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Abstract—The emerging class of instance-optimized systems
has shown potential to achieve high performance by specializing
to a specific data and query workloads. Particularly, Machine
Learning (ML) techniques have been applied successfully to build
various instance-optimized components (e.g., learned indexes).
This paper investigates to leverage ML techniques to enhance
the performance of spatial indexes, particularly the R-tree, for
a given data and query workloads. As the areas covered by the
R-tree index nodes overlap in space, upon searching for a specific
point in space, multiple paths from root to leaf may potentially be
explored. In the worst case, the entire R-tree could be searched. In
this paper, we define and use the overlap ratio to quantify the de-
gree of extraneous leaf node accesses required by a range query.
The goal is to enhance the query performance of a traditional
R-tree for high-overlap range queries as they tend to incur long
running-times. We introduce a new Al-tree that transforms the
search operation of an R-tree into a multi-label classification task
to exclude the extraneous leaf node accesses. Then, we augment
a traditional R-tree to the Al-tree to form a hybrid “AI+R”-
tree. The “AI+R”-tree can automatically differentiate between
the high- and low-overlap queries using a learned model. Thus,
the “AI+R”-tree processes high-overlap queries using the Al-
tree, and the low-overlap queries using the R-tree. Experiments
on real datasets demonstrate that the “AI+R”-tree can enhance
the query performance over a traditional R-tree by up to 500%.

Index Terms—ML for Database Systems, Spatial Indexing,
Instance-optimized components, Learned Indexes

I. INTRODUCTION

Traditional spatial indexes have been used successfully over
the years as an efficient access method for location data. In
the area of spatial databases, the R-tree [1] is a widely used
index structure. In the multi-dimensional space, the R-tree is
analogous to the one-dimensional index structure B -tree [2].
These traditional index structures, e.g., the B*-tree or the R-
tree, do not make any assumptions about the underlying data
distribution. They are designed to work on a variety of data
and query workloads. As a result, an index is not necessarily
optimized for a particular data and query workloads.

Recently, there is an emerging class of instance-optimized
systems proposed to optimize system performance for a spe-
cific data and query workloads, e.g., [3], [4]. Following the
same direction, we target to design an index for a particular
data and query workloads, i.e., an instance-optimized index; a
learned index that has better search and lower space require-
ments than their traditional counterparts [3], [5], [6]. Particu-
larly, ML techniques have been successfully applied to build
instance-optimized system components [4], [5]. Although ML
models are normally trained to generalize over a variety

Jianguo Wang
Purdue University
csjgwang @purdue.edu

Walid G. Aref
Purdue University
aref@purdue.edu

Query

Visited leaf nodes

True leaf nodes

Q1

R12,R13

R12

Q2

R10, R11, R13, R14

R10, R14

Q3

R7, R8

R7,R8

X (b) List of the accessed leaf
(a) An example of leaf nodes in an nodes during query process-
R-tree ing

Fig. 1: An example of R-tree range query processing

of datasets, in the context of designing instance-optimized
components, overfitting of ML models can be desired if the
models learn only from a known dataset [3].

In this paper, we focus on answering range and point
queries over an R-tree due to their wide applicability in spatial
databases [7]. In the R-tree, objects are stored using Minimum
Bounding Rectangles (MBRs). Notice that in the BV -tree,
nodes do not overlap in space. However, the MBRs of non-
leaf and leaf nodes of an R-tree can overlap in space. Figure 1
illustrates the impact of node overlap in an R-tree to answer a
range query. Only the MBRs of the leaf nodes are displayed
in Figure 1. Notice that the number of accessed leaf nodes
directly impacts the query response time of an R-tree [7].
For a disk-based R-tree, descending multiple paths in the R-
tree incurs high I/O cost [8]. The leaf nodes of the R-tree
are labelled R7-R14. Consider Range Queries Q1, Q2, and
Q3 in Figure 1. To process QI, the R-tree searches both R12
and R13, but the output data object is only present in R12.
Hence, accessing R13 is wasted. Similarly, to process Q2, the
R-tree searches R10, R11, R13 and R14, but the output data
entries are only in R10 and R14. In both Q1 and Q2, the R-
tree accesses 50% more leaf nodes than the true number of
leaf nodes containing the data objects. In contrast, for Query
Q3, the R-tree searches both R7 and RS, and data objects are
exactly found in both nodes.

In this case, the number of visited leaf nodes by the R-tree
matches the true number of leaf nodes required to answer Q3.
Thus, in terms of the number of leaf node accesses, we can
identify Q1 and Q2 as high-overlap queries and Q3 as a low-
overlap query. Observe that the R-tree searches extraneous leaf
nodes to answer Q1 or Q2 but performs optimally for Q3. We
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define an overlap ratio « to quantify the degree of extraneous
leaf node accesses required by a query. Specifically, for a range
query, we divide the number of true leaf nodes by the total
number of visited leaf nodes to estimate «, e.g., in Figure 1,
to answer Q2, the number of visited leaf nodes is 4 while the
number of true leaf nodes is 2 making o = 0.50. Similarly,
for Q1 and Q3, « is 0.50 and 1, respectively. Notice that the
number of true leaf nodes cannot exceed the number of visited
leaf nodes. Hence, « ranges from [0 — 1].

For the purposes of this paper, the high- and low-overlap
queries are determined as follows: Based on a pre-defined
threshold 7, queries with overlap ratio o < 7 (i.e., closer to
0) are high-overlap while queries with o« > 7 (i.e., closer
to 1) are low-overlap. The spectrum of the of the overlap
ratio o with Threshold 7 is shown in Figure 2. To process
high-overlap queries, we propose to find the true R-tree leaf
nodes using Multi-label Classification; a supervised ML task,
where an input object can be classified into one or multiple
categories at once [9]. For example, classifying a research
paper into a Systems, Theory, or ML paper is a multi-label
classification task as a paper can be both a Systems and ML
paper. Analogously, we can cast answering a range query
over the R-tree, as a multi-label classification task, where the
classes are the R-tree leaf nodes, and we need to find these
nodes that overlap the range query and that contain the output
objects to the query.

Motivated by the benefits of instance-optimized components
(e.g., learned indexes) and considering the issue of node
overlap in the R-tree, the following important questions arise:
Which workloads degrade the performance of range query
processing in a traditional R-tree? Can we leverage ML
techniques to make R-tree range query processing faster?

We propose to use the overlap ratio « to identify the high-
overlap queries for which an R-tree accesses many extraneous
leaf nodes. Moreover, we propose to build an ML-enhanced
R-tree, termed the Al-tree, that leverages multi-label classifi-
cation techniques [9]. Finally, we adopt a hybrid structure,
termed the “AI+R”-tree, to avail the benefits of both the
Al-tree and the traditional R-tree (refer to Figure 3). The
ideas behind the Al-tree is as follows: First, we perform a
preprocessing step to assign IDs to the leaf nodes of the R-tree.
Then, we treat the queries as input and the corresponding true
leaf node IDs as class labels. In the example R-tree in Figure 1,
for Q1, @2, and @3, the corresponding class labels are the IDs
{R12}, {R10, R14}, and {R7, R8}, respectively. Moreover,
we prepare training data by processing each of the queries
in a traditional R-tree and storing the corresponding true leaf
node IDs as their class labels. Then, a multi-label classifier
is constructed based on this training data. Motivated by the
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benefits of using multiple ML models (instead of a single
model) [5], we adopt a multi-model approach that indexes the
learned ML models in a grid-based structure.

To realize the “AI+R”-tree, we leverage a binary classifi-
cation technique [10] to learn the value of the overlap ratio
« given an input range query. This enables the “AI+R”-tree
to differentiate between high- and low-overlap queries. Notice
that the Al-tree is likely to perform better for high-overlap
queries while a traditional R-tree is expected to perform
better for low-overlap queries (due to the fact that there is
limited scope for improvement). Notice further that the Al-tree
performs exact (i.e., not approximate) range query processing.
Thus, the “AI+R”-tree leverages the benefits of both the Al-
tree and the R-tree.

The contributions of this paper are as follows:

1) We introduce an instance-optimized Al-tree that trans-
forms the R-tree search operation into a multi-label
classification task. While learned indexes are centered
around the idea of learning the index, the Al-tree adds
to that the idea of indexing the learned models.

2) We leverage ML to differentiate between high- and low-
overlap range queries. This gives rise to the “AI+R”-tree
that processes both query types efficiently.

3) For fixed query workloads, experiments on real spatial
data demonstrate that the “AIl+R”-tree enhances the
performance of a traditional R-tree by up to 500%.

The remainder of this paper proceeds as follows: Section II
presents the problem formulation. Section III introduces the
Al-tree. Section IV introduces the hybrid “AI+R”-tree. Sec-
tion V presents the experimental results. Section VI gives an
overview of the related work. Finally, Section VII presents
concluding remarks and suggestions for future research.

II. BACKGROUND AND PROBLEM FORMULATION
A. The R-tree: An Overview

The R-tree [1] is a balanced hierarchical index for multi-
dimensional objects. Each leaf or non-leaf node of the R-tree
contains at least m and at most M entries. A rectangular range
query is expressed as follows: Q (Xm’i'ru }/mina Xmawv }/maac)7
where (Xin, Yimin) and (Xymazs Ymaz) represent the bottom-
left and top-right points of the query rectangle, respectively.
To process a range query (), we start from the root of the tree,
and check the MBR for each child of the root against Q to
test which child nodes overlap Q. In case of an overlap, we
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Fig. 4: An example of R-tree with overlapping nodes

search the sub-tree rooted at the corresponding child. When
we reach a leaf node, we report the objects that overlap Q.

B. Classification: A Supervised Machine Learning Technique

Classification [10] is a commonly used ML technique. It
can be divided into the following three categories: (1) Binary
Classification, where the number of classes is restricted to two,
(2) Multi-class Classification, where the number of classes n
is more than 2, and the goal is to classify an object into exactly
one of the n classes, and (3) Multi-label Classification [9],
[11], where we also have n(>2) classes, but the goal is to
classify an object into ¢ classes, where 0 < ¢ < n.

C. Problem Formulation

Refer to Figure 4 for illustration. Consider Queries Q1-Q3.
For Q1, we search the R-tree down the 2 paths (from root to
leaf): R1 — R5 — R12 and R1 — R5 — R13 while only the
latter path contains actual query results. For Q2, we search the
R-tree along 4 paths: R1 — R5 — R13, R2 —+ R4 — RI10,
R2 — R6 — RI11, and R2 — R6 — R14 while only the
2nd and 4th paths contain output data objects. Notice that, for
Query Q3, the R-tree searches two paths: R1 — R3 — R7 and
R1 — R3 — RS, where both of them will contain output data
objects. Thus, for processing Q1 and Q2, the R-tree searches
extraneous leaf nodes. Hence, we formulate our problem as
follows: Given a range query Q(X,in, Yinin, Xmaz, Ymaz)s
we need to predict the true leaf nodes of the R-tree that
contain output data objects, and only access these nodes
without accessing extraneous ones.

We propose to formulate this problem as a multi-label
classification task. For example, assume that an R-tree has
four leaf nodes with unique IDs 1-4. For a range query, the
R-tree may have to access any number of leaf nodes out of
these four leaf nodes. We transform this problem into a multi-
label classification task by treating the leaf node IDs as the
class labels. At query time, the trained multi-label classifier
predicts the true leaf node IDs that contain data entries that
fall inside the query region. Hence, we only need to access
the predicted leaf nodes to process the query.

III. THE AI-TREE

A. The Preprocessing Phase

1) Assigning Unique Identifiers to the R-tree Leaf Nodes: In
the preprocessing step, each R-tree node is assigned a unique
integer identifier (ID) based on a Depth First Search (DFS)

order. Thus, all sibling leaf nodes of the R-tree will have
consecutive integers as their IDs.

2) Definition of the Overlap Ratio o: We define an overlap
ratio « to quantify the degree of extraneous leaf node accesses
required by a range query. Given a range query Q, to calculate
the value of «, we use two metrics: the true number of leaf-
node accesses required to process Q (TN(Q), for short), and
the number of leaf nodes visited by the R-tree index to answer
Q (VN(Q), for short). For the range query Q, the definition of
« is as follows (the value of « is in the interval [0, 1]):

__TN@Q
VN(@Q)

3) Query Workload Categorization: Given a query work-
load, we categorize each query based on its selectivity. After
identifying the selectivity of a query, the overlap ratio « of the
query is calculated to further categorize the queries based on
their value of «v. This is achieved by executing the query during
the preprocessing phase, computing the query’s selectivity, the
leaf nodes being touched, and the true leaf nodes.

4) Preparing Training Data: This is a two-step process. In
the first step, all queries in the query workload are executed
one at a time on the constructed R-tree over the given dataset.
For each executed query, we collect the following information:
The IDs of the leaf nodes that the R-tree visits to answer the
query, and the true leaf node IDs that contain the output data
objects that are actually inside the query region.

TABLE I: Step-1 of Training Data Preparation

uer 1s1te odes rue odes
Query Visited Nod True Nod
Q1 RI2ZR13 R13

Q2 RI3,RIO,R11,R14 RIOR14
Q3 R7.R8 R7,RS

Assume that the ID assignment for the R-tree presented in
Figure 4 is as follows: R7 and R8 have IDs 1 and 2, R12 and
R13 have IDs 3 and 4, R9 and R10 have IDs 5 and 6, and
R11 and R14 have IDs 7 and 8. For Query Q1, the visited leaf
nodes are R12 and R13 but the true leaf node is R13. Thus, for
training purposes, for Q1, we set the ID of R13, i.e., 3, as the
output label for the multi-label classifier problem. Similarly,
for Query Q2, we have the ID of R10 and R14 (6 and 8) as
the labels for the multi-label classifier. Moreover, for Q3, we
have the ID of R7 and R8 (1 and 2) as the labels. These steps
are summarized in Tables I and II. In Table I, for each query,
we list the visited and the true leaf nodes. In Table II, we list
the leaf node IDs as the class labels for each of the queries.

TABLE II: Step-2 of Training Data Preparation

Query Input Feature Labels
Ql (Xminyyminyxmaxyymax) 3

Q2 (Xmi’ru Ymin7 X'maz7 Ymaz) 6, 8
Q3 (Xminyyminyxmazyymaz) 1, 2




5) Feature Representation: For an input range query Q,
we use the values (Xpmin, Yimin, Xmaz, Ymaz) Of the query
rectangle as input features to the ML model without any addi-
tional transformation. Thus, the same input can be processed
seamlessly by both the Al-tree and the R-tree. Moreover, for
multi-label classification, the output labels are encoded using
one-hot encoding, where we represent the class labels using
binary values, which is suitable for training the multi-label
classifier, e.g., in Table II, for query Q1, @2 and @3, the labels
will be encoded as 00100000,00000101 and 11000000.

B. Learning the R-tree Index: ML Model Training and Testing

Refer to Figure 5. The workflow for training and testing
the multi-label classifier is as follows. (1) While the given

Ground truth of
leaf node IDs
as labels

Any multi-label
classifier

Atrained multi-label
4 classifier

5
Model prediction

Fig. 5: Workflow of model training and testing

queries are executed by the R-tree, for each query, the IDs
of the visited and true leaf nodes are captured. Thus, fol-
lowing the approach in Section III-A4 (i.e., using the feature
representation of the queries and the true leaf node IDs as
labels), the training data is prepared for a particular data
and query workloads. (2) Then, the training data is used to
train the multi-label classifier. Because the goal is to enhance
the performance of the R-tree search operation for a fixed
data and query workloads, the ML models are intentionally
overfitted on the training data. In this paper, we use a multi-
label decision tree classifier [11], [12] due to its ability to
overfit the training data. Notice that the choice of the multi-
label classifier is not limited to the family of decision tree
classifiers. Because R-tree search has been cast as a multi-
label classification problem, we have the opportunity to use
any suitable multi-label classifier [13]. (3) A trained multi-
label classifier will be created after the training phase. (4) As
the Al-tree is optimized for a fixed query workload, the queries
will be re-used as input for both the training phase of the
multi-label classifier and the testing phase. This approach is
similar to the previous works that leverage overfitting to build
instance-optimized systems components [3], [5]. (5) At query
time, the pre-trained multi-label classifier is invoked to directly
predict the true leaf node IDs that contain the query result.

Indexing the Learned Models: A Multi-model Approach

The idea of indexing multiple learned models using a tra-
ditional index structure has been used in the context of music
retrieval [14] and in handwritten and time series data [15].
Moreover, the benefit of indexing the learned models using a
recursive model index is also shown in [5]. Notice that for

exact range query processing, our goal is to perfectly (i.e.,
100% prediction accuracy) fit the ML models to a particular
data and query workloads. However, even with overfitting, it
might not be possible to train a single ML model to capture
the entire underlying distribution of the training data [5]. As
a result, to achieve high prediction accuracy on the training
dataset, multiple ML models are trained, e.g., several multi-
label decision tree classifiers instead of a single ML model.
In the Al-tree, we use a simple index structure, e.g., a coarse
grid to partition the training queries. Then, we train a separate
ML model over queries inside each grid partition. The grid
serves as an index to the localized learned ML models. As a
result, at query time, we only invoke the ML models whose
grid cell overlap the query rectangle. This concept is illustrated
in Figure 6. The steps are as follows: Initially, the underlying
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Q1
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M9 M10 M11 M12
Q2
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Fig. 6: Indexing the learned models

space is divided into equally sized grid cells. Then, during
the training phase, if a query overlaps a single grid cell, the
ML model corresponding to that cell is trained for that query.
Similarly, if a query overlaps multiple grid cells, all the cells’
corresponding ML models are trained for that query. Notice
that if no query overlaps a particular grid cell, we do not train
any ML model for that grid cell. For example, for a 10.X10
grid, it is not always the case that 100 ML models need to be
trained. Finally, during query processing, only the ML models
whose grid cells overlap the range query are executed.

For example, in Figure 6, the space is partitioned using a
4X4 grid. Thus, at most 16 ML models (M1 to M16) can be
trained using the grid. In the training phase, we incrementally
search for the grid size that produces the best fit over the
training data [16]. In Figure 6, as Query Q1 falls completely
inside the top left grid cell, Model M1 is trained for QI.
On the other hand, as Query Q2 overlaps four grid cells,
the four models M6, M7, M10, and M11 are trained for Q2.
If multiple models are trained for a particular query, during
query processing, we aggregate their prediction results from
all the overlapping cells. This aggregated result is produced
by performing a union of the predictions of the individual ML
models.

C. Query Processing

Given a range query, first, the ML models are identified
whose grid cells overlap the range query. Then, only the
designated ML models are executed to process the query. After
the prediction of the ML models, the results are aggregated in



terms of leaf node IDs. Then, only the leaf nodes whose IDs
have been predicted by the ML models are accessed. Finally,
all the data entries inside these leaf nodes are scanned to check
which entries are actually contained within the input query
rectangle. This ensures that the Al-tree never produces a false-
positive result. Notice that we only access the predicted leaf
nodes without traversing the R-tree or accessing the non-
leaf nodes or the extraneous leaf nodes. Thus, if we predict
the leaf nodes accurately, we access the minimum number
of leaf nodes needed to answer a query. This reduces the
number of disk I/Os for processing a range query.

Notice that in rare cases, the multi-label classifier (Sec-
tion II-B) might not predict any label for a particular query.
In other words, the classifier might predict no leaf node ID
for a particular query. For the Al-tree, if the set of predicted
leaf node IDs is empty for a particular query, we invoke a
regular R-tree search operation. Moreover, if an ML model
predicts a leaf node that does not contain any data object that
is qualified in the result (i.e., mispredicts) of the given range
query, we may resolve to search the regular R-tree. Thus, the
Al-tree performs exact query processing by combining both
the multi-model approach and the regular R-tree.

IV. THE ”AI+R”-TREE

To achieve the best of both the Al-tree and the R-tree, we
adopt a hybrid approach that we term the “Al+R”-tree (see
Figure 3). We process the high-overlap queries using the Al-
tree and the low-overlap queries using the traditional R-tree.
However, this is non-trivial because the overlap ratio o of
a query is unknown until we process the query. Hence, we
leverage ML techniques to learn how to distinguish between
high- and low-overlap queries. Specifically, the problem of
classifying the range queries based on the value of o and
the threshold 7 can be formulated as a binary classification
task II-B. In order to prepare the training data for a particular
dataset, we combine the queries for each of the o values. Then,
we assign Label 0 for the queries whose « value is less than
or equal to the threshold 7, and assign Label 1 for the queries
whose « value is greater than the threshold 7. Next, a binary
classifier is trained on the training data. Finally, we can use the
trained binary classifier to classify an incoming range query
into either a high- or a low-overlap query.

A. Range Query Processing in the “AI+R”-tree

Given a range query Q, the binary classifier is invoked first
(see Figure 3) to predict whether the incoming query Q is high-
or low-overlap. If Q is classified as a high-overlap query, the
Al-tree processes the query. Otherwise, the R-tree processes
the query. Notice that query processing using the “‘AI+R”-tree
incurs a prediction cost before accessing the leaf nodes. Hence,
the cost of query processing of the “AI+R”-tree is: ML model
prediction cost + I/O cost. Thus, we expect to get the benefit
of the Al-tree for processing the high-overlap queries whose
« value is closer to zero. On the other side of the spectrum of
a (Figure 2), for the queries with « closer to one, the R-tree
is expected to perform better than the Al-tree.

To demonstrate query processing in the “AI+R”-tree, con-
sider the three queries in Figure 1. For Queries Q1 and Q2,
the overlap ratio o = 0.50. If the “AI+R”-tree can accurately
predict the leaf nodes, 50% less number of leaf nodes will
be accessed to answer the query. Notice that we have room
for improvement to process Ql and Q2 using the Al-tree
component of the “Al+R”-tree. In contrast, for Q3, a = 1.
Thus, both the visited leaf nodes contain data entries that fall
inside the query rectangle. Thus, it is not possible for the Al-
tree to process the query using less leaf node accesses than
the R-tree. Thus, we use the R-tree in this case.

V. EVALUATION

We run all experiments on an Ubuntu 18.04 with Intel Xeon
Platinum 8168 (2.70GHz) and 3TB of total available memory.

A. Datasets

We use two datasets from the UCR Spatio-Temporal Active
Repository, namely UCR-STAR [17]. Specifically, we use
two real-world datasets with two-dimensional location data
(in the form of longitude and latitude). The Tweets location
dataset contains the locations of real tweets, and the other
dataset contains the locations of Chicago crimes. Moreover,
we have preprocessed the datasets before using them for the
experiments. First, we eliminate the duplicate and missing
values from both datasets. For the Tweets location dataset, we
create a processed dataset containing the first 2 million tweet
locations. On the other hand, after removing the duplicate
values from the dataset of Chicago crimes locations, we get a
processed dataset containing 872,127 records.

B. Parameter Settings

1) R-tree Parameters: All R-tree variants attempt to reduce
the amount of node overlap. However, with dynamic updates,
the shape of the R-tree deteriorates over time. Thus, we
construct the R-tree using a one-at-a-time tuple insertion
method to replicate the scenario of a dynamic environment.
When constructing the R-tree, we set the minimum leaf node
size m to 50% of the maximum leaf node size M. Another
parameter of the R-tree is the node-splitting algorithm. In the
experiments, we use the linear node-splitting algorithm.

2) Query Selectivity and Values of «: For a particular
dataset, to demonstrate the query performance for a particular
value of «, (at most) 1000 synthetic range queries are used
in the experiments with a fixed selectivity. For example, in
the case of the Tweets location dataset, a range query with
Selectivity 0.00001 returns approximately 20 objects, and a
query with Selectivity 0.00005 returns approximately 100
objects. In the experiments, the selectivity varies between
0.00001 and 0.00005. We categorize the queries into five
different values of «[0.1,0.25,0.5,0.75,1.0]. Thus, for each
dataset, we use up to 5000 queries with various values of o.

3) The "AI+R”-tree Parameters: The “Al+R”-tree has two
parameters: The size of the grid (see Section III-B) and
the choice of the threshold 7 (see Figure 2). Similar to the
idea of hyperparameter tuning [16] for ML models, we start



from a grid size 2X2 and increase the size (e.g., 4X4) to
get the best fit for the training data. In all the experiments,
we have achieved the best fit over the training data with a
maximum grid size of 20X20. Notice that using the multi-
model approach and invoking the regular R-tree in case of
a misprediction, the Al-tree can achieve 100% prediction
accuracy over the training data. As a result, both the Al-tree
and the “AI+R”-tree can perform exact (i.e., not approximate)
range query processing.

: _ TN(Q)
On the othelzg hand, for a query Q with o = 0.75, the NQ)

can be e.g., T Thus, there is room for improvement unless
« = 1. Thus, we set Threshold 7 = 0.75. In other words, for
an incoming range query, if o < 0.75, it is identified as a
high-overlap query. If a > 0.75, it is considered low-overlap.

C. Choosing the ML Models

1) The Multi-label Classifier: A decision-tree classifier [12]
has the ability to overfit the training data, and hence can
achieve high prediction accuracy for the training dataset.
Moreover, a decision-tree classifier is simple and explainable.
As a result, we use a multi-label decision tree model as the
multi-label classifier [11]. However, with proper training, any
multi-label classifier [13] can be used in the “AI+R”-tree.
For the ML models, we use the standard scikit-learn python
library [18]. We use the default parameters for the decision
tree classifier except the maximum-depth that is set to 30. This
maximum-depth is set to a high value to allow the decision
tree classifier to overfit the training data.

2) The Binary Classifier: For binary classification, the goal
is to train an ML model to classify an incoming query as
high- or low-overlap. Notice that the goal is not to overfit but
rather to generalize, and the same learned model will be able
to classify high- vs. low-overlap queries across different query
workloads. We use a random forest classifier [19] as the binary
classifier. However, with proper training, any binary classifier
can be used in the “AI+R”-tree. The training process of the
binary random forest classifier is as follows: For a particular
data and query workloads, we combine the queries for each
«[0.1,0.25,0.5,0.75, 1.0]. For a particular dataset with fixed
selectivity queries, we will have up to 5000 queries in total. For
the binary classifier, we create the training data as follows: We
assign Label 0 for queries where a < 7 (e.g., a < 0.75), and
Label 1 for queries where o > 7 (e.g., a > 0.75). Moreover,
we split the training data where we use 80% for training and
20% for testing. We use the scikit-learn python library [18],
and use the default scikit-learn settings for the random forest
binary classifier. The prediction accuracy of the binary random
forest classifier is around 80% over all values of a.

D. Implementation and Measurements

We realize the “AI+R”-tree using an open-source python
library for the R-tree available on Github !. We integrate
the “Al+R”-tree inside the library and run the experiments

Uhttps://github.com/sergkt/rtreelib

using Python Version 3.6.9. On the other hand, for a disk-
based R-tree index realized inside a practical system, in most
of the cases, only the leaf nodes are stored in disk pages,
and the internal nodes are kept in-memory. As a result, the
performance of a query depends on both the CPU cost and
the number of leaf node accesses. In the experiments, we
assume that the required number of disk I/Os is equivalent
to the number of leaf node accesses [20]. For a query, we
measure the CPU time, and count the number of leaf node
accesses. Then, we multiply the number of leaf node accesses
by a standard disk I/O access time. Finally, we sum the CPU
and disk I/O times to report the average query processing time
(in milliseconds). In the experiments, we use a disk I/O access
time of thirteen milliseconds [21]. This approach is similar to
the experimental setup of a previous work [20].

Also, we report the size of the R-tree and the size of ML
models 2. The size of the ML models contains the summation
of the sizes of both the multi-label and the binary classifiers.

Notice that for a particular query workload with fixed
selectivity, to demonstrate the performance for each value of
o, we run each experiment individually for each value of a.
This enables us to report the average query processing time
and the size of the ML models for each value of «.

E. Experimental Results

1) Tweet Locations Dataset: We construct an R-tree using
the minimum leaf capacity m = 100 and maximum leaf
capacity M = 200. The selectivities of the synthesized queries
iare: 0.00001, and 0.00005. As a result, for each range query,
the result contains approximately 20 and 100 data points,
respectively. Moreover, the value of the threshold 7 is set
to 0.75. In each of the figures for this dataset, we show the
value of overlap ratio « in the X-axis and the average query
processing time (in milliseconds) in the Y-axis. Also, we report
the average query processing time taken by the standard R-
tree, the Al-tree, and the “AI+R”-tree.

2) Effect of Selectivity for the Tweets Location Dataset:
Figure 7a gives the results for Selectivity 0.00001. From the
figure, both the Al-tree and the “Al+R”-tree enhance the per-
formance of the R-tree by up to 3.69X and 3.58X, respectively.
Notice that the performance loss is minimal between the Al-
tree and the “Al+R”-tree, where the latter exhibits a hybrid
approach to indexing. This same pattern of performance gains
for both trees applies for the cases of o = 0.25. For o = 0.25,
the Al-tree and the “Al+R”-tree enhance the performance of
the R-tree up to 2.06X and 1.97X, respectively. Moreover, the
“AI+R”-tree performs better than the R-tree up to a = 0.50.
After that the R-tree starts to perform better. Notice that the
hybrid approach reduces the query processing time of the Al-
tree when the o = 1. In summary, the “AI+R”-tree gets
the best of both worlds. In the case of high-overlap (low
« value), the “AI+R”-tree performs similar to the Al-tree,
while in the case of low-overlap (high o value), the “AI+R”-
tree performs similar to the standard R-tree.

Zhttps://docs.python.org/3.6/library/sys.html
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Fig. 7: Results on Tweet locations dataset

Figure 7b gives the results for the same setup but for a
selectivity of 0.00005. As a result, each of the queries returns
approximately 100 points. From the figure, the Al-tree and the
“Al+R”-tree exhibit the similar trend in performance gains.

3) The Effect of Node Capacity for the Tweets Location
Dataset: In the next experiment, we vary the leaf node
capacity. We cover the cases for M = 200,400, and 800.
We fix the selectivity of the synthesized queries to: 0.00001
(The query result will contain approximately 20 data points).
The Al-tree can perfectly fit the training data with a 10X10
grid size for R-tree with node capacity M = 400, and 800.

Figures 7a, 7c, and 7d give the performance results of the
Al-tree and the “Al+R”-tree for maximum leaf node capacities
of 200, 400, and 800, respectively. The performance trends
are the same. Overall, the performance gains of the Al-tree
and the “Al+R”-tree over the R-tree increase as the node
capacities increase. The reason is that as the node capacity
increases, any additional extraneous leaf nodes retrieved by the
traditional R-tree will be very expensive due to the refinement
step. Basically, as the node capacity increases, more leaf data
objects will need to be checked against the query range to
refine the results and form the actual output data objects from
among the ones in the leaf node. In other words, due to the
higher leaf node capacities, the penalty of an unnecessary scan
inside an extraneous leaf node reduces the R-tree performance
in contrast to the Al-tree and the “AIl+R”-tree. In Figure 7d, for
node capacity 800, the Al-tree enhances the performance of the
R-Tree up to 6.06X for v = 0.10. Also, the “AI+R”-tree does
not decrease the performance of the Al-tree by a large margin.
To be precise, the “Al+R”-tree enhances the performance of
the R-tree up to 5.39X for a = 0.10.

TABLE III: The R-tree and ML model sizes for the “AI+R”-
tree for each o (in MBs) for the Tweets Location dataset

“Al+R”-tree with various values of «

Selec- Max R-tree 0.10 0.25 0.50 0.75 1.0
tivity Entries

0.00001 200 978.05 9.50 950 9.51 11.38  9.50
0.00005 200 978.05 944 950 9.52 9.52 9.51
0.00001 400 97205 197 202 297 2.96 2.01
0.00001 800 969.52  1.02  2.07 1.55 1.07 1.06

4) Space Consumption of the ML Models for Tweets Lo-
cation Dataset: Table III lists the sizes of the R-tree and
the ML models of the “Al+R”-Tree in Megabytes (MB, for
short). Notice that the reported ML model size includes the
sizes of both the multi-label and the binary classifiers. The
space requirements of the ML models for the “AI+R”-tree with
larger leaf capacity (e.g., M=400, and M=800) are less than
those for the R-tree with leaf capacity 200. The reason is that
the number of leaf nodes is less for the larger node capacities.
Also, notice that a grid of size 10X 10 is sufficient for “AI+R”-
tree with larger node capacity. Hence, less models are likely
to be trained to fit the data. Thus, the size of the ML models is
even less than the cases of using a larger grid of size 20X 20.

5) The Chicago Crimes Dataset: Overall, the Chicago
Crimes dataset reflects the same performance trends as those
for the Tweets Location dataset in favor of the “AI+R”-tree
over the R-tree. We give the performance results for the
the Chicago Crimes dataset below. For the Chicago crimes
dataset, initially, we construct an R-tree using the maximum
leaf capacity M = 200, and minimum leaf capacity m = 100.
Moreover, the selectivity of the synthesized queries is: 0.00001
and 0.00005. For each range query, the result contains (approx-
imately) 9 and 44 data points, respectively. Moreover, the Al-
tree can perfectly fit the training data for this query workload
with a grid size 20X20. 7 is set to 0.75.

6) Effect of Selectivity for the Chicago Crimes Dataset:
Figures 8a and 8b give the performance results for the Al-tree,
the “AI+R”-tree, and the R-tree for Selectivities 0.00001 and
0.00005. The performance gains of the “AI+R” over the R-
tree is up to 3.6X for high overlap queries (o = 0.10) while
is very close to the R-tree for o = 1.0. This is consistent for
both selectivity values.

7) Effect of Node Capacity for Chicago Crimes Dataset:
We vary leaf node capacity to cover for M = 200,400, and
800. We fix query selectivity to: 0.00001. Moreover, the Al-
tree can perfectly fit the training data for a 10X 10 grid size and
R-tree with node capacity M = 400 and 800. Figures 8a, 8c,
and 8d give the performance results of the Al-tree and the
“AI+R”-tree for the Chicago Crimes dataset for maximum leaf
node capacities M = 200, 400, and 800. The performance
trends are consistent with those of the Tweets Location dataset.
Overall, the performance gains of the Al-tree and the “AI+R”-
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tree over the R-tree increase as the node capacities increase,
e.g., for M = 800, the “AI+R”-tree enhances the performance
over the R-tree by 5.14X for a = 0.10. Also, the “AI+R”-tree
reduces the query performance of the Al-tree for o =1 to be
close to that of the R-tree.

8) Space Consumption of the ML Models for the Chicago
Crimes Dataset: Table 1V lists the sizes of the R-tree and the
ML models of the “Al+R”-Tree (in MBs). The reported ML
model size includes the sizes of both the multi-label and the
binary classifiers. The space requirements of the ML models
for the “Al+R”-tree with larger leaf capacity (e.g., M=400, and
M=800) are less than for the R-tree with M = 200. A grid
of size 10X 10 is found to be sufficient for the “AI+R”-tree in
these cases. Hence, less models are likely to be trained to fit
the data. Also, the size of the ML models are even less than
the cases for using a larger grid of size 20X 20.

TABLE IV: The R-tree and ML model sizes for the “AI+R”-
tree for each o (in MBs) for the Chicago Crimes dataset.

“Al+R”-tree with various values of «

Selec- Max R-tree 0.10 0.25 0.50 0.75 1.0
tivity Entries

0.00001 200 42646 339 257 340 340 340
0.00005 200 42646 252 257 258 341 341
0.00001 400 42386 048 053 053 053 0.53
0.00001 800 42284 027 032 033 033 032

9) Discussion: From Figures 7a and 8a, the R-tree per-
forms better than the Al-tree for a = 0.75. As we set the
threshold 7 = 0.75, the “AI+R”-tree also degrades in perfor-
mance because it uses the Al-tree to process these queries
with o = 0.75. In both cases, the R-tree has relatively small
leaf capacity (i.e., M = 200). As the leaf capacity increases,
for the same value of threshold 7 = 0.75, the “AI+R”-tree
performance enhances (see Figure 7d for the Tweets Location
dataset and Figure 8d for Chicago Crimes dataset).

For each o, the ML models increase the space requirement
of the R-tree by no more than 1.1% (see Table III). Also, the
space overhead of the ML models for all values of o does
not increase the size of the R-tree by more than 5.04%
(Table IIT). Thus, the space requirement of the ML models
can be as low as 0.37% of the R-tree size (Table IV).

VI. RELATED WORK

Many variants of the R-tree have been introduced, e.g.,
see [1], [7], [22]-[25]. The R*-tree [22] recognizes the
problem of node overlap in the R-tree, and creates an R-
tree so that no two nodes overlap in space. The R*-tree [23]
reduces node overlap by introducing the forced re-insertion of
entries. The RR*-tree [24] is a further improvement over the
R*-tree for dynamic data. The RR*-tree improves over the R*-
tree by restricting the insertion to a single path and dropping
the idea of re-insertion. In [26], the Clipped Bounding Box
(CBB) based R-tree further improves the I/O performance of
the R*-tree. The priority R-tree [27] can answer a query with
an asymptotically optimal number of I/Os. The Hilbert R-
tree [28] leverages the Hilbert space-filling curve to impose an
ordering on the R-tree nodes to achieve good space utilization.
A worst-case optimal R-tree packing strategy that uses space-
filling curves can be found in [29]. Notice that regardless of
the type of the R-tree, all R-tree variants attempt to reduce
the amount of node overlap. However, with dynamic updates,
the shape of an constructed R-tree deteriorates. As a result,
our design principles for “Al+R”-tree can be applied to other
R-tree variants.

The concept of separating objects into partitions based on
their size and indexing each partition with a space filling curve
can be found in [30], [31]. However, in the case of “AI+R”-
tree, we do not partition the objects based on their size, but
rather we group the queries using the grid to train multiple
ML models. Moreover, we do not use any space filling curve
(i.e., as a projection function).

The initial research on learned indexes [5], [32] has
introduced the idea that “Indexes are models” by proposing
a Recursive Model Index (RMI, for short) for read-only
workloads. Many followup research has been conducted that
is inspired by RMI both in the single and Multi-dimensional
space [6], [33]-[35].

In the case of multi-dimensional indexes, some initial effort
to extend the idea of RMI into the multi-dimensional space can
be found in [36]. In [37], Z/Morton order is used to project
the data into the one dimensional space. Then, an RMI-like
structure can be used to build the learned index. However,
learning the projection function, e.g., Z-order [38], [39], from
the multi-dimensional space to the one-dimensional space is



hard. Thus, it has been proposed to choose a layout that is
easy to learn by an ML model. An efficient scaling method
has been proposed in [40]. In our proposed “Al+R”-tree, we
avoid using a projection function, and operate directly on the
original multi-dimensional representation of the spatial data
objects. In [41], an in-memory learned multi-dimensional in-
dex, termed Flood, is introduced to efficiently support queries
for a particular dataset and (read-only ) query workloads. An
extension to Flood has been proposed that can adapt to changes
in the query workload [42]. Reinforcement Learning has been
used to build an efficient data layout [4], [43] for a particular
dataset and query workload. A learned spatial index for disk-
based systems can be found in [8]. In [44], another disk-
based spatial index, termed RSMI, leverages a rank-space-
based transformation. The transformation has been used to
get an easily learnable CDF. Notice that the goal of the above
mentioned learned multi-dimensional indexes is to replace a
traditional index. However, in the case of the “AI+R”-tree, our
target is not to replace the existing index structure rather to
enhance its performance using ML models.

The idea of using helper ML models inside traditional
indexes to enhance their performance have been presented
in the multi-dimensional space, e.g., see [45]-[47]. In [45],
interpolation-based learned spatial indexes are proposed.
In [46], techniques from [41] have been applied to five
traditional multi-dimensional indexes. Recently, a disk-based
ML-enhanced index to process k-nearest-neighbor queries over
high-dimensional time-series data has been proposed [47].
The goal of the proposed method [47] is to re-organize the
access order of the leaf nodes. In the context of ML-enhanced
multi-dimensional indexes, the focus of the above mentioned
techniques is not on analyzing (i.e., high- vs. low-overlap
queries) and optimizing the index for a given query workload.
Notice that, in the case of the “Al+R”-tree, the focus is on
analyzing the query workload to identify the queries for which
a traditional disk-based spatial index (in this case, the R-tree)
does not perform well. Moreover, we propose to adopt a hybrid
approach to leverage the benefit of both the proposed Al-tree,
and the traditional R-tree.

Surveys on the topic of learned data structures can be found
in [33], [48]. Recently, several tutorials related to learned
indexes have been presented in different venues [6], [34], [35],
[49], [50].

VII. CONCLUSION

In this paper, we leverage machine learning techniques to
build an instance-optimized R-tree for a given data and query
workloads. Although the paper focuses on the R-tree, the
proposed design principles in the paper apply to other spatial
indexes as long as node overlaps exist, and hence multiple
tree paths are explored during search. Notice that we avoid
using a projection function, and operate directly on the original
representations of the spatial data objects. Also, because the
“Al+R”-tree operates at the leaf node level of an R-tree, the
proposed method can support different types of objects (e.g.,
objects with extension). Additionally, we adopt a multi-model

approach and index the learned ML models using a grid-
based structure. We further leverage ML techniques to train
a binary classifier to differentiate between high- and low-
overlap queries. Finally, we advocate for a hybrid approach,
namely the “Al+R”-tree by combining both the traditional R-
tree structure and the learned R-tree (i.e., the Al-tree) structure
to maximize query processing performance. In the future, we
plan to investigate alternative choices for the ML models, and
how to support k-NN query and spatial join using the proposed
“Al+R”-tree. As we maintain a hybrid structure inside the
“Al+R”-tree, we will be able to sustain updates using its R-tree
component. However, propagating the updates to the Al-tree
component is an interesting future research direction. Finally,
we plan to investigate challenges related to the integration of
the proposed “Al+R”-tree into practical database systems.
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