
Are There Fundamental Limitations in Supporting
Vector Data Management in Relational Databases?

A Case Study of PostgreSQL

Yunan Zhang Shige Liu Jianguo Wang

Purdue University
{zhan4404, liu3529, csjgwang}@purdue.edu

Abstract—High-dimensional vector data is gaining increasing
importance in data science applications. Consequently, various
database systems have recently been developed to manage vector
data. These systems can be broadly categorized into two types:
specialized and generalized vector databases. Specialized vector
databases are explicitly designed and optimized for storing
and querying vector data, while generalized vector databases
support vector data management within a relational database like
PostgreSQL. It is expected (and confirmed by our experiments)
that generalized vector databases exhibit slower performance.
However, it is not clear whether there are fundamental limitations
(or just implementation issues) for relational databases to support
vector data management.

This paper aims to answer this question. We chose PostgreSQL
as a representative relational database due to its popularity. We
focused on PASE, as it is a high-performance and open-sourced
PostgreSQL-based vector database. We analyzed the source code
of PASE and compared its performance with Faiss, a high-
performance and open-sourced specialized vector database, to
identify the underlying root causes of the performance gap and
analyze how to bridge the gap. Based on our results, we provide
insights and directions for building a future generalized vector
database that can achieve comparable performance to a high-
performance specialized vector database.

Index Terms—Vector Databases; Vector Similarity Search;
Specialized Vector Databases; Generalized Vector Databases

I. INTRODUCTION

High-dimensional vector data (10s to 1000s of dimensions)

and query processing over vector data (a.k.a vector similarity

search) have traditionally played a fundamental role in various

areas, including data management, data science, data mining,

information retrieval, and machine learning. Recently, there

has been a new wave of interest in managing high-dimensional

vector data. This is largely due to the prevalence of vector em-

bedding, which converts unstructured data into learned vector

representations, e.g., item2vec [1], word2vec [2], doc2vec [3],

and graph2vec [4]. Many advanced data analytics, such as

image/video search, product recommendation, and chemical

structure analysis, can be performed directly over these vectors

using vector similarity search [5]–[10].

To efficiently manage vector data, a new breed of databases

termed Vector Databases has been developed recently in

The first two authors contributed equally. Jianguo Wang is the correspond-
ing author.

both big tech companies and startups. For instance, Alibaba

developed PASE [11] and AnalyticDB-V [12] to process and

query vector data. Facebook open-sourced Faiss [13], [14] to

support efficient vector similarity search. Database startups

such as Zilliz (Milvus) [15] and Pinecone [16] also built their

own vector databases to compete for market shares, especially

when vector databases can be used in ChatGPT [17], [18].

Those vector databases can be broadly classified into two

categories: Specialized Vector Databases and Generalized
Vector Databases. Specialized vector databases are designed

from scratch, particularly to manage vector data, following the

design principle of “one-size-does-not-fit-all” [19]. Examples

include Faiss [13], [14], Milvus [20], and Pinecone [16]. They

can usually achieve excellent performance through customized

optimizations because they treat vector data as a first-class

citizen within the systems. On the other hand, Generalized

Vector Databases are built to support vector data management

inside a relational database (e.g., PostgreSQL), following the

design rationale of “one-size-fits-all” [21]. Examples include

PASE [11], AnalyticDB-V [12], and pgvector [22]. These

systems integrate vector data management into the existing

relational database ecosystem to provide better usability (e.g.,

using SQL language to query vector data), reuse certain

functionalities, eliminate data silos, and reduce operational

costs with a single unified system. However, the downside

is that they might sacrifice some performance and efficiency

in querying and storing vector data to some extent to accom-

modate the relational model, which is expected and confirmed

in our experiments (Sec. V and Sec. VII).

Motivation. So, a natural question is, are there fundamen-
tal limitations (or just implementation issues) for relational
databases to support vector data management? Answering

the above question is important to understand whether it is

possible for a generalized vector database to achieve high

performance and generality at the same time (even in the

future). Unfortunately, existing studies have not answered this

question.

Overview. This paper aims to answer the above question

for the first time. We have chosen PostgreSQL as our rep-

resentative relational database due to its widespread popu-

larity. Indeed, many generalized vector databases, including

PASE [11], AnalyticDB-V [12], and pgvector [22], are built



on the PostgreSQL foundation. In particular, we focus on

PASE [11], because it is open-sourced and achieves high

performance (see Figure 2).

To analyze PASE, we choose Faiss [13], a high-performance

open-sourced specialized vector database, as a reference for

comparison. We delve into the source code of each system (as

they are open-sourced) and profile the performance metrics

when running different benchmarks on real datasets. Then, we

identify the root causes that contribute to the slow performance

in PASE and analyze how to bridge the gap. Through this

investigation, we are able to determine whether there are any

fundamental limitations in supporting vector search within a

relational database.

Contributions. We make the following contributions:

1) We present the first study that identifies seven non-trivial
root causes (summarized in Sec. IX) for the performance

issues in a high-performance generalized vector database

(i.e., PASE [11]). We believe that these findings can be

applied to other generalized vector databases. Overall,

this study significantly advances the understanding of

generalized vector databases.

2) By analyzing the root causes, we contribute an interesting

message to the database community: It is feasible to
bridge the performance gap by building a new gener-
alized vector database in the future that achieves com-
parable performance to a highly optimized specialized
vector database, which means that there are no
fundamental limitations in supporting vector search
in relational databases. We further present actionable

guidelines for building such a system.

Open-source. The source code of the work is available at

https://github.com/YunanZzz/VecDB-ICDE24.

II. BACKGROUND

A. Vector Similarity Search

Vector similarity search (a.k.a high-dimensional nearest

neighbor search) has been studied extensively in the past [23]–

[35] due to the fundamental importance in many real-world

applications. Let v = [v0, v1, ..., vd−1] be a d-dimensional

vector and n be the number of vectors in a dataset D, given a

query vector q, the problem of vector similarity search returns

similar vectors (e.g., top-k) to q from the dataset D based on

a similarity (or distance) function, e.g., Euclidean distance or

cosine distance.

B. High-dimensional Indexes

Vector similarity search is challenging because d and n are

usually large, e.g., d can be 10s to 1000s of dimensions, and

n can be millions to even billions of vectors, depending on

different applications. Thus, it is computationally-intensive to

find exact answers due to the known “dimensionality curse”

issue [36]. Therefore, most works (including all the specialized

and generalized vector databases that we are aware of) resort

to approximate solutions for performance reasons by designing

optimized high-dimensional indexes as we describe next.

In the literature, there are mainly four types of

high-dimensional indexes: quantization-based indexes (e.g.,

IVF FLAT [23], [24], IVF PQ [24], IVF SQ8 [23], and [25],

[26]), graph-based indexes (e.g., HNSW [27], NSG [28],

Rand-NSG [29]), LSH-based indexes [30]–[32], and tree-

based indexes [33], [34]. However, LSH-based indexes tend

to have lower accuracy than quantization-based approaches for

large-scale data [11], [12]. Tree-based indexes are not scalable

to high dimensions [12], [24]. A recent benchmark [37]

shows that IVF FLAT, IVF PQ, and HNSW are competitive

among all the indexes and are also implemented in most vector

databases (e.g., Faiss [13], [14], Milvus [20], Pinecone [16],

PASE [11] and AnalyticDB-V [12]). Thus, we focus on these

three indexes in this paper, and we explain them below.

IVF FLAT [23], [24]. Both IVF FLAT and IVF PQ be-

long to the category of quantization-based indexes. The main

idea is to map a data vector v to a codeword z(v) according

to a quantizer z. In practice, we use the K-means clustering

algorithm to construct the codebook (of size c) by treating

each centroid as a codeword and assigning each data vector

to its closest centroid. Thus, there are two phases for index

construction. (1) Training phase: train the centroid vectors

(via K-means) using a collection of sample vectors with a

sample ratio sr; (2) Adding phase: assign each data vector to

the nearest centroid and insert it to the corresponding bucket

(a.k.a inverted list or cluster) [24].

Answering a vector similarity search of a query q takes

two steps. First, it determines the closest nprobe (user-input

parameter) buckets based on the similarity between the query

q and the centroid of each bucket. Second, it only scans each

relevant bucket to find the promising vectors.

IVF PQ [24]. IVF PQ is similar to IVF FLAT, with the

only difference of applying another layer of quantization

(called product quantization (PQ) [24], [38]) inside each

bucket to reduce space overhead. The main idea of product

quantization is to partition each vector into m disjoint sub-

vectors and apply the K-means clustering within each sub-

space to reduce space overhead. A codebook with cpq code-

words (PQ-refined clusters) is constructed in each sub-space

so that each vector can be encoded using m · log cpq bits [24],

[38], which can significantly reduce space with the downside

of lower recall rate when compared with IVF FLAT.

HNSW [27]. HNSW is a graph-based index that constructs

a proximity graph. It treats each vector as a vertex and

pre-computes certain nearest neighbors of each vertex as

edges [27], [28]. The underlying intuition is that a neighbor’s

neighbor is likely to be a neighbor as well.

HNSW [27] is a hierarchical graph with multiple levels

where higher levels are shortcuts over lower levels (similar to a

skip list) and each level is a graph structure. The lowest level

contains all the vectors, while other levels contain a subset

of vectors, determined by a probability function. Graphs at

different levels are interconnected through common vectors.

Let us consider the graph construction for the lowest level,

as the process for other levels is similar. Let bnn be a base

neighbor count, then every vertex (vector) in the lowest-level



graph usually has 2 ∗ bnn neighbors [27] (while it has bnn
neighbors for graphs in other levels). Whenever a new vertex

v is inserted, a priority queue of length efb is created to

compute the nearest neighbors between v and the current

vertices inserted so far to determine the edges to v.

Similar to skip lists, HNSW [27] begins the search process

from the top and proceeds downward. At the bottom level,

the process starts from an entry point, which is added to a

priority queue with a size of efs. This queue prioritizes vertices

based on their distance to the query. The system extracts a

vertex from the priority queue, updates the top-k candidates,

and inserts the neighbors of the extracted vertex into the queue

for future exploration. The algorithm stops when the vertex

extracted from the queue is worse than the top-k candidates

that have been found.

Compared to quantization-based indexes, graph-based in-

dexes usually provide better performance and accuracy, albeit

at the cost of higher memory overhead and longer index

construction time.

C. Specialized Vector Databases

Specialized vector databases are designed to efficiently

implement those high-dimensional indexes and address other

system-related issues (e.g., query interface and memory man-

agement) into a full-fledged system that can be easily used

by customers. Examples include Faiss [13], Milvus [20],

Pinecone [16], Vespa [39], Qdrant [40], and Weaviate [41].

Since those systems are purposely built for vector data, they

can usually achieve high performance by implementing in-

dexes in the most efficient way.

D. Generalized Vector Databases

In contrast to specialized vector databases that are built from

scratch purely for optimizing vector data management, gen-

eralized vector databases implement vector similarity search

inside a relational database (e.g., PostgreSQL), following the

design principle of one-size-fits-all [21].

Main Idea. The main idea of generalized vector databases is

to store vector data as a column within a relational table and

build a high-dimensional index (e.g., IVF FLAT [23], [24],

IVF PQ [24], and HNSW [27]) for that column. Then, the

vector similarity search is represented as a SQL query, which

will be further compiled into an optimized query plan that

will call the pre-built high-dimensional index to find similar

vectors. Thus, vector similarity search is seamlessly integrated

into the SQL database ecosystem in this generalized approach.

Challenges. It is non-trivial to build a generalized vector

database because there are many challenges to be addressed

in order to be compatible with the existing relational database.

For example, how to represent the vector data? How to extend

the SQL syntax to represent vector similarity search? How to

build a new high-dimensional index that follows the relational

database’s structure (e.g., page structure and memory layout)?

How to make the newly-built index recognizable by the SQL

query optimizer? How to configure the internal parameters of a

high-dimensional index (e.g., number of clusters and probes in

SQL Layer

Index Layer

Storage Layer

SQL Query Optimizer

PG IndexAmRoutine

PASE index pages
HNSWIVF_FLAT IVF_PQ

SQL

PASE index interface
build scan …

Table Buffer

Btree interface

build scan …

Btree pages
…

Fig. 1: System Architecture for PASE [11]

IVF FLAT [23], [24]) using SQL? How to define and specify

the similarity function using SQL?

Systems. There are a few generalized vector databases that

we are aware of, e.g., pgvector [22], PASE [11], AnalyticDB-

V [12], and ClickHouse [42]. Except for ClickHouse, all

the other three vector databases are implemented based on

PostgreSQL, though they have different implementations.

E. PASE

We provide the background of PASE [11] (an open-sourced

PostgreSQL-based vector database) as it is the main focus

of this paper due to its high performance (see Sec. III).

Figure 1 shows the system architecture of PASE with three

major components: SQL layer, index layer, and storage layer.

SQL Layer. It represents vector similarity search using a

SQL query by extending the syntax of the traditional SQL

language. In PASE [11], vector data is represented using the

array data type (e.g., float[]) provided by PostgreSQL.1

Assuming there is a table T with two columns id (integer

type) and vec (vector type), we can use the following SQL to

create it:

1 CREATE TABLE T (id int, vec float[]);

Assuming the query vector is [0.1, 0.2, 0.3], then we can

find the top-10 similar vectors in PASE [11] using:

1 SELECT id
2 FROM T
3 ORDER BY vec <op> ’0.1,0.2,0.3’::PASE ASC
4 LIMIT 10;

The operator <op> is a special operator defined in

PASE [11] to compute the similarity between two vectors. The

ORDER BY statement will sort results based on the similarity

to the query vector. The LIMIT 10 returns the top 10 results.

Index Layer. To speed up query processing, PASE [11]

relies on indexes. For example, we can use the following SQL

to create the IVF FLAT index on the column vec:

1 CREATE INDEX ivfflat_idx ON T
2 USING ivfflat_fun(vec)

1Vector data can also be implemented as a user-defined data type for
encryption reasons as mentioned in [11].



3 WITH (distance_type = 0,
4 dimension = 128,
5 clustering_params = "10,256");

We can also specify the similarity function and the internal

parameters of IVF FLAT. For example, the above SQL shows

that the similarity function is Euclidean distance (type 0). The

parameter 10 means that the sampling ratio is 10/1000 (i.e.,

0.01). The parameter 256 means the number of clusters in

IVF FLAT.

However, in order for a newly created index to be com-

patible with the existing SQL query plan, the index imple-

mentation has to follow certain rules. First, it needs to imple-

ment the interfaces, e.g., build(), insert(), delete(),

scan(), via PostgreSQL’s IndexAmRoutine [43]. Second, the

index needs to follow PostgreSQL’s index page structure in

order to be accessed via the buffer manager and storage engine.

PASE [11] presents the detailed page structure for each index.

Storage Layer. PASE [11] stores vector data in a table in

the same way as other attributes. In PASE, tables and indexes

are stored on disk, but frequently accessed pages are cached

in memory via the buffer manager.

III. EXPERIMENTAL METHODOLOGY AND SCOPE

Experimental Methodology. The goal of this work is

to understand whether there are fundamental limitations in

supporting vector search in relational databases. To do so,

we choose PostgreSQL as a representative relational database

for two reasons: (1) PostgreSQL is a classic and widely used

relational database; (2) Many generalized vector databases

(e.g., PASE [11], AnalyticDB-V [12], pgvector [22]) are based

on PostgreSQL.

In particular, this paper focuses on PASE [11], a vector

database based on PostgreSQL, because (1) PASE is open-

sourced so that we can analyze the codebase and profile the ex-

ecution time to understand the root causes; (2) PASE exhibits

the highest performance among all open-sourced generalized

vector databases (see Figure 2). Thus, this paper investigates

whether there are any limitations in PASE to support vector

search and shows how to overcome the limitations (if any).2 To

achieve this, it is crucial to select a representative specialized

vector database as a reference point and compare PASE with it

to understand the potential limitations in PASE. In this paper,

we use Faiss [14] as the reference specialized vector database,

because Faiss achieves high performance compared to other

specialized vector databases and also it is open-sourced.

We conduct extensive experiments to compare PASE [11]

and Faiss [14], using the same index type and parameters,

to show the performance difference. Then we delve into

the source code of each system and profile the performance

metrics to identify the root causes of the performance gap and
analyze how to bridge the gap. Through this analysis, we can

determine if there are fundamental limitations.

Scope of This Work. Note that the purpose of this paper

is not to benchmark various specialized vector databases

2Note that our findings are also applicable to many other databases as
explained in Sec. IX.

Fig. 2: Comparing Open-Sourced Generalized Vector

Databases. Sec. IV-A shows the details of the experimental

setup, e.g., datasets, hardware configurations, and index pa-

rameters. Note that we do not show AnalyticDB-V [12] as it

is a closed-sourced system.

or generalized vector databases. Instead, the objective is to

identify any potential limitations in supporting vector search

within a relational database. It requires identifying the root

causes of the performance gap of a representative generalized

vector database (i.e., PASE) and a representative specialized

vector database (i.e., Faiss) as explained in the methodology.

We limit our discussions to a single-node setting because

PASE [11] (as well as Faiss [13]) is a single-node database.

However, if the entire vector dataset cannot fit into a single

node, we can adopt the sharding approach used in distributed

databases [44] to partition the vector data among different

nodes, each running a vector database. This is not expected

to change our conclusions. Also, this work does not consider

GPU and GPU-based vector similarity search [14], [45], as

PASE does not support GPU. Lastly, we assume that all the

vector data and indexes can fit into main memory because:

(1) Faiss, like other specialized vector databases, is a main-

memory system that does not support out-of-memory data

management; (2) Main-memory databases are becoming in-

creasingly popular today and there is an emerging wave of

main-memory databases [46]–[49], as memory capacity has

grown large enough for many applications and the price per

GB has significantly decreased.

IV. EXPERIMENTAL SETUP

A. Experimental Platform

We conduct all the experiments on a Linux server with

a 152-core Intel Xeon CPU (2.40GHz), 192GB DRAM,

and 2TB SATA SSD, similar to the server configuration in

PASE [11].

Our server has enough memory to keep the entire vector data

and index in main memory when comparing PASE [11] and

Faiss [13], as Faiss is an in-memory vector database. Before

measuring the execution time, we run a warm-up experiment

so that the data and index are stored in main memory and we

run three more times to obtain the average time.

By default, we follow PASE [11] to use a single thread

to run the experiments. But we also conduct multi-thread

experiments in Sec. V-D and Sec. VII-D.



TABLE I: Statistics of Real-world Datasets

Dataset # Dimensions # Vectors # Queries
SIFT1M [51] 128 1,000,000 10,000
GIST1M [51] 960 1,000,000 1,000

Deep1M [8] 256 1,000,000 1,000
SIFT10M [51] 128 10,000,000 10,000
Deep10M [8] 96 10,000,000 10,000

TURING10M [52] 100 10,000,000 10,000

TABLE II: Parameters

Meaning and Default Value
k top-k vector similarity search

Default Value: 100
c number of clusters in IVF FLAT and IVF PQ

Default Value: 1000 in SIFT1M/GIST1M/DEEP1M;
3162 in SIFT10M/DEEP10M/TURING10M (square
root of the data size)

nprobe number of selected candidate clusters for searching in
IVF FLAT and IVF PQ (Sec. II-B)
Default Value: 20

sr sampling ratio of clustering in IVF FLAT and IVF PQ
Default Value: 0.01

m number of partitioned sub-vectors in IVF PQ
(Sec. II-B)
Default Value: 16 in SIFT1M, SIFT10M and
DEEP1M; 60 in GIST1M; 12 in DEEP10M; 10 in
TURING10M

cpq number of PQ-refined clusters of a sub-vector space in
IVF PQ (Sec. II-B)
Default Value: 256

bnn base neighbor count for a vector node in HNSW
(Sec. II-B)
Default Value: 16

efb priority queue length in HNSW index construction
(Sec. II-B)
Default Value: 40

efs priority queue length in HNSW search (Sec. II-B)
Default Value: 200

B. Datasets

Table I shows the statistics of the six datasets used in this

work. They are also widely used in prior works, e.g., [11],

[12], [14], [20], [50].

C. Parameters

We largely follow the terminology in [11], [24], [27] to

introduce the parameters and set default values, shown in Ta-

ble II. Unless otherwise stated, we use the default parameters

for experiments.

D. Evaluation Metrics

We adopt commonly used metrics for measuring vector

similarity search. Specifically, we use index construction time,

index size, query time, and recall rate. Since this work

focuses on understanding the potential limitations of PASE

by identifying the root causes of the performance difference

between PASE and Faiss, we will use the same index with

the same parameters in the experiments to compare these two

databases. As a result, the recall rate will be the same in PASE

Fig. 3: Index Construction Time for IVF FLAT

and Faiss and we omit the experimental results on recall rate

due to space constraints.

V. EVALUATING INDEX CONSTRUCTION

In this section, we compare PASE [11] and Faiss [13] in

terms of index construction time on IVF FLAT (Sec. V-A),

IVF PQ (Sec. V-B), and HNSW (Sec. V-C).

A. IVF FLAT

1) Overall Results
Figure 3 compares the IVF FLAT index construction time

of PASE and Faiss on the six datasets with the same parameters

(in Table II). Figure 3 shows the overall time as well as

training/adding time. To our surprise, PASE is 35.0× ∼ 84.8×
slower than Faiss on different datasets even if they build the

same IVF FLAT index with exactly the same parameters. We

will analyze it next in Sec. V-A2. In particular, the adding

phase takes the majority of the time in both systems.

2) Investigation
Next, we investigate the underlying reasons that cause the

huge performance gap.

We first exclude the impact of disk I/O because even if

we use tmpfs, an in-memory file system in Linux that treats

main memory as disk, the performance does not change much.

We then use Perf [53] and Flame Graphs [54] to profile

the execution time when building IVF FLAT in PASE. The

results show that fvec_L2sqr_ref() is the performance

bottleneck in PASE. The function computes the Euclidean

distance between two vectors.

This motivates us to carefully check the distance computing

code in Faiss, especially in the adding phase. We find that Faiss

uses the SGEMM (Single Precision General Matrix Multipli-

cation) function in the BLAS library [55], which is a highly

optimized low-level library for linear algebra operations.

Specifically, let c0, c1, ..., cK−1 be the K centroids trained

by the K-means clustering algorithm, the adding phase assigns

each base vector xi to the nearest centroid ci. A straight-

forward solution, also used in PASE [11], is to compute the

distance between xi and all the centroids to find the closest

centroid. However, Faiss [13] converts the problem to a matrix-

matrix multiplication problem and uses SGEMM to speed up

the process. By observing that d2(ci, xi) = ‖ci‖2 + ‖xi‖2 −
2ci ·xi, Faiss computes all ‖xi‖2 and ‖ci‖2 (for all i) and then



Fig. 4: Index Construction Time for IVF FLAT Without

SGEMM

uses matrix-matrix multiplication in SGEMM to compute all

ci · xi. Then Faiss stores those items (i.e., ‖xi‖2, ‖ci‖2, and

ci · xi) in a table and refers to the table whenever necessary

to avoid redundant computing.

To verify our conjecture, we disable the SGEMM code in

Faiss and use the same code as in PASE. Figure 4 shows the

updated results. We can see that without the acceleration of

SGEMM, the adding phase of Faiss IVF FLAT consumes a

similar time to PASE IVF FLAT, which confirms the effec-

tiveness of SGEMM. Note that there is a minor performance

gap for the training phase in PASE IVF FLAT and Faiss

IVF FLAT in Figure 4, that is because PASE and Faiss use

a slightly different implementation of K-means to train the

centroids.

3) Insight
This experiment delivers an interesting message that

SGEMM, implemented in Faiss [13] but not in PASE [11],

plays a critical role in the IVF FLAT index construction. We

denote this root cause as RC#1. It can improve performance

by an order of magnitude or more. However, this is an

implementation issue. This performance gap can be bridged

because we can also implement the same optimization inside

PASE, although it takes some engineering efforts.

B. IVF PQ

1) Overall Results
Figure 5 evaluates the IVF PQ index construction time

of PASE and Faiss using the same parameters (described in

Table II). It demonstrates that Faiss outperforms PASE by
6.5× ∼ 20.2×, showing a similar performance trend with the

IVF FLAT index in Figure 3. This is expected because both

IVF FLAT and IVF PQ are quantization-based indexes.

2) Investigation
Following the experimental analysis in Sec. V-A, we investi-

gate the impact of SGEMM. By disabling the SGEMM code of

IVF PQ in Faiss, we compare the IVF PQ index construction

time of PASE and Faiss, see Figure 6. It shows that the gap

is negligible. Same as IVF FLAT, the minor gap is due to

the implementation difference in the K-means clustering and

product quantization algorithm.

3) Insight
The gap is due to the same RC#1 described in Sec. V-A3.

Fig. 5: Index Construction Time for IVF PQ

Fig. 6: Index Construction Time for IVF PQ Without

SGEMM

C. HNSW

1) Overall Results
Figure 7 compares the HNSW index construction time in

PASE and Faiss using the same parameters (in Table II). As we

can see from the figure, there is still a significant performance

gap of 1.6× ∼ 8.7× on the six datasets. But it turns out that

the root cause is different from that in IVF FLAT and IVF PQ

as we analyze below in Sec. V-C2.

2) Investigation
Our initial trial is to investigate the SGEMM code following

the analysis in Sec. V-A and Sec. V-B. However, it turns

out that HNSW does not use SGEMM for acceleration even

in Faiss, because HNSW is a graph-based index, which is

different from IVF FLAT and IVF PQ (two quantization-

based indexes).

We resort to Perf [53] to analyze the performance bot-

tleneck. Table III illustrates the time breakdown for the

Fig. 7: Index Construction Time for HNSW



TABLE III: Time Breakdown of HNSW Building on SIFT1M

SearchNb-
ToAdd

AddLink GreedyUp-
dateNearest

Shrink-
NbList

Others

PASE 75.55% 6.99% 6.69% 6.52% 3.82%
487.30sec 45.09sec 43.15sec 42.05sec 24.64sec

Faiss 70.37% 5.91% 10.86% 8.73% 4.13%
142.01sec 11.93sec 21.92sec 17.62sec 8.33sec

Fig. 8: Time Breakdown in SearchNbToAdd()

HNSW index construction time on SIFT1M in PASE and

Faiss. It includes both the relative and absolute time con-

sumption. Table III shows that SearchNbToAdd() is the

most time-consuming part. That function searches neighbors

for a newly inserted vector to construct HNSW. We can see

that PASE SearchNbToAdd() is much slower than Faiss

SearchNbToAdd() in Table III.

To investigate why, we further show the time breakdown

of SearchNbToAdd() in Figure 8. It shows that Faiss

spends most of the time (80.6%) on distance calculation

(fvec_L2sqr) while PASE only spends 22% of its time

on it. But in terms of the absolute time, they are quite

similar (114 sec vs. 107 sec). However, PASE wastes a lot

of time on other functions that are related to the architecture

of relational databases. For example, PASE spends 46% of its

time on Tuple Access and 14% on HVTGet() that are

negligible in Faiss, where Tuple Access includes reading

a page buffer from buffer pool in PASE and finding the right

tuple based on page ID and tuple ID, and HVTGet() checks

if a vector has been visited when searching neighbors. The

overhead is introduced because PASE is based on PostgreSQL,

which is a disk-optimized database system. However, Faiss

is an in-memory vector database system that can directly

locate the right tuple using a memory pointer without page-

based indirection. Besides that, PASE spends 7.7% of its

time on paseplfirst() to traverse the neighbors via

indirection and functions calls, while Faiss can directly access

the neighbors stored in an array.

3) Insight
This experiment shows another interesting root cause that

the memory management in PASE (inherited from Post-

greSQL) incurs significant overheads that make the construc-

tion time of HNSW in PASE much slower than that in Faiss.

We denote this root cause as RC#2. That is because PASE (as

well as PostgreSQL) is a disk-based database system. Even

if the entire dataset and index are stored in memory, the

memory manager still needs to go through the buffer pool for

page indirection. That will make many simple functions slow,

e.g., HVTGet(), paseplfirst(), and tuple accesses in

Figure 8. But Faiss can directly access vectors using memory

pointers for fast performance.

This gap is bridgeable as it requires a memory-optimized ta-

ble design to bypass the buffer manager in relational databases.

Note that IVF FLAT and IVF PQ do not suffer from

the memory management inefficiency because they are

quantization-based indexes involving mostly sequential ac-

cesses (instead of random accesses as in HNSW). IVF FLAT

and IVF PQ build indexes by keeping track of buffer IDs that

will be inserted along with tuples, so they can directly access

the buffer without indirection.

D. Impact of Parallelism

In this experiment, we study the impact of parallelism using

multiple threads for index construction. Since PASE does

not support parallelism for index construction, we focus on

Faiss only to see whether parallelism can indeed improve

performance, which can indicate the limitations of PASE. Due

to space constraints, we only use SIFT1M to study the parallel

construction of IVF FLAT and IVF PQ in Faiss.

From the analysis in Sec. V-A and Sec. V-B, SGEMM

can significantly affect the index construction process in

IVF FLAT and IVF PQ. Thus, in this experiment, we show

the results of disabling and enabling SGEMM for parallel

index construction. Figure 9 shows the results by setting the

number of threads as 1, 2, 4, and 8 and other parameters are

default values in Table II. It shows that except for IVF FLAT

with SGEMM (Figure 9a), all the other figures scale very well

with the number of threads. That is because when SGEMM is

enabled in IVF FLAT, the adding part is significantly reduced

using matrix-matrix multiplication. Thus, even with multiple

threads, the execution time will not reduce that much on that

part. However, there is a clear performance improvement when

SGEMM is disabled in IVF FLAT (Figure 9b) because the

adding part consumes a lot of time without SGEMM.

This experiment shows that parallelism is an important

factor contributing to the performance gap between PASE and

Faiss. We denote this root cause as RC#3. However, this gap

can be bridged, because we can implement the same technique

inside PASE, and we expect a similar performance speedup.

E. Impact of Parameters

In this experiment, we study the impact of key parameters

on the performance gap of PASE and Faiss when building

indexes. For IVF FLAT and IVF PQ, we vary the number

of clusters (c) and set it as 100, 500, 1000 following previous

work [11]. For HNSW, we vary the base neighbor count (bnn)

and set it as 16, 32, and 64 following [27].

Figure 10 shows that the performance gap between PASE

and Faiss increases as c and bnn increases on SIFT1M. For

IVF FLAT and IVF PQ, when the number of clusters c



Fig. 9: Impact of Parallelism for Index Construction in Faiss

Fig. 10: Varying Parameters for Index Construction

increases, the computations required on K-means clustering

will increase as well. Thus, the index build time in PASE

and Faiss will increase. However, Faiss uses SGEMM for

speedup as we analyze in Sec. V-A, the execution time will

only increase mildly. Thus, the performance gap between the

two is enlarged.

For HNSW, when the base neighbor count bnn increases,

PASE spends more time on accessing neighbors and tuples

because they have to go through the buffer manager, which

incurs much more overhead than Faiss. Thus, the gap increases

as well.

VI. EVALUATING INDEX SIZE

In this section, we evaluate PASE [11] and Faiss [13]

in terms of index size on IVF FLAT (Sec. VI-A), IVF PQ

(Sec. VI-B), and HNSW (Sec. VI-C).

A. IVF FLAT

Figure 11 shows the index size of IVF FLAT in PASE and

Faiss using the same parameters (explained in Table II). It

shows that the IVF FLAT index size is almost the same on

the two systems.

That is because the page structure of IVF FLAT in PASE

can be well aligned with the memory representation. In par-

ticular, IVF FLAT is stored in centroid pages and data pages

where the centroid pages store centroid vectors and data pages

store base vectors in the buckets of each centroid. Thus, there

Fig. 11: Index Size for IVF FLAT

Fig. 12: Index Size for IVF PQ

is nearly no difference between the size of PASE IVF FLAT

and Faiss IVF FLAT.

B. IVF PQ

Figure 12 shows the index size of IVF PQ in PASE and

Faiss. Again, there is no obvious difference in the index size

for the same reasons explained in Sec. VI-A.

C. HNSW

1) Overall Results
Figure 13 compares the HNSW index size in PASE and

Faiss using the same parameters (in Table II). To our surprise,

PASE consumes 2.9× ∼ 13.3× more space than Faiss for the

HNSW index.

2) Investigation
We find that there are two reasons that make PASE HNSW

consume more space.

The first reason is that PASE HNSW allocates a 24-

byte struct (HNSWNeighborTuple) for each vertex ID in

Fig. 13: Index Size for HNSW



TABLE IV: HNSW Index Size With 8KB/4KB Page Size
in PASE

SIFT1M GIST1M DEEP1M
8KB Page Size 8333 MB 11000 MB 8929 MB
4KB Page Size 4464 MB 7813 MB 5213 MB

the HNSW graph while Faiss HNSW uses only 4 bytes

as expected. Specifically, HNSWNeighborTuple includes

two structs, i.e., PaseTuple and HNSWGlobalId, where

PaseTuple contains an 8-byte char pointer to form a virtual

link and HNSWGlobalId stores 12-byte information (i.e.,

nblkid, dblkid and doffset) to locate a vertex.3

The second reason is that the PASE HNSW always starts

from a new page to store a new adjacent list (i.e., the neighbors

of a vertex). This method can result in significant space

waste if the number of neighbors is small. For instance, the

default value of bnn in HNSW is 16, a common choice as

suggested in [11], [27]. Thus, most vectors, residing in the

lowest two levels of the HNSW graph, will only have 32 or

48 edges. This arrangement would consume 768 bytes or 1152

bytes respectively, which are significantly less than a page

size, which is 8KB by default in PostgreSQL. To verify our

conjecture, we reduce the page size from 8KB to 4KB and

find that the PASE HNSW index size is reduced by (almost)

half as shown in Table IV.

3) Insight
This experiment shows an interesting root cause that the

disk-based page structure in PASE (based on PostgreSQL)

can make the HNSW index size significantly higher than that

in Faiss. We denote this root cause as RC#4. This gap is

related to disk-based relational database systems. However,

it is possible to minimize or even bridge the gap using a

memory-optimized table design.

VII. EVALUATING SEARCH PERFORMANCE

In this section, we compare PASE [11] and Faiss [13]

in terms of search performance on IVF FLAT (Sec. VII-A),

IVF PQ (Sec. VII-B), and HNSW (Sec. VII-C).

A. IVF FLAT

1) Overall Results
Figure 14 shows the average query time using IVF FLAT in

PASE and Faiss on the six datasets. Table I shows the number

of queries for each dataset. We use the same index parameters

(described in Table II) to evaluate the performance difference

between PASE and Faiss. Figure 14 shows that PASE is 2.0×
∼ 3.4× slower than Faiss on different datasets.

2) Investigation
Next, we analyze the root cause of the performance gap in

Figure 14. Following the analysis in Sec. V-A, one might guess

that SGEMM could be an important factor contributing to the

3Note that although sizeof(PaseTuple) = 8 and sizeof(HNSWGlobalId)
= 12, the combined struct HNSWNeighborTuple takes 24 bytes due to
memory alignment.

Fig. 14: Search Time for IVF FLAT

TABLE V: Time Breakdown of IVF FLAT Search on

SIFT1M

fvec L2sqr Tuple
Access

Min-
heap

Others

PASE 54.80% 23.50% 13.42% 8.28%
4.69 ms 2.01 ms 1.15 ms 0.71 ms

Faiss 94.96% 1.80% 0.29% 2.95%
2.98 ms 0.06 ms 0.01 ms 0.09 ms

performance gap. However, we find that SGEMM does not

improve much performance in the search process because the

bottleneck is no longer finding the relevant buckets. Instead,

it is the search process within each bucket.

We use Perf [53] to show the time breakdown on SIFT1M

in Table V for the search process. Both relative and absolute

time are recorded in the table. We can see that the majority

of time is spent on distance calculation in both PASE and

Faiss. However, it is interesting that Faiss spends 94.96% of

its time on distance computing while PASE spends 54.80%

on that. But in terms of the absolute time, PASE takes 1.6×
more time than Faiss. After a careful look at the distance

computing code in PASE and Faiss, we find that IVF FLAT

produces different centroids that lead to different clustering

results in the two systems. To verify our conjecture, we use

the same centroids and buckets produced in PASE and apply

them to Faiss (termed Faiss∗) and re-run the experiments, see

Figure 15. It shows that the gap becomes smaller between

Faiss∗ and PASE.

Table V also reveals that PASE spends much more time on

Fig. 15: Search Time for IVF FLAT With Replaced Centroids

(Faiss∗)



Fig. 16: Search Time for IVF PQ

tuple accesses than Faiss does. This is related to the overhead

of accessing a tuple as mentioned in Sec. V-C3.

Besides that, Table V shows another interesting factor on

min-heap, which is used to quickly find out top-k smallest

values once the distances are computed. PASE spends much

more time than Faiss on that. We find that it is because of the

heap size. In Faiss, the computed distances will be inserted

into a heap of size k to find top-k similar vectors. However,

PASE uses a heap of size n where n is the total number of

vectors in the nprobe buckets.

3) Insight
This experiment finds a few factors that contribute to the

performance gap between the search process of PASE and

Faiss using IVF FLAT. The first one is K-means implementa-

tion, which will affect the centroids and clusters in IVF FLAT.

We denote this root cause as RC#5. The second reason is about

tuple access (memory management), which is the RC#2 that

we have mentioned in Sec. V-C3. The third reason is the top-k
query optimization that uses a bigger heap size in relational

databases. We denote this root cause as RC#6, which is related

to the heap size in top-k computation. However, this is an

implementation issue that can be fixed in PASE.

B. IVF PQ

1) Overall Results
Figure 16 shows the average query time using IVF PQ

in PASE and Faiss on the six datasets. We use the same

parameters (Table I and Table II) to evaluate the performance

difference between PASE and Faiss for searching. We can see

from the figure that PASE is 3.9× ∼ 11.2× slower than Faiss

when searching IVF PQ.

2) Investigation
Next, we analyze the root cause in Figure 16. We resort to

Perf [53] to plot the time breakdown on SIFT1M following

the approach in Table V. There are a few root causes that we

have seen in Sec. VII-A, e.g., min-heap, distance computing,

and tuple access.4

A new unique factor in IVF PQ is its internal imple-

mentation on the precomputed table, which avoids redun-

dant computing by storing the distances between partitioned

4Note that tuple access does not play an important role in IVF PQ because
the index size of IVF PQ is small and hence the time spent on tuple access
is small as well.

Fig. 17: Search time for HNSW

sub-vectors and PQ-refined centroids. PASE IVF PQ uses a

straightforward implementation to compute the precomputed

table while Faiss IVF PQ uses an optimized solution that

divides the task into computing L2 norms and inner product.

3) Insight
This experiment demonstrates a new factor – precomputed

table – that can affect the performance of PASE IVF PQ. We

denote this root cause as RC#7. Additionally, there are other

factors we have mentioned earlier that can affect the perfor-

mance, e.g., min-heap (RC#6), distance computing (RC#5),

and tuple access (RC#2). However, for the new factor (RC#7),

we can bridge the gap by implementing the same optimizations

inside PASE.

C. HNSW

Figure 17 shows the average query time using HNSW

in PASE and Faiss on the six datasets. We use the same

parameters (in Table II) to evaluate the performance difference

between PASE and Faiss. Figure 17 shows that PASE is 2.2×
∼ 7.3× slower than Faiss on different datasets when searching

HNSW.

We use Perf [53] to analyze the time breakdown of searching

HNSW and it shows that the actual distance computing time

of PASE and Faiss is almost the same. The performance gap is

mainly due to the tuple access (RC#2) analyzed in Sec. V-C3.

D. Impact of Parallelism

In this experiment, we study the impact of parallelism on the

query processing in PASE and Faiss using different indexes.

We focus on intra-query parallelism that uses multiple threads

to answer a single query.5 Since both PASE and Faiss do not

support parallel query processing on HNSW, we only show

the results on IVF FLAT and IVF PQ (with the parameters

in Table II), see Figure 18.

Figure 18 shows some interesting results. Faiss IVF FLAT

and IVF PQ scale well with the number of threads but PASE

IVF FLAT and IVF PQ do not, although they use the same

idea to allocate multiple threads for searching different buck-

ets. We find that, Faiss IVF FLAT and IVF PQ use a local

heap to store the local top-k results when searching a bucket

5Note that inter-query parallelism is straightforward to achieve in both
PASE and Faiss by partitioning queries to different threads.



Fig. 18: Impact of Parallelism for Search Time

and then combines those local ones into a global heap of top-

k results (without locking). However, PASE IVF FLAT and

IVF PQ directly use a global heap with locks to support con-

current insertions, which will lead to significant performance

overhead. However, this gap is bridgeable by implementing

the same parallelism inside PASE.

Since this root cause is related to parallelism, we categorize

it into RC#3 mentioned in Sec. V-D.

E. Impact of Parameters

In this experiment, we study the impact of key parameters

on the performance gap of PASE and Faiss for the search

process on SIFT1M. For IVF FLAT and IVF PQ, we vary

the number of searched buckets (nprobe) as 10, 20, and 50.

For HNSW, we vary the search queue length (efs defined in

Table II) as 16, 100, and 200. Other parameters are set as

default in Table II.

Figure 19 shows the performance gap between PASE and

Faiss. For IVF FLAT, the performance gap does not have a

noticeable change as nprobe increases, because the search per-

formance gap on IVF FLAT is mostly determined by the root

causes RC#5, RC#2, and RC#6 as analyzed in Sec. VII-A,

which do not change much as nprobe increases. For IVF PQ,

the performance gap increases along with nprobe because Faiss

has an optimized implementation of the precomputed table that

has already calculated the squared norms of the PQ-centroids

in the training phase, thus, the precomputed table computation

in the search phase will take less time. For HNSW, as analyzed

in Sec. VII-C, distance computation takes only 12.56% of the

time in PASE and 75.81% in Faiss. PASE spends most of

its time in tuple access and other parts. As efs increases, the

number of explored vectors also increases, so the time that

PASE spends on non-distance computation will increase much

more than that in Faiss. Thus, the performance gap is enlarged.

VIII. RELATED WORK

Vector data and vector similarity search have been exten-

sively studied in many areas such as data management, infor-

mation retrieval, and machine learning, see [10] for a recent

survey. Existing works can be roughly classified into two

lines of research: Algorithms and Systems. Algorithms research

focuses on the theoretical foundations (e.g., [56]–[58]) and

efficient indexes (e.g., [24], [27]–[29], [31]–[35] as described

in Sec. II-B) for vector similarity search. However, those works

Fig. 19: Varying Parameters to Search Time Gap

did not answer the question of whether there are fundamental

limitations in supporting vector search in relational databases.

Actually, those works provide a foundation and building blocks

for the vector databases. Instead, systems research focuses

on developing full-fledged vector data management systems

for fast vector similarity search. Examples include Faiss [13],

[14], Milvus [20], Pinecone [16], PASE [11] and AnalyticDB-

V [12]. Our work falls into the category of systems research.

As described in the introduction (Sec. I), those vector

database systems can be roughly classified into two cate-

gories: specialized vector databases (e.g., Faiss [13], [14], Mil-

vus [20], and Pinecone [16]) and generalized vector databases

(e.g., PASE [11] and AnalyticDB-V [12]). However, existing

studies have not answered the question of whether there

are fundamental limitations in supporting vector search in

relational databases.

This work is relevant to the bigger picture of building

specialized and generalized data systems. Although there are

debates in designing specialized or generalized data systems,

e.g., in graph systems [59], [60], in time series databases [61],

[62], and in scientific databases [63], it is not clear about the

situation in vector databases, and this paper contributes a data

point in this arena.

IX. CONCLUSION AND FUTURE WORK

A. Summary

The overall conclusion of this study is that there is no
fundamental limitation in using a relational database (e.g.,
PostgreSQL) to support efficient vector data management.

Although PASE (a highly optimized generalized vector

database based on PostgreSQL) is still slower than Faiss (a

highly optimized specialized vector database), the performance

gap is attributed to implementation issues. With careful

implementation, it is feasible to bridge the gap, though it may

require some engineering efforts. We show a list of actionable

guidelines in Sec. IX-C to build such a system. In this way, it

becomes possible to utilize a single relational database to sup-

port efficient vector search, achieving performance comparable

to that of a highly optimized specialized vector database.

B. Lessons

This work identifies a collection of underlying reasons that

cause the performance difference between PASE (a represen-

tative generalized vector database) and Faiss (a representative



specialized vector database). We summarize the root causes
(RC) of the performance gap as follows and discuss how

to overcome the root causes and hence bridge the gap in

Sec. IX-C.

• RC#1: SGEMM Optimization. SGEMM plays an im-

portant role in the index construction of vector databases.

For example, Faiss leverages the SGEMM library [55] to

improve performance while PASE does not. SGEMM is

important to improve the index construction process of

IVF FLAT and IVF PQ, see Sec. V-A and Sec. V-B.

• RC#2: Memory Management. Directly accessing data

(including vectors and indexes) in memory without going

through the buffer manager and page-based indirection

is critical when the entire vector data and indexes are

stored in memory. For example, even if PASE stores

everything in memory, it still incurs significant overhead

for memory management because PostgreSQL is a disk-

oriented system. This can affect both index construction

(e.g., HNSW in Sec. V-C) and search process (Sec. VII).

Note that although this insight was known in main-

memory relational databases [46], it is new in the setting

of vector databases.

• RC#3: Parallel Execution. Supporting multiple threads

to build indexes and search vector data can improve

performance. For example, PASE does not support intra-

query parallelism well due to the overhead of operating

a shared data structure (e.g., heap). This can affect both

index construction (Sec. V-D) and search (Sec. VII-D).

• RC#4: Memory-centric Page Structure. Use a memory-

based layout (instead of page-based layout) when the

vector data and indexes are stored in memory.6 This can

save a significant amount of space for HNSW (Sec. VI-C)

but it does not have much effect on the index size of

IVF FLAT and IVF PQ.

• RC#5: K-means Implementation. Different clustering

implementations can also affect performance. For exam-

ple, PASE and Faiss use a slightly different implemen-

tation for K-means, which can affect IVF FLAT and

IVF PQ on search performance, see Sec. VII-A and

Sec. VII-B.

• RC#6: Heap Size in Top-k Computation. PASE uses a

heap size of n instead of k to compute k smallest values

among n values for top-k similarity search. This will

mostly affect the search performance, see Sec. VII.

• RC#7: Precomputed Table Implementation. Leverag-

ing an optimized implementation for the precomputed

table in IVF PQ (e.g., used in Faiss but not in PASE) can

affect the search performance of IVF PQ, see Sec. VII-B.

Applicability and Transferability of the Root Causes. (1)

Although the root causes are derived from analyzing PASE as

6If a disk-based page structure must be used, we recommend allowing
multiple adjacent lists in HNSW to be stored on the same page instead of
starting a new page for each new adjacent list.

it is a high-performance generalized vector database, the root

causes are not specific to PASE or PostgreSQL alone. They

are applicable to other relational databases aiming to support

efficient vector search. For example, SGEMM, memory man-

agement, parallel execution, memory-centric page structure,

k-means, heap size, and precomputed tables are all relevant

to databases like Oracle and MySQL. Thus, we recommend

that practitioners carefully examine these root causes when

implementing vector search inside any relational database,

as PostgreSQL is representative enough. (2) Although the

root causes are derived by comparing PASE and Faiss, with

Faiss serving as the reference specialized database due to its

high performance in specialized vector databases, the lessons

learned from this study remain valuable even if faster-than-

Faiss databases or another specialized database is chosen. That

is because this paper at least shows that it is feasible to build

a generalized vector database to match Faiss’s performance,

which is a significant and non-trivial contribution that has not

been explored in existing studies.

C. Future Direction: How to Bridge the Gap?

A follow-up of the work is how to overcome the root

causes? In other words, how to build a new generalized vector

database in the future that achieves comparable performance

to a highly optimized specialized vector database? We show a

few actionable guidelines and we are currently working on it.

Step#1: Start from an in-memory database. To overcome

RC#2 and achieve high performance, we may use an in-

memory database, e.g., MonetDB [64], Hyrise [65], or Single-

Store [66]. Note that if a disk-based relational database must

be chosen, we recommend either using a memory-optimized

table design, as in GaussDB [49], or implementing a stan-

dalone vector index in the memory region of the disk-based

relational database. This can help overcome many performance

overheads associated with disk-based relational databases.

Step#2: Enable SGEMM. The system shall enable SGEMM

to bypass the overhead of RC#1 and significantly improve the

performance of index construction.

Step#3: Optimized top-k computation. The system shall

use the proper heap size (i.e., k) for top-k computation to

overcome the overhead introduced by RC#6.

Step#4: Parallelism. The system shall efficiently support

both index construction and index search with multiple

threads. This requires the implementation of the operator-level

(e.g., vector search) parallelism in relational databases, which

can bridge the performance gap due to RC#3.

Step#5: More optimized implementations. The system needs

to reduce space amplification, support optimized K-means, and

precomputed table as mentioned in RC#4, RC#5, and RC#7.

ACKNOWLEDGMENT

We sincerely thank Wen Yang, the first author of PASE [11],

for helping us understand PASE in many ways. We also

sincerely thank Zhehao Peng for his early participation in the

project.



REFERENCES

[1] O. Barkan and N. Koenigstein, “Item2Vec: Neural Item Embedding
for Collaborative Filtering,” in International Workshop on Machine
Learning for Signal Processing (MLSP), 2016, pp. 1–6.

[2] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of
Word Representations in Vector Space,” in International Conference on
Learning Representations (ICLR), 2013.

[3] Q. V. Le and T. Mikolov, “Distributed Representations of Sentences and
Documents,” in Proceedings of the International Conference on Machine
Learning (ICML), 2014, pp. 1188–1196.

[4] M. Grohe, “Word2vec, Node2vec, Graph2vec, X2vec: Towards a Theory
of Vector Embeddings of Structured Data,” in Proceedings of the ACM
Symposium on Principles of Database Systems (PODS), 2020, pp. 1–16.

[5] P. Covington, J. Adams, and E. Sargin, “Deep Neural Networks for
YouTube Recommendations,” in ACM Conference on Recommender
Systems (RecSys), 2016, pp. 191–198.

[6] H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, and T. Blaschke, “The
Rise of Deep Learning in Drug Discovery,” Drug Discovery Today,
vol. 23, no. 6, pp. 1241–1250, 2018.

[7] A. C. Mater and M. L. Coote, “Deep Learning in Chemistry,” Journal
of Chemical Information and Modeling, vol. 59, no. 6, pp. 2545–2559,
2019.

[8] A. Babenko and V. S. Lempitsky, “Efficient Indexing of Billion-Scale
Datasets of Deep Descriptors,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 2055–2063.

[9] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed Representations of Words and Phrases and their Compo-
sitionality,” in Annual Conference on Neural Information Processing
Systems (NeurIPS), 2013, pp. 3111–3119.

[10] J. J. Pan, J. Wang, and G. Li, “Survey of Vector Database Management
Systems,” CoRR, vol. abs/2305.01087, 2023.

[11] W. Yang, T. Li, G. Fang, and H. Wei, “PASE: PostgreSQL Ultra-
High-Dimensional Approximate Nearest Neighbor Search Extension,”
in Proceedings of the ACM International Conference on Management
of Data (SIGMOD), 2020, pp. 2241–2253. [Online]. Available:
https://github.com/alipay/PASE

[12] C. Wei, B. Wu, S. Wang, R. Lou, C. Zhan, F. Li, and Y. Cai,
“AnalyticDB-V: A Hybrid Analytical Engine Towards Query Fusion for
Structured and Unstructured Data,” Proceedings of the VLDB Endow-
ment (PVLDB), vol. 13, no. 12, pp. 3152–3165, 2020.

[13] “Facebook Faiss.” [Online]. Available: https://github.com/
facebookresearch/faiss

[14] J. Johnson, M. Douze, and H. Jégou, “Billion-Scale Similarity Search
with GPUs,” IEEE Transactions on Big Data, vol. 7, no. 3, pp. 535–547,
2021.

[15] “Zilliz.” [Online]. Available: https://zilliz.com/
[16] “Pinecone.” [Online]. Available: https://www.pinecone.io/
[17] [Online]. Available: https://github.com/openai/chatgpt-retrieval-plugin/

tree/main/datastore/providers
[18] S. Blanchard, “Supporting ChatGPT with Vector Databases for

Optimized Efficiency and Accuracy,” 2023. [Online]. Available:
https://www.dbta.com/Editorial/News-Flashes/Supporting-ChatGPT-
with-Vector-Databases-for-Optimized-Efficiency-and-Accuracy-
158503.aspx

[19] M. Stonebraker and U. Cetintemel, “”One Size Fits All”: An Idea
Whose Time Has Come and Gone,” in Proceedings of the International
Conference on Data Engineering (ICDE), 2005, pp. 2–11.

[20] J. Wang, X. Yi, R. Guo, H. Jin, P. Xu, S. Li, X. Wang, X. Guo, C. Li,
X. Xu, K. Yu, Y. Yuan, Y. Zou, J. Long, Y. Cai, Z. Li, Z. Zhang, Y. Mo,
J. Gu, R. Jiang, Y. Wei, and C. Xie, “Milvus: A Purpose-Built Vector
Data Management System,” in Proceedings of the ACM International
Conference on Management of Data (SIGMOD), 2021, pp. 2614–2627.

[21] J. Dittrich and A. Jindal, “Towards a One Size Fits All Database
Architecture,” in Conference on Innovative Data Systems Research
(CIDR), 2011, pp. 195–198.

[22] “pgvector.” [Online]. Available: https://github.com/pgvector/pgvector
[23] “Faiss Indexes.” [Online]. Available: https://github.com/

facebookresearch/faiss/wiki/Faiss-indexes
[24] H. Jégou, M. Douze, and C. Schmid, “Product quantization for nearest

neighbor search,” IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), vol. 33, no. 1, pp. 117–128, 2011.

[25] F. André, A. Kermarrec, and N. L. Scouarnec, “Cache Locality is
not Enough: High-Performance Nearest Neighbor Search with Prod-

uct Quantization Fast Scan,” Proceedings of the VLDB Endowment
(PVLDB), vol. 9, no. 4, pp. 288–299, 2015.

[26] R. Guo, P. Sun, E. Lindgren, Q. Geng, D. Simcha, F. Chern, and
S. Kumar, “Accelerating Large-Scale Inference with Anisotropic Vec-
tor Quantization,” in Proceedings of the International Conference on
Machine Learning (ICML), 2020, pp. 3887–3896.

[27] Y. A. Malkov and D. A. Yashunin, “Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World
Graphs,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (PAMI), vol. 42, no. 4, pp. 824–836, 2020.

[28] C. Fu, C. Xiang, C. Wang, and D. Cai, “Fast Approximate Nearest
Neighbor Search With The Navigating Spreading-out Graph,” Proceed-
ings of the VLDB Endowment (PVLDB), vol. 12, no. 5, pp. 461–474,
2019.

[29] S. J. Subramanya, F. Devvrit, H. V. Simhadri, R. Krishnawamy, and
R. Kadekodi, “Rand-NSG: Fast Accurate Billion-point Nearest Neighbor
Search on a Single Node,” in Annual Conference on Neural Information
Processing Systems (NeurIPS), 2019, pp. 13 748–13 758.

[30] A. Gionis, P. Indyk, and R. Motwani, “Similarity Search in High
Dimensions via Hashing,” in International Conference on Very Large
Data Bases (VLDB), 1999, pp. 518–529.

[31] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Intelligent
Probing for Locality Sensitive Hashing: Multi-Probe LSH and Beyond,”
Proceedings of the VLDB Endowment (PVLDB), vol. 10, no. 12, pp.
2021–2024, 2017.

[32] B. Zheng, X. Zhao, L. Weng, N. Q. V. Hung, H. Liu, and C. S. Jensen,
“PM-LSH: A fast and accurate LSH framework for high-dimensional ap-
proximate NN search,” Proceedings of the VLDB Endowment (PVLDB),
vol. 13, no. 5, pp. 643–655, 2020.

[33] K. Lu, H. Wang, W. Wang, and M. Kudo, “VHP: Approximate Nearest
Neighbor Search via Virtual Hypersphere Partitioning,” Proceedings of
the VLDB Endowment (PVLDB), vol. 13, no. 9, pp. 1443–1455, 2020.

[34] C. Silpa-Anan and R. I. Hartley, “Optimised KD-trees for Fast Image
Descriptor Matching,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2008, pp. 1–8.

[35] Y. Li, J. Wang, B. S. Pullman, N. Bandeira, and Y. Papakonstantinou,
“Index-Based, High-Dimensional, Cosine Threshold Querying with Op-
timality Guarantees,” in International Conference on Database Theory
(ICDT), vol. 127, 2019, pp. 11:1–11:20.

[36] R. Weber, H. Schek, and S. Blott, “A Quantitative Analysis and
Performance Study for Similarity-Search Methods in High-Dimensional
Spaces,” in Proceedings of International Conference on Very Large Data
Bases (VLDB), 1998, pp. 194–205.

[37] W. Li, Y. Zhang, Y. Sun, W. Wang, M. Li, W. Zhang, and X. Lin,
“Approximate Nearest Neighbor Search on High Dimensional Data
- Experiments, Analyses, and Improvement,” IEEE Transactions on
Knowledge and Data Engineering (TKDE), vol. 32, no. 8, pp. 1475–
1488, 2020.

[38] R. Wang and D. Deng, “DeltaPQ: Lossless Product Quantization Code
Compression for High Dimensional Similarity Search,” Proceedings of
the VLDB Endowment (PVLDB), vol. 13, no. 13, pp. 3603–3616, 2020.

[39] “Vespa: The Open Big Data Serving Engine.” [Online]. Available:
https://github.com/vespa-engine/vespa

[40] “Qdrant: Vector Search Engine for the next generation of AI
applications.” [Online]. Available: https://github.com/qdrant/qdrant

[41] “Weaviate: An Open Source Vector Database.” [Online]. Available:
https://github.com/weaviate/weaviate

[42] “Vector Search with ClickHouse.” [Online]. Available: https:
//clickhouse.com/blog/vector-search-clickhouse-p2

[43] “PostgreSQL Index Access Method Interface Definition.” [Online].
Available: https://www.postgresql.org/docs/11/indexam.html

[44] M. T. Özsu and P. Valduriez, Principles of Distributed Database Systems,
4th Edition. Springer, 2020.

[45] W. Zhao, S. Tan, and P. Li, “SONG: Approximate Nearest Neighbor
Search on GPU,” in Proceedings of the International Conference on
Data Engineering (ICDE), 2020, pp. 1033–1044.

[46] F. Faerber, A. Kemper, P. Larson, J. J. Levandoski, T. Neumann, and
A. Pavlo, “Main Memory Database Systems,” Foundations and Trends
in Databases, vol. 8, no. 1-2, pp. 1–130, 2017.

[47] M. Stonebraker and A. Weisberg, “The VoltDB Main Memory DBMS,”
IEEE Data Engineering Bulletin, vol. 36, no. 2, pp. 21–27, 2013.

[48] C. Diaconu, C. Freedman, E. Ismert, P. Larson, P. Mittal, R. Stonecipher,
N. Verma, and M. Zwilling, “Hekaton: SQL Server’s Memory-optimized
OLTP Engine,” in Proceedings of the ACM International Conference on
Management of Data (SIGMOD), 2013, pp. 1243–1254.



[49] H. Avni, A. Aliev, O. Amor, A. Avitzur, I. Bronshtein, E. Ginot,
S. Goikhman, E. Levy, I. Levy, F. Lu, L. Mishali, Y. Mo, N. Pachter,
D. Sivov, V. Veeraraghavan, V. Vexler, L. Wang, and P. Wang, “Industrial
Strength OLTP Using Main Memory and Many Cores,” Proceedings of
the VLDB Endowment (PVLDB), vol. 13, no. 12, pp. 3099–3111, 2020.

[50] W. Li, Y. Zhang, Y. Sun, W. Wang, M. Li, W. Zhang, and X. Lin,
“Approximate Nearest Neighbor Search on High Dimensional Data
- Experiments, Analyses, and Improvement,” IEEE Transactions on
Knowledge and Data Engineering (TKDE), vol. 32, no. 8, pp. 1475–
1488, 2020.

[51] “Datasets for Approximate Nearest Neighbor Search.” [Online].
Available: http://corpus-texmex.irisa.fr/

[52] “Billion-Scale Approximate Nearest Neighbor Search Challenge.”
[Online]. Available: https://big-ann-benchmarks.com/

[53] “Perf: Linux Profiling with Performance Counters.” [Online]. Available:
https://perf.wiki.kernel.org/index.php/Main Page

[54] “Flame Graphs.” [Online]. Available: https://www.brendangregg.com/
flamegraphs.html

[55] “BLAS (Basic Linear Algebra Subprograms).” [Online]. Available:
https://netlib.org/blas/

[56] A. Rubinstein, “Hardness of Approximate Nearest Neighbor Search,” in
Proceedings of the ACM Symposium on Theory of Computing (STOC),
2018, pp. 1260–1268.

[57] M. Goswami, R. Jacob, and R. Pagh, “On the I/O Complexity of the
k-Nearest Neighbors Problem,” in Proceedings of the ACM Symposium
on Principles of Database Systems (PODS), 2020, pp. 205–212.

[58] K. G. Larsen, T. Malkin, O. Weinstein, and K. Yeo, “Lower Bounds
for Oblivious Near-Neighbor Search,” in Proceedings of the ACM-SIAM

Symposium on Discrete Algorithms (SODA), 2020, pp. 1116–1134.
[59] J. Fan, A. G. S. Raj, and J. M. Patel, “The Case Against Specialized

Graph Analytics Engines,” in Conference on Innovative Data Systems
Research (CIDR), 2015.

[60] A. Deutsch, Y. Xu, M. Wu, and V. E. Lee, “Aggregation Support for
Modern Graph Analytics in TigerGraph,” in Proceedings of the ACM
International Conference on Management of Data (SIGMOD), 2020,
pp. 377–392.

[61] “TimescaleDB: Postgres for Time-Series.” [Online]. Available: https:
//www.timescale.com/

[62] “InfluxDB.” [Online]. Available: https://www.influxdata.com/
[63] M. Stonebraker, A. Ailamaki, J. Kepner, and A. S. Szalay, “The Future of

Scientific Data Bases,” in International Conference on Data Engineering
(ICDE), 2012, pp. 7–8.

[64] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender, and M. L.
Kersten, “MonetDB: Two Decades of Research in Column-oriented
Database Architectures,” IEEE Data Engineering Bulletin, vol. 35, no. 1,
pp. 40–45, 2012.

[65] M. Dreseler, J. Kossmann, M. Boissier, S. Klauck, M. Uflacker, and
H. Plattner, “Hyrise Re-engineered: An Extensible Database System for
Research in Relational In-Memory Data Management,” in Proceedings
of the International Conference on Extending Database Technology
(EDBT), 2019, pp. 313–324.

[66] A. Prout, S. Wang, J. Victor, Z. Sun, Y. Li, J. Chen, E. Bergeron,
E. N. Hanson, R. Walzer, R. Gomes, and N. Shamgunov, “Cloud-Native
Transactions and Analytics in SingleStore,” in Proceedings of the ACM
International Conference on Management of Data (SIGMOD), 2022, pp.
2340–2352.


