layer to maintain the metadata
of the system such as sharding and load balancing information. The
coordinator layer is highly available with three instances managed
by Zookeeper.

Next, we elaborate more on the computing layer, which is state-
less to achieve elasticity. It includes a single writer instance and
multiple reader instances since Milvus is read-heavy and currently
a single writer is sufficient to meet the customer needs. The writer
instance handles data insertions, deletions, and updates. The reader
instances process user queries. Data is sharded among the reader
instances with consistent hashing. The sharding information is
stored in the coordinator layer. There are no cross-shard transac-
tions since there are no mixed reads and writes in the same request.
The design achieves near-linear scalability as shown in the exper-
iments (Figure 10). All the computing instances are managed by
Kubernetes (K8s). When an instance is crashed, K8s will automat-
ically restart a new instance to replace the old one. If the writer
instance crashes, Milvus relies on WAL (write-ahead logging) to
guarantee atomicity. Since the instances are stateless, crashing will

(a) input (b) output

(c) input (d) output

Figure 6: Milvus for image search

not affect data consistency. Besides that, K8s can also elastically
add more reader instances if existing ones are overloaded.

To minimize the network overhead between computing and
storage, Milvus employs two optimizations: (1) The computing
layer only sends logs (rather than the actual data) to the storage
layer, similar to Aurora [63]. As mentioned in Sec. 5.1, Milvus asyn-
chronously processes the logs with a background thread to improve
performance. In the current implementation, the background thread
comes from the writer instance since the writer’s load is not too
high. Otherwise, the log processing can be managed by a dedicated
instance. (2) Another optimization is that each computing instance
has a significant amount of buffer memory and SSDs to reduce
accesses to the shared storage.

6 APPLICATIONS
In this section, we present applications that are powered by Milvus.
We have built 10 applications on top of Milvus that includes image
search, video search, chemical structure analysis, COVID-19 dataset
search, personalized recommendation, biological multi-factor au-
thentication, intelligent question answering, image-text retrieval,
cross-modal pedestrian search, and recipe-food search. This section
presents two of them due to space limit and more can be found in
https://github.com/milvus-io/bootcamp/ tree/master/EN_solutions.

6.1 Image Search
Image search is a well known application of vector search where
each image is naturally converted to a vector using deep learning
models such as VGG [58] and ResNet [28].

Two tech companies, Qichacha8 and Beike Zhaofang,9 currently
use Milvus for large-scale image searches. Qichacha is a leading
Chinese website for storing and searching business information (of
over 100 million companies), e.g., the names of officers/shareholders
and credit information. Milvus supports Qichacha in finding similar
trademarks for customers to check if their trademarks have been
registered. Beike Zhaofang is one of the biggest online real estate
transaction platform in China. Milvus supports Beike Zhaofang in
finding similar houses and apartments (e.g., floor plans). Figure 6
shows an example of searching business trademarks and houses in
Qichacha and Beike Zhaofang using Milvus.

8https://www.qcc.com/
9https://www.ke.com/

https://github.com/milvus-io/bootcamp/tree/master/EN_solutions
https://www.qcc.com/
https://www.ke.com/


SIGMOD ’21, June 20–25, 2021, Virtual Event, China Wang et al.

(a) input (b) output

Figure 7: Milvus for chemical structure analysis

6.2 Chemical Structure Analysis
Chemical structure analysis is an emerging application that depends
on vector search. Recent studies have demonstrated that a new
efficient paradigm of understanding the structure of a chemical
substance is to encode it into a high-dimensional vector and use
vector similarity search (e.g., with Tanimoto distance [9]) to find
similar structures [9, 66].

Milvus is now adopted by Apptech,10 a major pharmaceutical
company developing new medicines and medical devices. Milvus
significantly reduces the time of chemical structure analysis from
hours to less than a minute. Figure 7 shows an example of searching
similar chemical structures using Milvus.

7 EXPERIMENTS
7.1 Experimental Setup
Experimental platform.We conduct all the experiments on Al-
ibaba Cloud and use different types of computing instances (up
to 12 nodes) for different experiments to save monetary cost. By
default, we use the CPU instance of ecs.g6e.4xlarge (Xeon Platinum
8269 Cascade 2.5GHz, 16 vCPUs, 35.75MB L3 cache, AVX512, 64GB
memory, and NAS elastic storage). The GPU instance is ecs.gn6i-
c16g1.4xlarge (NVIDIA Tesla T4, 64KB private memory, 512KB local
memory, 16GB global memory, and PCIe 3.0 16x interface).

Datasets. To be reproducible, we use the following two public
datasets to evaluate Milvus: SIFT1B [34] and Deep1B [8]. SIFT1B
contains 1 billion 128-dimensional SIFT vectors (512GB) andDeep1B
contains 1 billion 96-dimensional image vectors (384GB) extracted
from a deep neural network. Both are standard datasets used in
many previous works on vector similarity search and approximate
nearest neighbor search [35, 41, 65, 68].

Competitors.We compare Milvus against two open-source sys-
tems: Jingdong Vearch (v3.2.0) [4, 39] and Microsoft SPTAG [14].
We also compare Milvus with three industrial-strength commercial
systems (with latest version as of July 2020) anonymized as System
A, B, and C for commercial reasons. Since Milvus is implemented
on top of Faiss [3, 35], we also present the performance comparison
by evaluating the algorithmic optimizations in Milvus ( Sec. 7.4).

Evaluation metrics.We use the recall to evaluate the accuracy
of the top-𝑘 results returned by a system where 𝑘 is 50 by default.
Specifically, let 𝑆 be the ground-truth top-𝑘 result set and 𝑆 ′ be the
top-𝑘 results from a system, then the recall is defined as |𝑆 ∩ 𝑆 ′ |/|𝑆 |.
Besides that, we also measure the throughput of a system by issuing
10,000 random queries to the datasets.

7.2 Comparing with Prior Systems
In this experiment, we compare Milvus against prior systems in
terms of recall and throughput. We use the first 10 million vectors
10https://www.wuxiapptec.com/

 0
 5000

 10000
 15000
 20000

 0.5  0.6  0.7  0.8  0.9  1

recall

SPTAG

Vearch

System B
System C

Milvus_IVF_FLAT

Milvus_IVF_PQ

Milvus_IVF_SQ8

Milvus_GPU_SQ8H

 0

 5000

 10000

 15000

 20000

 0.5  0.6  0.7  0.8  0.9  1

th
ro

u
g
h
p
u
t

recall

 0

 200

 400

 600

.95 .99

 0

 5000

 10000

 15000

 20000

 0.5  0.6  0.7  0.8  0.9  1

th
ro

u
g
h
p
u
t

recall

(a) SIFT10M (b) Deep10M

Figure 8: System evaluation on IVF indexes

from each dataset (referred to as SIFT10M and Deep10M) because
prior systems are slow in building indexes and executing queries
on billion-scale datasets. Note that we also evaluate Milvus on
the full billion-scale vectors in Sec. 7.3 to demonstrate the system
scalability. Except for the three commercial systems (A, B, and C)
that the minimum configuration requires multiple nodes, we run all
other systems (including Milvus) in a single node. Specifically, we
run System A and C on two nodes (with 64GB memory per node);
System B on four nodes (with 128GB memory per node).

In this experiment, we use two indexes IVF_FLAT and HNSW
whenever possible since both are supported by most systems, al-
though Milvus supports more indexes.

Figure 8 shows the results on IVF indexes (i.e., quantization-
based indexes). Overall, Milvus (even CPU version) significantly
outperforms existing systems by up to two orders of magnitude
while keeping the similar recall. In particular, Milvus is 6.4× ∼ 27.0×
faster than Vearch; 153.7× faster than System B even if System B
runs on four nodes;11 4.7× ∼ 11.5× faster than System C even
if System C runs on two nodes; 1.3× ∼ 2.1× faster than SPTAG
(tree-based index). But SPTAG cannot achieve very high recall (e.g.,
0.99) as Milvus does and also SPTAG takes 14× more memory than
Milvus (17.88GB vs. 1.27GB).12 The GPU version of Milvus is even
faster since data can fit in the GPU memory in this setting. We
omit the results of System B on Deep10M since it only supports
the Euclidean distance metric. We also omit the results of Vearch
on GPU because there are multiple bugs in building indexes that
their engineers were still fixing by the time of paper writing.13 We
defer the results of System A to Figure 9 since it only supports the
HNSW index.

The performance advantage of Milvus comes from a few factors
in addition to engineering optimizations. (1) Milvus introduces fine-
grained parallelism that supports both inter-query and intra-query
parallelism to best leverage multi-core CPUs. (2) Milvus develops
cache-aware and SIMD-aware optimizations to reduce CPU cache
misses and leverage wide SIMD instructions. (3) Milvus optimizes
for the hybrid execution between GPU and CPU.

Figure 9 shows the results on the HNSW index of each system.
Milvus outperforms existing systems by a large margin. Specifically,
it is 15.1× ∼ 60.4× faster than Vearch; 8.0× ∼ 17.1× faster than

11Note that System B has a single data point in Figure 8 and relatively low performance
because it used brute-force search as it disabled the parameter tuning (e.g., 𝑛𝑝𝑟𝑜𝑏𝑒
and 𝑛𝑙𝑖𝑠𝑡 ) when we tested in 08/2020. But we expect a better performance in System
B once the parameter tuning is enabled (to use index) in the future.
12Besides that, SPTAG does not support dynamic data management, GPU, attribute
filtering, multi-vector query, and distributed systems that Milvus provides, see Table 1.
13We submitted a bug report in 09/2020: https://github.com/vearch/vearch/ issues/252.

https://www.wuxiapptec.com/
https://github.com/vearch/vearch/issues/252


Milvus: A Purpose-Built Vector Data Management System SIGMOD ’21, June 20–25, 2021, Virtual Event, China

 0

 5000

 10000

 15000

 20000

 0.5  0.6  0.7  0.8  0.9  1

recall

System A Vearch System C Milvus_HNSW

 0

 5000

 10000

 15000

 20000

 0.5  0.6  0.7  0.8  0.9  1

th
ro

u
g

h
p

u
t

recall

 0

 5000

 10000

 15000

 20000

 25000

 0.5  0.6  0.7  0.8  0.9  1

th
ro

u
g

h
p

u
t

recall

(a) SIFT10M (b) Deep10M

Figure 9: System evaluation on HNSW indexes

 10

 100

 1000

 10000

 1  10  100  1000

th
ro

u
g

h
p

u
t

data size (million)

 0

 50

 100

 150

 200

 250

 300

 350

 4  6  8  10  12

th
ro

u
g

h
p

u
t

number of nodes

(a) Varying data size (b) Varying #nodes

Figure 10: Scalability

System A; 7.3× ∼ 73.9× faster than System C. We omit System A
on Deep10M because System A does not support inner product. We
omit also System C on Deep10M because the index building fails to
complete after more than 100 hours.

7.3 Scalability
In this experiment, we evaluate the scalability of Milvus in terms of
data size and the number of servers. We use the IVF_FLAT indexing
on the SIFT1B dataset that includes 1 billion vectors.

Figure 10a shows the results on a single node of ecs.re6.26xlarge
(104 vCPUs and 1.5TB memory) that can fit the entire data in mem-
ory. As the data increases, the throughput gracefully drops pro-
portionally. Figure 10b shows the scalability of distributed Mil-
vus. The data is sharded among the nodes where each node is
of ecs.g6e.13xlarge (52 vCPUs and 192GB memory). As the num-
ber of nodes increases, the throughput increases linearly. Note
that we observe that Milvus achieves higher throughput on the
ecs.g6e.13xlarge instance than the ecs.re6.26xlarge instance due
to the higher competition on the shared CPU caches and memory
bandwidth among more cores.

7.4 Evaluation of Optimizations
Figure 11 shows the impact of cache-aware design on two CPUs
with different L3 cache sizes: 12MB (Intel Core i7-8700 3.2GHz) and
35.75MB (Xeon Platinum 8269 Cascade 2.5GHz). We set the query
batch size as 1000 and vary the data size (i.e., the number of vectors)
from 1000 to 10 million. It shows that the cache-aware design can
achieve a performance improvement up to 2.7× and 1.5× when the
cache size is 12MB and 35.75MB, respectively.

Figure 12 shows the impact of SIMD-aware optimizations fol-
lowing the experimental setup in Figure 11. It compares the perfor-
mance of AVX2 and AVX512 on the Xeon CPU. Figure 12 demon-
strates that AVX512 is roughly 1.5× faster than AVX2.

Figure 13 evaluates the efficiency of the hybrid algorithm SQ8H
(Algorithm 1) in Milvus on SIFT1B where data cannot fit into GPU

 0

 50

 100

 150

 200

10
3

10
4

10
5

10
6

10
7

ex
ec

u
ti

o
n

 t
im

e 
(s

)

data size

original cache−aware

 0.01

 0.1

 1

 10

 100

 1000

10
3

10
4

10
5

10
6

10
7

 0

 10

 20

 30

 40

 50

10
3

10
4

10
5

10
6

10
7

ex
ec

u
ti

o
n

 t
im

e 
(s

)

data size

original cache−aware

 0.001

 0.01

 0.1

 1

 10

 100

10
3

10
4

10
5

10
6

10
7

(a) 12MB L3 cache (b) 35.75MB L3 cache

Figure 11: Evaluating the cache-aware design

 0

 10

 20

 30

 40

10
3

10
4

10
5

10
6

10
7

e
x
e
c
u

ti
o

n
 t

im
e
 (

s)

data size

AVX2 AVX512

Figure 12: SIMD optimizations

 0

 5

 10

 15

 20

 25

 0  100  200  300  400  500

ex
ec

u
ti

o
n
 t

im
e 

(s
)

query batch size

pure CPU pure GPU SQ8H

Figure 13: GPU indexing

memory. We compare SQ8H with SQ8 on pure CPU and pure GPU.
It shows that GPU SQ8 is slower than CPU SQ8 due to the data
transfer. As the query batch size increases, the performance gap
between GPU and CPU becomes smaller since more computations
are pushed to the GPU. In all cases, SQ8H is faster than running
SQ8 on pure CPU and pure GPU. That is because SQ8H only stores
the centroids in GPU memory to execute the first step and allows
the CPU to execute the second step so that there is no any data
segment transferred to GPU memory on the fly.

7.5 Evaluating Attribute Filtering
We define the query selectivity as the percentage of entities that
fails the attribute constraint C𝐴 following [65]. Thus, a higher
selectivity means that a smaller number of entities can pass C𝐴 .
Regarding the dataset, we extract the first 100 million vectors from
SIFT1B and augment each vector with an attribute of a random
value ranging from 0 to 10000. We follow [65] to generate two
scenarios of different 𝑘 (50 and 500) and recall (0.95 and 0.85).

Figure 14 shows the results with varying query selectivity. For
the strategy A, its performance increases as the selectivity increases
because the number of examined vectors decreases. The strategy
B is insensitive to the selectivity since the bottleneck is vector
similarity search. The strategy C is slower than the strategy B since
it requires to check 𝜃 times of the vectors where 𝜃 is 1.1 in this
experiment. The strategy D outperforms A, B, and C since it uses a
cost-based approach to choose the best between the three. Our new
approach, i.e., the strategy E, significantly outperforms the strategy
D by up to 13.7× due to the partitioning.

Figure 15 compares Milvus against System A, B, C, and Vearch
in terms of attribute filtering. It shows that Milvus outperforms
those systems by 48.5× to 41299.5×. Note that we omit the results
of System B in Figure 15b because its parameters are fixed by the
system that users are not allowed to change.

7.6 Evaluating Multi-vector Query Processing
In this experiment, we evaluate the algorithms for multi-vector
query processing. Since SIFT1B and Deep1B only contain one vector



SIGMOD ’21, June 20–25, 2021, Virtual Event, China Wang et al.

 0.1

 1

 10

 100

 1000

0 0.1 0.3 0.5 0.7 0.9 .95 .99

ex
ec

u
ti

o
n

 t
im

e 
(s

)

query selectivity

strat. A strat. B strat. C strat. D strat. E

 0.1

 1

 10

 100

 1000

0 0.1 0.3 0.5 0.7 0.9 .95 .99

ex
ec

u
ti

o
n

 t
im

e 
(s

)

query selectivity

 0.1

 1

 10

 100

 1000

0 0.1 0.3 0.5 0.7 0.9 .95 .99

ex
ec

u
ti

o
n

 t
im

e 
(s

)
query selectivity

(a) k = 50 & recall >= 0.95 (b) k = 500 & recall >= 0.85

Figure 14: Attribute filtering in Milvus

 0.1

 1

 10

 100

 1000

 10000

 100000

0 0.1 0.3 0.5 0.7 0.9 .95 .99

ex
ec

u
ti

o
n
 t

im
e 

(s
)

query selectivity

System A System B System C Vearch Milvus

 0.1

 1

 10

 100

 1000

 10000

 100000

0 0.1 0.3 0.5 0.7 0.9 .95 .99

ex
ec

u
ti

o
n

 t
im

e 
(s

)

query selectivity

 0.1

 1

 10

 100

 1000

 10000

 100000

0 0.1 0.3 0.5 0.7 0.9 .95 .99

ex
ec

u
ti

o
n

 t
im

e 
(s

)

query selectivity

(a) k = 50 & recall >= 0.95 (b) k = 500 & recall >= 0.85

Figure 15: Attribute filtering comparison

per entity, we then use another dataset called Recipe1M [50, 56] that
includes more than one million cooking recipes and food images.
Thus, each entity is described by two vectors: text vector (i.e., recipe
description) and image vector (i.e., food image). We randomly pick
up 10000 queries from the dataset and set 𝑘 as 50 in this experiment.
We use the IVF_FLAT indexing in this experiment. Besides that, we
use weighted sum as the aggregation function.

Figure 16a shows the results where the similarity metric is Eu-
clidean distance. We compare the standard NRA algorithm of differ-
ent 𝑘 (50 and 2048) and our iterative merging (“IMG” for short) of
different 𝑘 ′ (4096, 8192, and 16384). It shows that the standard NRA
approach is either slow or produces low recall. In particular, the
NRA-50 approach is fast but the recall is only 0.1. The NRA-2048
increases the recall a bit (up to 0.5), but the performance is low
while our iterative merging algorithm (with 𝑘 ′ being 4096) is 15×
faster than NRA-2048 with a similar recall. That is because IMG
does not need to invoke the vector query processing every time
and also it has lower maintenance cost of heaps.

Figure 16b shows the results on the inner product metric. We
compare the iterative merging (IMG-4096 and IMG-8192) with vec-
tor fusion. It shows that vector fusion is 3.4× ∼ 5.8× faster since it
only needs to issue a single top-𝑘 vector similarity search.

8 RELATEDWORK
Vector similarity search (a.k.a high-dimensional nearest neigh-
bor search) is an extensively studied topic both for approximate
search (e.g., [7, 41]) and exact search (e.g., [38, 42]). This work
focuses on approximate search in order to achieve high perfor-
mance. Prior works on approximate search can be roughly classi-
fied in four categories: LSH-based [23, 23, 24, 32, 40, 44, 45, 48, 73],
tree-based [17, 46, 54, 57], graph-based [20, 43, 49, 61, 72], and
quantization-based [3, 6, 22, 27, 33, 35]. However, those works are

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

th
ro

u
g

h
p

u
t

recall

NRA−50

NRA−2048

IMG−4096

IMG−8192

IMG−16384

vector fusion

 0

 200

 400

 600

 800

 0  0.2  0.4  0.6  0.8  1

th
ro

u
g
h

p
u

t

recall

 0

 200

 400

 600

 800

 0  0.2  0.4  0.6  0.8  1

th
ro

u
g
h

p
u

t

recall

(a) Euclidean distance (b) Inner product

Figure 16: Multi-vector processing in Milvus

all about indexes while Milvus is a full-fledged vector data manage-
ment system including indexes, query engine, GPU engine, storage
engine, and distributed system. Moreover, Milvus’s extensible in-
dex framework can easily incorporate those indexes as well as any
new index if necessary. There are also open-source libraries for
vector similarity search, e.g., Faiss [35] and SPTAG [14]. But they
are libraries not systems. We summarize the differences in Table 1.

Recent industrial-strength vector datamanagement systems such
as Alibaba PASE [68] and Alibaba AnalyticDB-V [65] are not par-
ticularly optimized for vectors. Their approach is to extend the
relational database to support vectors. As a result, the performance
suffers severely as demonstrated in experiments. Specialized vector
systems like Vearch [39] are not suitable for billion-scale data and
Vearch is significantly slower than Milvus.

There are also GPU-based vector search engines, e.g., [35, 72].
Of which, [72] optimizes HNSW for GPU but it assumes data to be
small enough to fit into GPU memory. Faiss [35] also supports GPU,
but it loads the whole data segments on demand if data cannot fit
into GPU memory, leading to low performance. Instead, Milvus
develops a new hybrid index (SQ8H) that combines the best of
the GPU and CPU without loading data on the fly for fast query
processing.

This work is relevant to the trend of building specialized data
engines since one size does not fit all [60], e.g., specialized graph
engine [18], IoT engine [21], time series database [55], and scientific
database [59]. In this regard, Milvus is a specialized data engine for
managing vector data.

9 CONCLUSION
In this work, we share our experience in building Milvus over the
last few years at Zilliz. Milvus has been adopted by hundreds of
companies and is currently an incubation-stage project at the LF AI
& Data Foundation. Looking forward, we plan to leverage FPGA to
accelerate Milvus. We have implemented the IVF_PQ indexing on
FPGA and the initial results are encouraging. Another interesting
yet challenging direction is to architect Milvus as a cloud-native
data management system and we are currently working on it.

ACKNOWLEDGMENTS
Milvus is a multi-year project that involves many engineers at
Zilliz. In particular, we thank Shiyu Chen, Qing Li, Yunmei Li,
Chenglong Li, Zizhao Chen, Yan Wang, and Yunying Zhang for
their contributions. We also thank Haimeng Cai and Chris Warnock
for proofreading the paper. Finally, we would like to thank Walid
G. Aref and the anonymous reviewers for their valuable feedback.



Milvus: A Purpose-Built Vector Data Management System SIGMOD ’21, June 20–25, 2021, Virtual Event, China

REFERENCES
[1] 2020. Annoy: Approximate Nearest Neighbors Oh Yeah. https://github.com/spotify/

annoy
[2] 2020. ElasticSearch: Open Source, Distributed, RESTful Search Engine. https:

//github.com/elastic/elasticsearch
[3] 2020. Facebook Faiss. https://github.com/facebookresearch/faiss
[4] 2020. Vearch: A Distributed System for Embedding-based Retrieval. https://github.

com/vearch/vearch
[5] Reza Akbarinia, Esther Pacitti, and Patrick Valduriez. 2007. Best Position Algo-

rithms for Top-k Queries. In International Conference on Very Large Data Bases
(VLDB). 495–506.

[6] Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2015. Cache
locality is not enough: High-Performance Nearest Neighbor Search with Product
Quantization Fast Scan. Proceedings of the VLDB Endowment (PVLDB) 9, 4 (2015),
288–299.

[7] Martin Aumüller, Erik Bernhardsson, and Alexander John Faithfull. 2018. ANN-
Benchmarks: A Benchmarking Tool for Approximate Nearest Neighbor Algo-
rithms. Computing Research Repository (CoRR) abs/1807.05614 (2018).

[8] Artem Babenko and Victor S. Lempitsky. 2016. Efficient Indexing of Billion-Scale
Datasets of Deep Descriptors. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2055–2063.

[9] Dávid Bajusz, Anita Rácz, and Károly Héberger. 2015. Why Is Tanimoto Index
An Appropriate Choice For Fingerprint-Based Similarity Calculations? Journal
of Cheminformatics 7 (2015).

[10] Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency. 2019. Multi-
modal Machine Learning: A Survey and Taxonomy. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI) 41, 2 (2019), 423–443.

[11] Oren Barkan and Noam Koenigstein. 2016. ITEM2VEC: Neural Item Embedding
for Collaborative Filtering. In IEEE International Workshop on Machine Learning
for Signal Processing (MLSP). 1–6.

[12] Kaushik Chakrabarti, Surajit Chaudhuri, and Venkatesh Ganti. 2011. Interval-
based Pruning for Top-k Processing over Compressed Lists. In International
Conference on Data Engineering (ICDE). 709–720.

[13] Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olivecrona, and Thomas
Blaschke. 2018. The Rise of Deep Learning in Drug Discovery. Drug Discovery
Today 23, 6 (2018), 1241–1250.

[14] Qi Chen, Haidong Wang, Mingqin Li, Gang Ren, Scarlett Li, Jeffery Zhu, Jason
Li, Chuanjie Liu, Lintao Zhang, and Jingdong Wang. 2018. SPTAG: A Library for
Fast Approximate Nearest Neighbor Search. https://github.com/Microsoft/SPTAG

[15] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In ACM Conference on Recommender Systems
(RecSys). 191–198.

[16] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, AllisonW. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In ACM Conference on Management of
Data (SIGMOD). 215–226.

[17] Sanjoy Dasgupta and Yoav Freund. 2008. Random Projection Trees and Low
Dimensional Manifolds. In ACM Symposium on Theory of Computing (STOC).
537–546.

[18] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor E. Lee. 2020. Aggregation Support
for Modern Graph Analytics in TigerGraph. In ACM Conference on Management
of Data (SIGMOD). 377–392.

[19] Ronald Fagin, Amnon Lotem, and Moni Naor. 2001. Optimal Aggregation Al-
gorithms for Middleware. In ACM Symposium on Principles of Database Systems
(PODS). 102–113.

[20] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate
Nearest Neighbor Search With The Navigating Spreading-out Graph. Proceedings
of the VLDB Endowment (PVLDB) 12, 5 (2019), 461–474.

[21] Christian Garcia-Arellano, Adam J. Storm, David Kalmuk, Hamdi Roumani,
Ronald Barber, Yuanyuan Tian, Richard Sidle, Fatma Özcan, Matt Spilchen, Josh
Tiefenbach, Daniel C. Zilio, Lan Pham, Kostas Rakopoulos, Alexander Cheung,
Darren Pepper, Imran Sayyid, Gidon Gershinsky, Gal Lushi, and Hamid Pirahesh.
2020. Db2 Event Store: A Purpose-Built IoT Database Engine. Proceedings of the
VLDB Endowment (PVLDB) 13, 12 (2020), 3299–3312.

[22] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2014. Optimized Product
Quantization. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 36, 4 (2014), 744–755.

[23] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in
High Dimensions via Hashing. In International Conference on Very Large Data
Bases (VLDB). 518–529.

[24] Long Gong, Huayi Wang, Mitsunori Ogihara, and Jun Xu. 2020. iDEC: Indexable
Distance Estimating Codes for Approximate Nearest Neighbor Search. Proceed-
ings of the VLDB Endowment (PVLDB) 13, 9 (2020), 1483–1497.

[25] Mihajlo Grbovic and Haibin Cheng. 2018. Real-time Personalization using Embed-
dings for Search Ranking at Airbnb. In ACM Conference on Knowledge Discovery
& Data Mining (KDD). 311–320.

[26] Martin Grohe. 2020. Word2vec, Node2vec, Graph2vec, X2vec: Towards a Theory
of Vector Embeddings of Structured Data. In ACM Symposium on Principles of

Database Systems (PODS). 1–16.
[27] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern,

and Sanjiv Kumar. 2020. Accelerating Large-Scale Inference with Anisotropic
Vector Quantization. In International Conference on Machine Learning (ICML).

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 770–778.

[29] D. Frank Hsu and Isak Taksa. 2005. Comparing Rank and Score Combination
Methods for Data Fusion in Information Retrieval. Information Retrieval (IR) 8, 3
(2005), 449–480.

[30] Tongwen Huang, Zhiqi Zhang, and Junlin Zhang. 2019. FiBiNET: Combining
Feature Importance and Bilinear Feature Interaction for Click-through Rate
Prediction. In ACM Conference on Recommender Systems (RecSys). 169–177.

[31] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. 2008. A Survey of Top-k
Query Processing Techniques in Relational Database Systems. ACM Computing
Surveys (CSUR) 40, 4 (2008), 11:1–11:58.

[32] Omid Jafari, Parth Nagarkar, and Jonathan Montaño. 2020. mmLSH: A Practical
and Efficient Technique for Processing Approximate Nearest Neighbor Queries
on Multimedia Data. Computing Research Repository (CoRR) abs/2003.06415
(2020).

[33] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization
for Nearest Neighbor Search. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 33, 1 (2011), 117–128.

[34] Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg. 2011.
Searching in One Billion Vectors: Re-rank with Source Coding. In IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing (ICASSP). 861–864.

[35] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data (2019).

[36] Timothy King. 2019. 80 Percent of Your Data Will Be Unstruc-
tured in Five Years. https://solutionsreview.com/data-management/
80-percent-of-your-data-will-be-unstructured-in-five-years/

[37] Quoc V. Le and Tomas Mikolov. 2014. Distributed Representations of Sentences
and Documents. In International Conference on Machine Learning (ICML). 1188–
1196.

[38] Hui Li, Tsz Nam Chan, Man Lung Yiu, and Nikos Mamoulis. 2017. FEXIPRO: Fast
and Exact Inner Product Retrieval in Recommender Systems. In ACM Conference
on Management of Data (SIGMOD). 835–850.

[39] Jie Li, Haifeng Liu, Chuanghua Gui, Jianyu Chen, Zhenyuan Ni, Ning Wang, and
Yuan Chen. 2018. The Design and Implementation of a Real Time Visual Search
System on JD E-Commerce Platform. In Middleware. 9–16.

[40] Mingjie Li, Ying Zhang, Yifang Sun, Wei Wang, Ivor W. Tsang, and Xuemin Lin.
2020. I/O Efficient Approximate Nearest Neighbour Search based on Learned
Functions. In International Conference on Data Engineering (ICDE). 289–300.

[41] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and
Xuemin Lin. 2020. Approximate Nearest Neighbor Search on High Dimensional
Data - Experiments, Analyses, and Improvement. IEEE Transactions on Knowledge
and Data Engineering (TKDE) 32, 8 (2020), 1475–1488.

[42] Yuliang Li, Jianguo Wang, Benjamin Pullman, Nuno Bandeira, and Yannis Pa-
pakonstantinou. 2019. Index-Based, High-Dimensional, Cosine Threshold Query-
ing with Optimality Guarantees. In International Conference on Database Theory
(ICDT). 11:1–11:20.

[43] Peng-Cheng Lin and Wan-Lei Zhao. 2019. A Comparative Study on Hierar-
chical Navigable Small World Graphs. Computing Research Repository (CoRR)
abs/1904.02077 (2019).

[44] Wanqi Liu, Hanchen Wang, Ying Zhang, Wei Wang, and Lu Qin. 2019. I-LSH: I/O
Efficient c-Approximate Nearest Neighbor Search in High-Dimensional Space. In
International Conference on Data Engineering (ICDE). 1670–1673.

[45] Kejing Lu and Mineichi Kudo. 2020. R2LSH: A Nearest Neighbor Search Scheme
Based on Two-dimensional Projected Spaces. In International Conference on Data
Engineering (ICDE). 1045–1056.

[46] Kejing Lu, Hongya Wang, Wei Wang, and Mineichi Kudo. 2020. VHP: Approxi-
mate Nearest Neighbor Search via Virtual Hypersphere Partitioning. Proceedings
of the VLDB Endowment (PVLDB) 13, 9 (2020), 1443–1455.

[47] Chen Luo and Michael J. Carey. 2020. LSM-based Storage Techniques: A Survey.
VLDB Journal 29, 1 (2020), 393–418.

[48] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. 2017. In-
telligent Probing for Locality Sensitive Hashing: Multi-Probe LSH and Beyond.
Proceedings of the VLDB Endowment (PVLDB) 10, 12 (2017), 2021–2024.

[49] Yu A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 42, 4
(2020), 824–836.

[50] Javier Marín, Aritro Biswas, Ferda Ofli, Nicholas Hynes, Amaia Salvador, Yusuf
Aytar, IngmarWeber, and Antonio Torralba. 2018. Recipe1M: A Dataset for Learn-
ing Cross-Modal Embeddings for Cooking Recipes and Food Images. Computing
Research Repository (CoRR) abs/1810.06553 (2018).

[51] Adam C. Mater and Michelle L. Coote. 2019. Deep Learning in Chemistry. Journal
of Chemical Information and Modeling 59, 6 (2019), 2545–2559.

[52] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. In International Conference

https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/facebookresearch/faiss
https://github.com/vearch/vearch
https://github.com/vearch/vearch
https://github.com/Microsoft/SPTAG
https://solutionsreview.com/data-management/80-percent-of-your-data-will-be-unstructured-in-five-years/
https://solutionsreview.com/data-management/80-percent-of-your-data-will-be-unstructured-in-five-years/


SIGMOD ’21, June 20–25, 2021, Virtual Event, China Wang et al.

on Learning Representations (ICLR).
[53] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.

2013. Distributed Representations of Words and Phrases and their Composition-
ality. In Annual Conference on Neural Information Processing Systems (NeurIPS).
3111–3119.

[54] Marius Muja and David G. Lowe. 2014. Scalable Nearest Neighbor Algorithms
for High Dimensional Data. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 36, 11 (2014), 2227–2240.

[55] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin
Meza, and Kaushik Veeraraghavan. 2015. Gorilla: A Fast, Scalable, in-Memory
Time Series Database. Proceedings of the VLDB Endowment (PVLDB) 8, 12 (2015),
1816–1827.

[56] Amaia Salvador, Nicholas Hynes, Yusuf Aytar, Javier Marin, Ferda Ofli, Ingmar
Weber, and Antonio Torralba. 2017. Learning Cross-modal Embeddings for
Cooking Recipes and Food Images. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 3068–3076.

[57] Chanop Silpa-Anan and Richard I. Hartley. 2008. Optimised KD-trees for Fast
Image Descriptor Matching. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 1–8.

[58] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In International Conference on Learning
Representations (ICLR).

[59] Michael Stonebraker, Anastasia Ailamaki, JeremyKepner, and Alexander S. Szalay.
2012. The Future of Scientific Data Bases. In International Conference on Data
Engineering (ICDE). 7–8.

[60] Michael Stonebraker and Ugur Çetintemel. 2005. "One Size Fits All": An Idea
Whose Time Has Come and Gone (Abstract). In International Conference on Data
Engineering (ICDE). 2–11.

[61] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar
Krishnawamy, and Rohan Kadekodi. 2019. Rand-NSG: Fast Accurate Billion-
point Nearest Neighbor Search on a Single Node. In Annual Conference on Neural
Information Processing Systems (NeurIPS). 13748–13758.

[62] Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. 2020. Opti-
mal Join Algorithms Meet Top-k. In ACM Conference on Management of Data
(SIGMOD). 2659–2665.

[63] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,
Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora: Design Considerations
for High Throughput Cloud-Native Relational Databases. In ACM Conference on
Management of Data (SIGMOD). 1041–1052.

[64] JianguoWang, Chunbin Lin, Yannis Papakonstantinou, and Steven Swanson. 2017.
An Experimental Study of Bitmap Compression vs. Inverted List Compression.
In ACM Conference on Management of Data (SIGMOD). 1041–1052.

[65] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li,
and Yuanzhe Cai. 2020. AnalyticDB-V: A Hybrid Analytical Engine Towards
Query Fusion for Structured and Unstructured Data. Proceedings of the VLDB
Endowment (PVLDB) 13, 12 (2020), 3152–3165.

[66] Peter Willett. 2014. The Calculation of Molecular Structural Similarity: Principles
and Practice. Molecular Informatics 33, 6–7 (2014), 403–413.

[67] Susan Wojcicki. 2020. YouTube at 15: My Personal Journey and the Road Ahead.
https://blog.youtube/news-and-events/youtube-at-15-my-personal-journey

[68] Wen Yang, Tao Li, Gai Fang, and Hong Wei. 2020. PASE: PostgreSQL Ultra-
High-Dimensional Approximate Nearest Neighbor Search Extension. In ACM
Conference on Management of Data (SIGMOD). 2241–2253.

[69] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,
and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. In ACM Conference on Knowledge Discovery & Data
Mining (KDD). 974–983.

[70] Shaoting Zhang, Ming Yang, Timothée Cour, Kai Yu, and Dimitris N. Metaxas.
2015. Query Specific Rank Fusion for Image Retrieval. IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI) 37, 4 (2015), 803–815.

[71] Shilin Zhang and Hangbin Yu. 2018. Person Re-Identification by Multi-Camera
Networks for Internet of Things in Smart Cities. IEEE Access 6 (2018), 76111–
76117.

[72] Weijie Zhao, Shulong Tan, and Ping Li. 2020. SONG: Approximate Nearest
Neighbor Search on GPU. In International Conference on Data Engineering (ICDE).
1033–1044.

[73] Bolong Zheng, Xi Zhao, Lianggui Weng, Nguyen Quoc Viet Hung, Hang Liu, and
Christian S. Jensen. 2020. PM-LSH: A Fast and Accurate LSH Framework for
High-Dimensional Approximate NN Search. Proceedings of the VLDB Endowment
(PVLDB) 13, 5 (2020), 643–655.

https://blog.youtube/news-and-events/youtube-at-15-my-personal-journey

	Abstract
	1 Introduction
	2 System Design
	2.1 Query Processing
	2.2 Indexing
	2.3 Dynamic Data Management
	2.4 Storage Management
	2.5 Heterogeneous Computing
	2.6 Distributed System

	3 Heterogeneous Computing
	3.1 Background
	3.2 CPU-oriented Optimizations
	3.3 GPU-oriented Optimizations
	3.4 GPU and CPU Co-design

	4 Advanced Query Processing
	4.1 Attribute Filtering
	4.2 Multi-vector Queries

	5 System Implementation
	5.1 Asynchronous Processing
	5.2 Snapshot Isolation
	5.3 Distributed System

	6 Applications
	6.1 Image Search
	6.2 Chemical Structure Analysis

	7 Experiments
	7.1 Experimental Setup
	7.2 Comparing with Prior Systems
	7.3 Scalability
	7.4 Evaluation of Optimizations
	7.5 Evaluating Attribute Filtering
	7.6 Evaluating Multi-vector Query Processing

	8 Related Work
	9 Conclusion
	References

