
Griffin: Uniting CPU and GPU in Search Engines for
Intra-Query Parallelism

Yang Liu *
WDC Research

Jianguo Wang
UC San Diego

Steven Swanson
UC San Diego

Abstract
Interactive information retrieval services, such as enterprise
search and document search, must provide relevant results
with consistent, low response times in the face of rapidly
growing data sets and query loads. These growing demands
have led researchers to consider a wide range of optimiza-
tions to reduce response latency, including query processing
parallelization and acceleration with co-processors such as
GPUs. However, previous work runs queries either on GPU
or CPU, ignoring the fact that the best processor for a given
query depends on the query’s characteristics, which may
change as the processing proceeds.

We present Griffin, a search engine that dynamically com-
bines GPU- and CPU-based algorithms to process individual
queries according to their characteristics. Griffin uses state-
of-the-art CPU-based query processing techniques and in-
corporates a novel approach to GPU-based query evaluation.
Our GPU-based approach, as far as we know, achieves the
best available GPU search engine performance by leverag-
ing a new compression scheme and exploiting an advanced
merge-based intersection algorithm. We evaluate Griffin
with real world queries and datasets, and show that it im-
proves query performance by 10x compared to a highly opti-
mized CPU-only implementation, and 1.5x compared to our
GPU-approach running alone. We also find that Griffin helps
reduce the 95th-, 99th-, and 99.9th-percentile query response
time by 10.4x, 16.1x, and 26.8x, respectively.

CCSConcepts • Information systems→ Search engine
architectures and scalability; •Computingmethodolo-
gies → Parallel algorithms; • Applied computing →
Document searching;
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1 Introduction
In large-scale information retrieval services, search engines
serve as the key gateway to rapidly growing data sets, and
must provide relevant results with consistently low latency [18].
To provide scalability, current search engines resort to mas-
sive, coarse-grain parallelism by distributing queries across
large compute clusters. To meet their latency goals, they rely
on clever, highly-optimized algorithms that exploit intra-
query parallelism on individual nodes.
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Figure 1. Intra-Query Parallelism Schemes.

Previous work[16, 18, 28, 29] explores intra-query par-
allelism by increasing CPU threads to process each query
(Figure 1(a)). Existing studies [8, 12] also leverage the par-
allelism from GPUs (Figure 1(b)) and can obtain impressive
speedup over CPUs [8]. Because queries have different char-
acteristics, some queriesmay run better onGPU,while others
run better on CPU. So a heterogeneous system can achieve
better overall performance by running individual queries on
proper processors [12] (Figure 1(c)).
However, the characteristics of a query can also change

as the query executes. While the early stages of a query’s
execution may run well on the GPU, the later stages are often
a better fit for the CPU, since as the query goes, the amount
of processing needed will decrease. Thus, running an entire
query solely on CPU or GPU statically (Figure 1(a), (b), and
(c)) may not achieve the best performance. This suggests
that a dynamic fine-grained approach will lead to better
performance, by scheduling operations in different stages to
suitable processors when processing a query (Figure 1(d)).
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In this paper, we present Griffin, a search engine that com-
bines two innovations to provide improved performance.
First, Griffin uses both the CPU and GPU to process queries
and migrates query execution from the GPU to the CPU as
the characteristics of queries change. Griffin decides when
andwhere to execute query operationwithout a priori knowl-
edge of the query’s characteristics. To make a proper deci-
sion, Griffin considers overheads due to data transfer be-
tween CPU and GPU, GPU memory management, as well
as the system load. Griffin addresses these challenges with
a dynamic intra-query scheduling algorithm that breaks a
query into sub-operations and schedules them to the GPU
or to the CPU based on their runtime characteristics. Grif-
fin uses this scheduling algorithm to divide work between
a state-of-the-art CPU-based search implementation and a
new GPU-based search kernel called Griffin-GPU.

Griffin-GPU is the second key innovation inGriffin. Griffin-
GPU combines two components. The first is the parallel
Elias-Fano decompression [30] algorithm that provides fast
decompression and a high compression ratio. The second is
a load-balancing merge-based [15] parallel list intersection.

Our experiments on the real world query dataset [1] show
that, Griffin speeds up the query processing by 10x and 1.5x
compared to a highly optimized CPU-based search engine
and Griffin-GPU running alone, respectively. Griffin also
reduces tail latency: It reduces the 95th-, 99th-, and 99.9th-
percentile latencies by 10.4x, 16.1x and 26.8x, respectively,
compared to the CPU-only implementation.
The remainder of this paper is organized as follows. Sec-

tion 2 introduces the background of query processing, and
discusses the characteristics of CPU and GPU. Section 3 de-
scribes the design and implementation of Griffin. We then
evaluate the Griffin prototype in section 4. Section 5 dis-
cusses the related work. Finally, we conclude in Section 6.

2 Background
The increase in the amount data available via search has led
to highly optimized search algorithms and systems. They
aim to maximize performance (in terms of latency and band-
width) and minimize memory and/or storage requirements.
As a result, search engines store indices in specialized com-
pressed formats that minimize data storage while still allow-
ing for fast search.

Search engines also tailor the compressed data structures
and algorithms to match different hardware characteristics.
As a result, the best techniques for a CPU-based search en-
gine will differ from those for a GPU-based one. Below, we
describe state-of-the-art approaches of query processing in
search on CPU and GPU.

2.1 Query Processing
Query processing is at the heart of search engines and is the
focus of this paper. The most important query processing
data structure is the inverted index, which consists of many
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Figure 2. An Example of An Inverted List with Skip
Pointers. The skip pointers store the offset and the first
value of each inverted list block, and can support binary
search to fast locate the required blocks.

inverted lists. Each inverted list corresponds to a search term,
and holds the document IDs (docIDs) of the documents con-
taining that term, usually in sorted order. Search engines
usually store inverted index in a compressed form and de-
compress it as needed to minimize the memory and storage
cost.
To process a query, the search engine first loads the in-

verted lists of the query terms into memory, and decom-
presses them. It then computes the intersection of the lists,
yielding the set of the common docIDs that contains all the
search terms1.
To compute the full intersection, the search engine per-

forms a series of pair-wise intersections. It usually starts with
the two shortest inverted lists (i.e., the two rarest search
terms) to avoid unnecessary computation. This yields an
intermediate list of docIDs, which the search engine then
intersects with the next longer inverted list. The process
repeats until all the lists have been incorporated or the list
of matching docIDs is empty.
The basic algorithm of intersecting two sorted inverted

lists is similar in spirit to merge sort: The search engine scans
the sorted lists and records the common docIDs. Modern
search engines use sophisticated data structures like skip
lists and skip pointers (Figure 2), to skip large portions of
the lists during the scan.
Next, the search engine calculates a relevance score for

each document using document metadata (e.g., term fre-
quency or document popularity), sorts the documents ac-
cording to this score, and returns the top results.

Below we describe the three operations in more detail.

2.1.1 Index Compression and Decompression
Since the inverted index can be very large, compression
is necessary to save the cost of storage and data transfer.
Aggressively optimized search engines may even keep the
entire inverted index in memory spreaded across machines.
Thus, a higher compression ratio is as important as the de-
compression speed. Compression speed is less critical since
compression only occurs once when generating a new index
(usually offline).

1The discussion in this paper focuses on conjunctive queries where only
documents that contain all terms may be returned.
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Figure 3. An Example of PforDelta En-
coding. Given a sequence of docIDs ℓ(t) =

(100, 121, 163, 172, 185, 214, 282, 300, 347), the corresponding
sequence of d-gaps is ℓ(d) = (21, 42, 9, 13, 29, 68, 18, 47).
With b = 5 bits for regular values, the exceptions are (42, 68,
47). The pointer (the gray positions) to the next exception
element also takes 5 bits. The value of exceptions are stored
at the end of the sequence.

There are many proposed compression schemes for in-
verted lists [39]. Many compression techniques in modern
search engines start by computing the deltas (a.k.a d-gaps)
between two consecutive docIDs. PforDelta [40] is a popular
d-gaps-based compression scheme that provides good trade-
off between decompression speed and space overhead [32,
37, 38].

Given a sequence of d-gaps ℓ(d) out of the original ascend-
ing docIDs, PforDelta compresses these d-gaps in various
number of bits. In particular, it encodes a majority of ele-
ments (e.g., 90%), called regular values, in b bits where b is
determined by the smallest number of bits to represent the
largest regular value. For the rest elements that cannot be
represented by b bits (called exceptions), it uses b bits to store
the position of the next exception (in a linked list manner)
while leaving the actual values of exceptions uncompressed
at the end of the whole compressed sequence. Figure 3 shows
an example of PforDelta.
To avoid decompressing the entire list, the algorithms

usually store d-gaps in blocks of fixed number (e.g., 128) of
elements [31]. Each block contains information about the
range of docIDs in the block, so the algorithm can quickly
determine if a block contains any docIDs of interest.

2.1.2 List Intersection
List intersection is the key operation of query processing. It
scans and intersects over several inverted lists of the corre-
sponding terms to find the common docIDs.
SvS is a popular intersection algorithm [11, 34]. It orders

the lists from the shortest to the longest, and computes partial
intersections starting with the two shortest lists. For example,
if we search “PPoPP Austria 2018”, the search engine may
subtract and divide the terms into three inverted lists for
terms “PPoPP”, “Austria”, and “2018”, respectively:

ℓ(PPoPP) = (11, 15, 17, 38, 60),
ℓ(Austria) = (3, 5, 8, 11, 13, 15, 17, 38, 46, 60, 65),
ℓ(2018) = (2, 4, 6, 11, 13, 14, 15, 19, 25, 33, 38, 60, 70).

And the result of the intersection is the common docIDs
in the three inverted lists:

ℓ(PPoPP) ∩ ℓ(Austria) ∩ ℓ(2018) = (11, 15, 38, 60).

Starting from the shorter lists improves the overall perfor-
mance, as the run-time of each merge step depends strongly
on the length of the shorter list of the two.

2.1.3 Rank Scoring
The goal of search engines is to return the most relevant
results to end users. This typically involves two steps. (1)
Similarity computing: compute the similarity of the query
q and each candidate document d ; (2) Ranking: determine
the top k results that have the highest scores. In this paper,
we follow a popular ranking model BM25 [26, 27, 35] for
similarity computation.
Typically, each entry in the inverted list contains a docu-

ment frequency (in addition to document ID and positional
information). When a qualified result ID is returned, its score
is computed accordingly.

2.2 Query Processing on CPU
Most search engines execute decompression, list intersec-
tion, and ranking operations on CPU. CPU is good at dealing
with complex logic, and its advanced prefetch and branch
handling can provide high performance and efficiency. As a
result, CPU is able to run fast sequential merge, especially
when the data accesses exhibit ample spatial locality. When
the two lists involved in the intersection have similar lengths,
the algorithm must access most of the items in both lists,
leading to that locality. Therefore, CPU performance on the
merge is high. Alternately, if the length difference between
the two lists is large, CPU can perform binary search with
the help of skip pointers to skip large portion of unneces-
sary computation including decompression and comparison.
In this case, the CPU clock speed and aggressive branch
handling will still perform well.

On the other hand, CPU cannot exploit the large amount
of fine-grain parallelism that exists in query algorithms [17],
due to the limited number of cores. The CPU accounts for
over 70% of the response time [16] in search workloads and
an even larger fractionwhen the query hasmany terms, since
there are more decompression, intersection, and ranking
computations to perform. As result, the fine-grain parallelism
that CPUs cannot exploit is a significant missed opportunity.

2.3 Query Processing on GPU
GPUs offer a way to exploit the parallelism that CPUs can-
not. Compared to CPUs, GPUs are able to provide massive
parallelism with hundreds or thousands of simpler cores.
GPU hardware multithreading and fast context switching
can hide both arithmetic and memory latency, as well as
avoid dependency stalls by overlapping thread execution.
What is more, its SIMD execution model can amortize the



overhead of instruction fetch and decode, and harness data
parallelism [6]. In addition, GPU have much higher inner
bandwidth (e.g., as high as 208GB/s in NVIDIA K20) than
CPU, but with very limited memory (e.g., 5GB in NVIDIA
K20).
On the other hand, GPUs incur substantial startup over-

heads related to data transfer and memory allocation. How-
ever, these costs occur just once, so running larger, more
complex query operations can amortize them.

Decompression on GPU A good parallel decompression
algorithm should be efficient on GPU without sacrificing
high compression ratio or fast decompression speed. The
CPU decompression method PforDelta is a poor match for
GPU implementation, because it maintains a linked list to
store the exception pointers that it must process sequentially.
This leads to slow global memory accesses and thread di-
vergence. Consequently, directly porting it to GPU results
in poor decompression performance, while a higher decom-
pression speed can only be achieved at the cost of lower
compression ratio [8].

List Intersection onGPU GPU list intersection algorithms
often rely on parallel binary search. When the length differ-
ence between the two lists involved in the intersection is
large, parallel binary search reduces the search space quickly.
In addition, since binary search can skip many blocks in the
longer list, it also reduces the number of blocks that the GPU
must decompress.

However, GPU binary search is not efficient. The frequent
branch divergence results in idle threads and reduced perfor-
mance. Even worse, when the length difference between the
two intersecting lists is large, binary search is more likely
to reach its worst case complexity log(N ). This will lead to
more frequent divergence, as the vast majority of the items
in the longer list will be missing from the shorter list. In
addition, as each thread accesses a different area of the mem-
ory, there is little opportunity to coalesce accesses, leading
to lower memory bandwidth.
When the lengths of the two lists are close, the benefit

of reducing search space in the binary search decreases. As
we will see in Section 3, empirically, the benefits start to
fade when the list size ratio falls below 128x. And it is quite
common in reality: in the real-world dataset we use, more
than 64% of actual intersections contain the lists with the
length ratio lower than 128.

Parallel merge-based search might be an efficient alterna-
tive to binary search in these cases. A merge-based algorithm
allows for cache line reuse among neighboring threads and
reduce global memory access, since such algorithm can load
data into the faster thread-shared memory. We describe our
efficient merge-based algorithm in the next section.
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Figure 4. An EF Encoding Example. For the original in-
teger sequence (5,6,8,15,18,33), upper bound U = 36, thus
b = ⌊log 36

6 ⌋ = 2. The low-bits array on the right stores the
low b bits of the original sequence, while the unary-coded
d-gaps array on the bottom left encodes the high-bits array.
Each encoded element in the d-gaps array ends with “1”, and
the number of “0s” inside an element represents the value
of d-gap. The accumulated number of “0s” gives the actual
high-bits value.

3 Design and Implementation of Griffin
This section describes the design and implementation of
the Griffin prototype. Griffin consists of three main compo-
nents: Griffin-GPU, the CPU query processing component,
and the scheduler. Griffin-GPU implements the advanced
parallel algorithms on the GPU. The CPU query process-
ing component implements state-of-the-art CPU query algo-
rithms [11, 26, 40]. The scheduler decides where to run the
current query operation.

3.1 Griffin-GPU
Griffin-GPU executes query operations on GPU and relies on
two key algorithms: a novel parallel decompression scheme
called Para-EF encoding to decompress inverted lists, and
a parallel merge-based intersection algorithm to efficiently
intersect inverted lists on the GPU.

3.1.1 Parallel List Decompression
A suitable encoding scheme for Griffin-GPU has to satisfy
three requirements: (1) high decompression speed; (2) high
compression ratio; (3) high parallelism. The PforDelta scheme
that is popular on CPUs is a not good fit for GPU implemen-
tation due to its sequential accesses to exceptions, which
leads to slow global memory accesses and thread divergence.
Directly porting it to GPU results in poor decompression
performance, while a higher decompression speed can only
be achieved at the cost of lower compression ratio [8].
Instead, we adopt and parallelize an encoding scheme

called EF (Elias-Fano) encoding [13, 30], which is proved to
have both higher decompression speed and compression
ratio than PforDelta [30]. EF encoding is also a good can-
didate for GPU since there is few dependency between the
operations of element decompression.



To compress a sequence of integers, EF encoding divides
each integer into high bits and low bits, and encodes them
into the low-bits array and the high-bits array. For the list
with n integer elements and U as the maximum possible
value, the low-bits array stores the (fixed) b = ⌊log U

n ⌋ bits
of each element contiguously. The high-bits array then stores
the remaining upper bits (with variable lengths) of each ele-
ment as a sequence of unary-coded d-gaps of these elements.
To decompress these integers, we just need to recover the
high bits from the unary-coded d-gaps array, find its corre-
sponding low-bits, and concatenate them. Figure 4 illustrates
the basic encoding and decoding of EF scheme in detail.
Griffin-GPU is the first GPU search engine to explore

and utilize EF encoding, and we provide the first parallel EF
decompression implementation Para-EF decompression, as
described in Algorithm 1.

The algorithm first computes population count (popcount)
for each element in the high-bits array hb_array (line 2) to
determine the number of original (decompressed) elements
each 32-bit word in the hb_array encodes. It then calculates
prefix sum from the popcount and stores it in the temporary
ps_array(line 3).

Algorithm 1: Parallel EF Decompression.
Input :EF-compressed high-bits array hb_array,

low-bits array lb_array, and the number of
low bits b

Output :Decompressed array decmp_array
1 for each thread i do
2 ps_array[i] ← popcount(hb_array[i]);
3 ps_array[i] ← pre f ix_sum(ps_array[i]);
4 count = ps_array[i] − ps_array[i − 1];
5 o f f set = 0;
6 while o f f set < count do
7 index_array[o f f set + ps_array[i − 1]] ← i;
8 o f f set ← o f f set + 1;
9 Recover hiдh_bitsi from hb_array[index_array[i]];

10 decmp_array[i] ← (hiдh_bitsi << b) | lb_array[i];

Our algorithm divides the actual decompression into two
phases: scheduling and decompressing. It first uses the prefix
sum (synchronization point) result to schedule and assign
decompression tasks to threads (line 4-8). In this way, each
thread will be in charge of decompressing an individual value
from the corresponding word in hb_array, and deliver it to
the final decompressed array decmp_array. For example, if
ps_array[0] = 13, which means word_0 contains 13 val-
ues, then thread_0tothread_12 will decompress element_0
to element_12 fromword_0 ofhb_array. Ifps_array[1] = 20,
then thread_13 to thread_19 will decompress element_13 to
element_19 from word_1 of hb_array. And so on so forth.
After the task distribution, each thread continues to recover

the high_bits element and concatenate it to its corresponding
low_bits to get the final decompressed element (line 9-10).
We implemented the fixed-length partitioned EF algo-

rithm in CUDA [2], which provides a popcount instruction
__popc [3]. We also use the parallel prefix sum to reduce
the dependency in the original serial EF decompression. We
store a look-up table in the shared memory of the GPU to
further improve the performance of recovering the high-bits
array. We also store the temporary arrays in shared memory.

3.1.2 Parallel List Intersection
Griffin-GPU’s list intersection algorithm dynamically divides
list intersection operations into two classes, depending on
the relative sizes of the two lists. The cross-over point be-
tween the two techniques is a configurable parameter of the
algorithm, and the default value is determined empirically
in the next section.

When the difference between list lengths is large, Griffin-
GPUuses parallel binary searchwith the skip pointers. Griffin-
GPU first does binary search over the skip pointers instead
of the long list to identify blocks that may contain that ele-
ments in the short list. It then only transfers, decompresses,
and processes those blocks.

When the difference between list lengths is small, Griffin-
GPU adapts a parallel merge-based intersection algorithm
based on GPU MergePath [15], which derives from [24].
The goal of the algorithm is to reuse cache lines between
neighboring threads, and reduce global memory access by
accessing data in the shared memory.
This algorithm divides list intersection into two stages:

Partitioning andMerging (Figure 5). In Partitioning stage, we
divide the list into partitions that each potentially contains
common elements from both lists. GPU MergePath sizes the
partitions so a pair of partitions will fit in the GPU’s shared
memory. Then in Merging stage, we merge the two sub-lists
inside each non-overlapping partition to get the final inter-
sected results. The merging threads can run concurrently
without synchronization.

One of the biggest challenges in efficient parallel merge
algorithms is to find even partitions of the lists to achieve
load balancing among GPU cores and eliminate the need
for synchronization, which is not well addressed in previ-
ous studies [8, 12, 36]. Figure 5 shows an example of even
partitions and their boundaries.
Instead of blindly doing binary search or deciding the

partitions statically [8, 12], we first consider the process of
merging list A and B from a different perspective. We can
visualize this process as amerge path from the top-left corner
to the bottom-right corner of an |A| × |B | grid (Figure 6),
allowing only right and downwards directions. Because both
list A and B are sorted, we always have:

For all j ′ > j,

i f A[i] < B[j], then A[i] < B[j ′].
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Figure 5. An Even Partition Example. By dividing ele-
ments from list A and B into 4 partitions (P0,P1,P2,P3), each
partition contains 4 elements from both lists evenly.

Thus, merging the two lists is transformed to the process of
finding the merge path through this matrix.We can construct
such a path executing the following two operations:
• Advance rightward by one step, if A[i] ≤ B[i];
• Advance downward by one step otherwise.

Themerge path is essentially the history of decisionsmade
during the merge, and exactly one such path exists. We can
use the existence of this path to locate the p partitioning
points for A and B. We can find these points by drawing p
cross diagonals from the top-right to the bottom-left of the
grid. Because the cross diagonals and the path are in the
opposite directions, they must meet at some intersections,
and they are the partitioning points.

These points and diagonals have interesting properties:
• Given a partitioning point Pi j , we must have A[i] =
B[j] or A[i] is the lower bound into B for the current
partition.
• For a point on a diagonal Pi j , i + j = |diaдonal |, where
|diaдonal | is the distance from the top-left origin to
the position where the diagonal intersects with the
axis of list A.

We can use the above two properties to do binary search
only along each diagonal (in parallel) to find the point where
it crosses the merge path, and then use these points to parti-
tionA and B. Figure 6 illustrates the operation of MergePath.

The p partitioning points divide the all the elements from
A and B into p partitions evenly, thus the process of finding
these points ensures that the merge stage is perfectly load
balanced. After discovering these p partitioning points, we
can eventually do the serial merge inside each partition.More
detail about the algorithm and its CUDA implementation
can be found [15] and [4].

3.1.3 Ranking Selection
The final stage of query processing is identifying the top-
ranked query results to return to the user.We evaluated three
ranking functions in Griffin-GPU: GPU bucketSelect [7],
GPU radixSort, and CPU partial_sort (provided by the C++
STL).

GPU bucketSelect is a fast parallel K-selection algorithm.
We use it to locate the Kth-max value first, and then we
select all K-max values. The GPU radixSort is a brute-force
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Figure 6. A Merge Path Example. To intersect list A =
(1,3,4,6,7,9,15,25,31) and list B = (1,3,7,10,18,25,31) with 4
partitions (p = 4, so each partition has (|A| + |B |)/p = 4
elements), we draw 4 diagonals in the grid, and they inter-
sect with the merge path shown with arrows at 4 points
(P0, P1, P2, P3). partition_0 contains (1,3) from A and (1,3)
from B, partition_1 contains (4,6,7) from A and (7) from
B, partition_2 contains (9,15) from A and (10,18) from B,
and partition_3 contains (25,31) from A and (25,31) from
B. We can merge them concurrently to get the intersection:
(1,3,7,25,31).

find the suitable boundaries for the partitions. Yet this is not
addressed by any of previous work in GPU search engine and
parallel query processing.

In Gemini, we exploit a GPU merging algorithm called
GPU Merge Path [?], that derives from [?]. Instead of blindly
doing binary search or deciding the partitions statically, the
authors in [8] propose to takes the process of merging as if a
path walking down from the top-left corner to the bottom-right
corner of an |A|x|B| grid. Because both input array A and B
are sorted, we always have that if A[i]< B[ j], then A[i]< B[ j′]
for all j′ > j. Thus, merging is transformed to the process of
finding that only path with comparisons. When A[i]<= B[i],
the path advances to the right by one step, otherwise, the path
moves down by one step. This path is essentially the history
of decisions in executing a merge, and this path is unique.
So once we know the path, we will actually find the order of
merging the two input arrays.

To locate this path, we can sequentially do all the compar-
isons, or we can also first locate several points (the partition
points) on the path to reduce the search space, and then do
some local search to fix the path. To do this, we can draw
cross diagonals from the top-right to the bottem-left of the
grid. Because the cross diagonals and the path are in the op-
porsite directions, they have to meet at some point. And we
can use binary search to find these points of intersection on
the cross diagonals in parallel. The process of finding these
points ensure that the merge stage is perfectly load balanced.
After discovering this partition poinst, we can eventually do
the serial merge in each partition. For more detail about this
algorithm, please refer to [].

We refer to [?] for an efficient implementation, by first
dividing the problem into tiles with workloads of constant size
with binary search on the global memory, and then breaking
it further into threads with even workloads via fine-grained
search.

4.3. Hybrid Query Processing in Gemini

With the advanced algorithms, Gemini-GPU can efficiently
process queries on the GPU in many cases. However, we
find there are also cases when GPU may not perform better
than the CPU as expected in part of processing individual
queries. For example, when we implement the top-K function
in Gemini-GPU, we compare the three different implemen-
tations: GPU bucketSelect, GPU radixSort, and CPU par-
tial_sort (provided by the C++ STL). GPU bucketSelect is a
fast parallel K-selection algorithm developed by [?]. We use it
as the first step of top-K selection by first selecting the K-max
value, and select all the top-K values. The GPU radixSort is a
brute-force solution, which just sorts all values in the list in
parallel, and we pick the top-K values. The CPU partial_sort
returns only the top-K values.

We sample 100 lists of different sizes (from 1K to 10M) sep-
arately after the intersection from Gemini-GPU’s run on our
dataset, and run the above three different top-K implementa-

tion on these lists. Although the GPU bucketSelect algorithm
claims better performance than other parallel K-selection or
top-K algorithms such as radixSelect [?], to our surprise, we
find that among the three, the best performance is from CPU
partial_sort, as shown in Figure 1.

One of the main factors contributes to this result is that, usu-
ally the size of list intersection is relatively small, and cannot
saturate the GPU to fully utilize its potential computation.
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Figure 1: Top-k evaluation

Inspired by this result, we further sample intersections with
compressed lists from our dataset to check GPU’s effectiveness
on query processing. Because with the intersection proceed,
the length gap between the two lists involved will increase (the
number of intersected elements decreases), we are interested
to know how the ratio would affect the performance of our
Gemini-GPU. So we select 100 intersection list pairs individ-
ually with different length ratios, in the range of [1, 16), [16,
32), [32, 64), [64, 128), [128, 256), [256, 512), [512, 1024),
and [1024, ∞). To have the meaningful average time, we also
limit the length of the longer lists to be around 1M 2M. We run
the different configurations on the CPU and on Gemini-GPU,
and get the average latency. The result is shown in Figure 2.

We observe that Gemini-GPU can keep outperforming its
CPU counterpart when the gap ratio is relatively small. This
is because in these cases, almost all of the data blocks in the
intersected lists need to be decompressed, leaving little chance
for skipping with binary search to win. Thus, Gemini-GPU
can utilize the parallel EF decompression as well the parallel
MergePath algorithm to efficiently merge the two lists. How-
ever, when the ratio reaches some points between 64 and 128,
the performance of the CPU implementation starts to catch
up. And with the ratio increasing, the latency of Gemini-GPU
continues to drop, but the latency of the CPU implementation
decreases more. This is because when the length difference be-
tween the two lists is large enough, relatively less data blocks
need to be decompressed, and the skipping with binary earch

5

Figure 7. Ranking Performance Comparison.

solution that sorts all values in the list, and we pick the firstK
values. The CPU partial_sort returns only the K-max values.

We sample the list of full results for 100 queries and ran
these three ranking algorithms on them. We find that the
CPU implementation provides the best performance (Fig-
ure 7). We suspect the poor performance of the GPU algo-
rithms is due to the small number of results (queries rarely
result in more than several thousands matches). These small
input sizes cannot saturate the GPU or amortize the overhead
in GPU initialization and memory allocation.

3.2 Hybrid Query Processing in Griffin
The performance of list intersection in Griffin-GPU relative
to the CPU implementation depends strongly on the rela-
tive sizes of the lists at hand: Griffin-GPU performs best
when both lists are relatively long and the difference in their



can quickly reduce the search space. At this time, the modern
CPUs with speculative execution and branch prediction can
address the branch divergence effectively, while the GPU’s
SIMD advantage in high throughput and parallelism is weak-
ened.
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Figure 2: Observation

To address this issue while provide an efficient solution to
utilize the overall heterogeneous system, we propose a length
ratio based Hybrid Query Processing in Gemini to use both the
GPU and the CPU to cooperately process queries, based on our
above observation. This hybrid query processing is a two-fold
method. When a query arrives in the system, the scheduler
first decides if the current query is suitalbe for running on
Gemini-GPU or on the CPU, depending on the lengths and
length ratio of the initial two intersected lists, as well as other
factors such as the system load. We choose the ratio of 128
as the scheduling criterion. If the query is scheduled to run
on Gemini-GPU, after the intersection of the two initial lists
for a query, the system will then check if the length ratio of
the two lists in the next round is bigger than 128. If positive,
the query will continue to run on Gemini-GPU by loading
more data blocks to the GPU. Otherwise, the intermediate
intersected list will be send back to the CPU, and the rest
of the query will execute on the CPU. Because the length
ratio will have to increase, there is no chance for the query to
go back to Gemini-GPU. The detailed algorithm is shown in
Algorithm ??.

An interesting problem in this scheduling is how to run
the half-way query pushed out from Gemini-GPU. As we
describe earlier, the system maintains a separate task queue for
Gemini-GPU and each core of the CPU. So when the half-way
query gets back, it should skip the line and insert in the front
end in the queue of a CPU core to resume as soon as possible.
Otherwise, the first half accelerated execution on Gemini-GPU
would be wasted, and the overall latency for this query may
be too long. We leave this as our future work.

The verify the correctness of choosing the ratio of 128 as
the scheduling criterion, we also check the actual number
of unique data blocks to be decompressed during the above
intersection tests with different length ratios. The finding is
presented in Figure ??. We can see that when the ratio is equal
to or lower than 128, the number of blocks to be decompressed
is more than 10K. However, when the ratio is beyond 128, the
number of decompressed drop down to less than 3K, which
indicates that the amount of computation decreases, while
skipping with binary search is preferred.

The rationale behind this is that, each data block con-
tains 128 elements. When the length ratio is below 128, it
is more likely to decompress more data blocks. When the
ratio is bigger than 128,

5. Experiments
In this section, we experimentally evaluate the performance of
Gemini and answer the following questions:
•
•
•
5.1. Methodology

We compare Gemini with a highly-optimized CPU-only search
engine and GPU-only search engine.

Hardware. Our CPU and GPU models, specifications.

Datasets. There are two types of datasets: web data and
query log. The web data is a collection of 41 million Web
documents (around 300GB) crawled in 2012.1 It is a standard
benchmark in the information retrieval community. We parse
the documents and build inverted lists where each entry in the
list contains document ID and document frequency [?]. The
query log contains 150,000 real queries from the TREC2 2005
and 2006 (efficiency track).

5.2. Micro Benchmark

5.2.1. Decompression Figure 3 demonstrates that the GPU
runs decompression much faster than the CPU.
5.2.2. List Intersection Figure 4 shows the performance of
list intersection with different solutions.
5.2.3. Top-k Evaluation

5.3. Overall Performance

5.3.1. Latency Figure 5 shows the latency comparison.

5.4. Case Study: Long Tail Execution

Figure 7 compares the long tail execution.

6. Related Work
This is the related work section.

1http://www.lemurproject.org/clueweb12.php
2http://trec.nist.gov/
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Figure 8. The Observation of the GPU/CPUCross Over
Point for Better Performance.

lengths is relatively small, while the CPU performance better
when the difference is large.

As query processing proceeds, the length difference be-
tween the two lists involved will increase for two reasons.
First, one of the two lists constitutes the intermediate results
for the query, and this list shrinks monotonically during
execution. Second, the query algorithm starts with the two
shortest lists, so the algorithm intersects the list of interme-
diate results with longer lists.
To understand how list length ratio affects the perfor-

mance of Griffin-GPU and CPU implementation, we need
to compare their performance with different list length ra-
tios. Instead of iterating all the possible ratios (which would
be too many), we devide the list into 7 ratio groups: [1,16),
[16,32), [32,64), [64,128), [128,256), [256,512) and [512,1024).

To have meaningful results, the candidate lists from these
groups have to satisfy three requirements: 1) long enough
to have accurate runtime measurements. 2) their runtime
should be comparable (it is meaningless to compare the run-
time of a short list pair with that of a long list pair, even they
have the same list ratio). 3) have enough samples (cannot be
too short or too long).
As a result, from each ratio group we randomly select

100 intersection list pairs, with the longer lists limited in
the length range of [1M,2M]. We measure the run time of
Griffin-GPU and CPU implementation, as shown in Figure 8.
Griffin-GPU outperforms the CPU version when the list

lengths are with a factor of 128. In these cases, almost all
of the data blocks in the intersected lists need to be decom-
pressed, leaving little chance for binary search to avoid de-
compression. Thus, Griffin-GPU can utilize the parallel EF
decompression as well the parallel merge-based intersection
algorithm to efficiently merge the two lists. In addition, the
GPU-related overhead of kernel invocation, memory man-
agement, and data transfer from CPU to GPU can be well
amortized.

For larger ratios, the performance of the CPU implemen-
tation surpasses the GPU. As the ratio increases, the latency
of Griffin-GPU continues to drop, but the latency of the CPU
implementation decreases faster. This is because when the
length difference between the two lists is large, performing
binary search allows the algorithm to avoid decompressing
large portions of the list. At this time, the modern CPUs with
speculative execution and branch prediction can address the
branch divergence effectively while avoiding the additional
overhead of moving data to GPU.
Besides empirical measurements, the value of 128 as a

cross over point between GPU and CPU is also supported
by our formal analysis, given the premise that we compress
128 elements inside each data block with EF encoding, as we
show below.
Let R and S be two lists with |R | ≤ |S |. Let λ = |S |

|R | , then
we show that if λ > 128, it is more likely to skip unnecessary
data blocks:

λ > 128⇐⇒
|S |

|R |
> 128⇐⇒ |R | <

|S |

128
In other words, when λ > 128, the number of elements

in the short list R is smaller than the number of blocks in
the long list S . Thus, there exists at least one block in S
that is irrelevant and can be skipped, as demonstrated in a
simplified example in Figure 9.

R

S

Figure 9. An Example to Explain the Ratio. List R con-
tains 5 elements while list S contains 8 blocks, and two ele-
ments in R are mapped to the same block in S . As a result,
there are 4 blocks (in white) in S that can be skipped.

Similarly, we also show if λ ≤ 128, then all the blocks
in S are relevant. This is because λ ≤ 128 ⇐⇒ |R | ≥ |S |

128 ,
indicating the elements in R are likely to be mapped to all
the elements in S . Note the value of 128 is closely related to
the fact that we compress the list in 128-element blocks. So
we could generalize our analysis and choice of the value to
different block sizes.
To exploit the crossover point between the performance

of the GPU and CPU implementations, Griffin uses both
GPU and CPU to cooperatively process queries. When a
query arrives in the system, the scheduler first decides if
the current query is suitable for running on Griffin-GPU or
on CPU, depending on the length ratio for the two shortest
inverted lists. If the ratio is less than 128, Griffin begins
execution on the GPU.
After each intersection, the scheduler will check if the

length ratio of the two lists in the next round is less than
128. If it is, processing continues on the GPU. Otherwise,
Griffin transfers the intermediate results to CPU and executes



the rest of the query there. We implement a light-weight
scheduler to explore intra-query parallelism, but it could be
extended to support other features like load balancing.

4 Evaluation
In this section, we experimentally evaluate Griffin to answer
the following questions:
• What is the performance of Griffin-GPU?
• How effective Griffin is as a hybrid GPU/CPU search
engine to process queries cooperatively?
• How much can Griffin improve the tail latencies?

4.1 Methodology
In our evaluation, we run real-world queries over inverted
lists generated from real web data, and we assume the whole
dataset has been loaded in the host main memory. We con-
duct the experiments on a server with a 4-core Intel Xeon
E52609V2 CPU at 2.5 GHz andwith 64 GBDDR3-1600 DRAM.
The server installs an NVIDIA Tesla K20 GPU with 5 GB
GDDR5 memory, which connects to the server through 16
lane PCIe 2.0 with 8 GB/s bandwidth. We run Ubuntu Linux
kernel 3.16.3 with CUDA Toolkit 7.0.
It would be interesting to compare Griffin with some ex-

isting GPU search engine implementations such as [8, 12].
But under the present circumstances, it is hard, if not im-
possible to do direct comparison, for two reasons: First, the
implementations of those systems are not publicly avail-
able; Second, the results reported in previous studies are
from and optimized for different hardware platforms and
runtime environments, on different benchmarks with much
smaller data sizes. Instead, we compare Griffin against both a
highly-optimized CPU-only implementation and GPU-only
implementation with state-of-the-art algorithms and report
the speedups.

4.2 Benchmark
The benchmark used in our evaluation includes two parts:
the queries and the web data [32]. The queries we run are
from the query logs collected from the TREC [1] 2005 and
2006 (efficiency track). The web data clueweb12 [5] is a collec-
tion of 41 million Web documents (around 300 GB) crawled
in 2012. It is a standard benchmark and widely used in the in-
formation retrieval community. We parse the documents and
build the inverted lists, each entry of which contains a doc-
ument ID and the corresponding document frequency [22].
In our experiments we randomly select 10,000 queries over
about 100GB of these web documents with our limited disk
space.

To have a better understanding of the benchmark, we first
analyze the inverted lists and the queries we use. Figure 10
gives the size distribution of the inverted lists involved in our
experiments. Most lists are of the size between 1 K and 1M
elements. Figure 11 shows the distribution of the number
of terms for the queries. About 27% queries contain 2 terms,

33% contain 3, and 24% contain 4. This distribution shows
that multiple rounds of list intersections are common in the
benchmark, indicating that the query charateristics change
ofen.
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Figure 10. Inverted List Size Distribution.
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Figure 11. Number of Terms Distribution.

4.3 Performance of Griffin-GPU
We run several micro benchmarks to test the performance
of Griffin-GPU in decompression and list intersection.

4.3.1 Decompression
Griffin-GPU implements Para-EF decompression algorithm
described in Section 3, andwe compress the inverted lists into
128-element blocks. We compare the average compression
ratio of the EF scheme to that of state-of-the-art PforDelta
over all inverted lists in our tests. EF scheme can achieve an
average compression ratio of 4.6, which is 1.4x better than
PforDelta (Table 1).

Table 1. Compression Ratio Comparison.
Scheme PforDelta EF

Compression Ratio 3.3 4.6

To demonstrate the decompression speed of Griffin-GPU,
we randomly select about 7 K lists with lengths ranging
from 1 K to 10M and group them by sizes. We run both the
Para-EF decompression of Griffin-GPU and CPU PforDelta



decompression on these lists. Figure 12 depicts the average
decompression time for each of the groups, and shows the
speedup of Griffin-GPU over the CPU PforDelta decompres-
sion. When the lists are very short (e.g., of ∼ 1K or ∼ 10K
elements), the speedup is relatively low (< 2). With the in-
crease in the list size, however, the speedup increases from
∼11x to ∼29.6x. There are two reasons for this result. First,
a longer list with more elements is more likely to saturate
the GPU with higher degree of parallelism than a short list.
Second, decompressing a longer list requires more compu-
tation, and this amortizes the overhead of data transfer and
GPU memory allocation.

0.0
2.0
4.0
6.0
8.0

10.0

query latency energy

no
rm

al
iz

ed
 v

al
ue

CPU GPU

 0

 20

 40

 60

 80

 100

 120

1K 10K 100K 1M 10M
 0

 5

 10

 15

 20

 25

 30

ex
ec

ut
io

n 
ti

m
e 

(m
s)

sp
ee

du
p

list size

speedup

Figure 12. Decompression Speed Comparison.

4.3.2 List Intersection
To compare the performance of Griffin-GPU’s parallel merge-
based intersection to CPU merge, CPU binary, and parallel
binary search, we run the experiments of list intersection on
selected pairs of lists from our dataset. The list pairs have
comparable list lengths (the two lists either have similar
lengths or the length of the longer list is less than 16x longer
than the shorter list), and their lengths ranges from 1 K to
10M .

Figure 13 shows the performance of list intersection with
different methods. With the relatively longer lists, both CPU
merge andGriffin-GPUmerge outperform their binary search
counterparts. This is because when two lists have compa-
rable lengths, merge-based methods can make better use of
the cache and local memory of the processor. We also notice
Griffin-GPU’s merge can achieve up to 87.35x speedup over
the CPU merge.
CPU binary search is slowest in these cases, while GPU

binary search can achieve a speedup up to 102x over its CPU
counterpart due to the parallelism. However, Griffin-GPU
merge can still have up to 2.29x speedup over the very fast
GPU binary search.

 1 2 3
 4 5 6
 7 8 9

 3  3.5

 4  4.5

 5  5.5

 6

CPU merge CPU binary GPU merge GPU binary

 0.01

 0.1

 1

 10

 100

 1000

1K 10K 100K 1M 10M

ex
ec

ut
io

n 
ti

m
e 

(m
s)

longer list size
Figure 13. List Intersection Comparison.

4.4 Overall Performance
To verify Griffin’s effectiveness as a hybrid GPU/CPU search
engine that processes queries cooperatively, we test the end-
to-end query processing latencywith Griffin against a highly-
optimized pure CPU search implementation and Griffin’s
own pure GPU implementation (Griffin-GPU).We first divide
the queries into different groups based on the number of
terms present in the queries, and then run the three different
configurations on each group to get the average latency.
From Figure 14 we can see that, Griffin can consistently
outperform the pure CPU search and the Griffin-GPU, with
an average speedup of ∼ 10x and ∼ 1.5x, separately.
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Figure 14. End-to-End Query Latency Comparison.

4.5 Case Study: Tail Latency Reduction
Reducing tail latency is very important for interactive ser-
vices such as search, since very long tail latency will signifi-
cantly affect the quality of service and the user experience
negatively. To see if Griffin can effectively reduce tail latency
of the queries, we compare the tail latency of the CPU search
versus Griffin in Figure 15. As we can see, Griffin can achieve
a speedup of 6.6x, 8.3x, 10.4x, 16.1x, and 26.8x, for 80th-,



90th-, 95th-, 99th-, and 99.9th-percentile response time over
the CPU search.
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Figure 15. Tail Latency Reduction with Griffin.

5 Related Work
Parallelizing query processing with GPU There have
been efforts in parallelizing query processingwith GPU. Ding
et al. [12] are among the first to explore building search en-
gines with GPU, and propose to schedule individual queries
to either GPU or CPU ("hybrid" as they call). However, their
decompression algorithm is hard to achieve both high com-
pression ratio and fast decompression speed together, while
their Parallel Merge Find intersection does not consider load
balancing partitioning for GPU (key factor for high GPU
performance) at all.
Both Griffin and [12] can schedule query processing to

both CPU and GPU. Griffin improves on [12] in three ways:
1) For each single query, [12] can only send the whole query
to either CPU or GPU; while Griffin makes finer-granularity
intra-query decisions about scheduling. 2) Griffin’s design
adapts the scheduling to account for changing query char-
acteristics while optimizing for performance and load bal-
ance. [12] has to deal with the changing characteristics with
somemachine learning models, but it is not clear if using sim-
ple models and training on a small set are accurate enough to
predict query characteristics in reality (their results are from
simulation). 3) Griffin’s scheduler can be easily extended to
support more complex scheduling [21].

Wu et al. also propose a CPU-GPU cooperative method for
list intersection [36] on individual queries. But again, they
fail in considering intra-query parallelism, neglecting the
changing characteristics of the queries during runtime.
Ao et al. [8] propose a new linear-regression-based com-

pression scheme and list intersection method. But they as-
sume the linear properties of the datasets, and may not per-
form well on some datasets [8]. In addition, their design
caches all inverted lists in the very limited GPU memory
(in their case 1.5GB on NVIDIA GTX 480). While saving
much time of data transfer between CPU and GPU as well as
the overhead of GPU memory allocation, such design is not

practical or scalable even only caching the most frequently
accessed data, given the rapid growing volume of data today.

Parallelization in interactive services to reduce response
latency. Adaptive job scheduling in multiprogrammed en-
vironment has been studied [9, 10, 14, 23]. The scheduler
assumes no a priori, and can adjust the degree of parallelism
as the job executes based on the job characteristics. Similarly,
Griffin can schedule part of a query to either CPU or GPU
based on the changing query characteristics.
Degree of Parallelism Executive (DoPE) proposed by Ra-

man et al. [25] provides an API to choose different parallelism
options. The runtime will decide the degree of parallelism
dynamically. To reduce the average response time of queries,
Joen et al. [18] propose adaptive parallelism, which chooses
different degrees of parallelism for requests in advance, based
on the system load and request requirements. Griffin could
adopt these techniques for flexible scheduling.

To achieve load balance when applying multithreading in
query processing, [18, 28, 29] explore intra-query parallel
algorithms. While in Griffin, the merge-based intersection
algorithm in Griffin-GPU can automatically achieve load
balancing partitioning of indices.

To reduce tail latency, Jeon et al. [19] adopt machine learn-
ing to predict request service demand, and parallelize the
predicted-to-be-long requests accordingly. Haque et al. [16]
outperforms [19] by using Incremental Parallelism to dy-
namically increase parallelism to reduce tail latency. It pre-
computes parallelism policy offline, and adds parallelism
using runtime information like system load. This method is
very effective in reducing tail latency, and is complementary
to Griffin. Because Griffin dynamically schedules parts of
queries to CPU and GPU cooperatively, decompression and
intersection of longer lists tend to run on GPU with mas-
sive parallelism and high throughput. As a result, Griffin
can reduce the latency of many long queries if run on CPU.
Griffin can combine the incremental parallelism techniques
to further lower tail latency.

6 Conclusion
In the face of rapidly growing data sets and query loads in
large-scale interactive information retrieval services, search
engines must provide relevant results with consistent, low re-
sponse times, which is very challenging. This paper presents
Griffin, a search engine that explores the intra-query paral-
lelism by adaptively scheduling parts of a query to GPU or
CPU, to reduce the average response latency. Griffin intro-
duces two GPU algorithms in Griffin-GPU: (1) a parallel EF
decompression that provides both high compression ratio
and fast decompression speed; and (2) a merge-based list
intersection that achieves load balancing partitioning and
efficient merging. We evaluate Griffin in a big dataset with
real world queries and inverted lists generated from web
data. The experimental results demonstrates that Griffin’s



adaptive scheduling can achieve an average speedup of 10x
compared to a highly-optimized state-of-the-art CPU imple-
mentation, and 1.5x compared to Griffin-GPU. We also show
that Griffin can effectively achieve a speedup of 6.6x, 8.3x,
10.4x, 16.1x, and 26.8x, for 80%, 90%, 95%, 99%, and 99.9%
percentile response time over the CPU search.
In this paper, our "proof of concept" prototype assumes

that the compressed lists are loaded in DRAM. This is a valid
assumption, since in practice search engines usually cache
hot data in memory [33]. If data size is beyond the available
DRAM, we could extend Griffin’s scheduler to apply more
advanced scheduling and data transfer management [20].
It would be interesting to apply Griffin to more complex

scenarios under heavy system loads with multiple users. We
leave this as future work.
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