
dLSM: An LSM-Based Index for Memory
Disaggregation

Ruihong Wang Jianguo Wang Prishita Kadam †M. Tamer Özsu Walid G. Aref
Purdue University †University of Waterloo

{wang4996; csjgwang; pkadam; aref}@purdue.edu †tamer.ozsu@uwaterloo.ca

Abstract—The emerging trend of memory disaggregation
where CPU and memory are physically separated from each
other and are connected via ultra-fast networking, e.g., over
RDMA, allows elastic and independent scaling of compute (CPU)
and main memory. This paper investigates how indexing can be
efficiently designed in the memory disaggregated architecture.
Although existing research has optimized the B-tree for this new
architecture, its performance is moderate. This paper focuses
on LSM-based indexing and proposes dLSM, the first highly
optimized LSM-tree for disaggregated memory. dLSM introduces
a suite of optimizations including reducing software overhead,
leveraging near-data computing, tuning for byte-addressability,
and an instantiation over RDMA as a case study with RDMA-
specific customizations to improve system performance. Ex-
periments illustrate that dLSM achieves 1.6× to 11.7× higher
write throughput than running the optimized B-tree and four
adaptations of existing LSM-tree indexes over disaggregated
memory. dLSM is written in C++ (with approximately 41,000
LOC), and is open-sourced.

I. INTRODUCTION

Memory disaggregation is an emerging trend in modern data
centers to allow independent and elastic scaling. Companies,
e.g., Microsoft, Alibaba, and IBM experiment with memory
disaggregation [1], [27], [51]. Unlike traditional data centers
that consist of a collection of traditional converged servers,
where compute (CPU) and memory are tightly coupled into
the same physical servers (Figure 1a), with memory dis-
aggregation, compute and memory are physically separated
and are connected via fast networking (Figure 1b). In the
new architecture, there are two distinct types of servers in
data centers to provide compute and memory: compute nodes
and memory nodes, respectively.1 Each compute node has
powerful computing capability, e.g., 100s of CPU cores but
limited local memory, e.g., a few GBs, while each memory
node has weak computing power, e.g., a few CPU cores, but
abundant memory, e.g., 100s of GBs [27], [72], [81]–[84].

This paper focuses on indexing techniques for disaggregated
memory, where the majority of data is stored in remote
memory while caching hot data in local memory. Prior work,
e.g., Sherman [71], studies how to optimize B-tree indexing
for memory disaggregation. However, the write performance
is moderate (as shown in Sec. XI). To improve performance,
this paper focuses on LSM-based (log-structured merge tree)
indexing [59] in the presence of memory disaggregation.

1With storage disaggregation, there are also dedicated storage nodes, but
this paper focuses mainly on memory disaggregation.

H
ig

h
-s

p
e

e
d

N

et
w

o
rk

(a) Traditional

architecture

(b) Memory

disaggregation

CPU

Memory

memory

bus

Memory node

Compute node

Memory

CPU

Fig. 1: Traditional architecture vs. memory disaggregation

Why Disaggregated LSM-tree? (1) The LSM-tree fits
naturally into the two-level hierarchy of the disaggregated
memory setting with local memory and remote memory, where
the new updates are accumulated into local buffers and are
regularly flushed to the remote memory in the background.
This can move network accesses off the write path because
writes hit local buffers first. (2) The LSM-tree can achieve high
write performance by converting small random writes to large
sequential writes to best leverage network-bandwidth [57],
[71]. As in our experiments on RDMA Mellanox EDR
ConnectX-4 NIC, there is a 100× performance gap between
transferring the same amount of data in 64 byte units vs. 1MB
units based on the RDMA benchmark [7]. (3) Our experiments
(Sec. XI) show that the LSM-tree is feasible for disaggregated
memory and, as expected, it outperforms the optimized B-tree
on writes (i.e., Sherman [71]) in this new architecture.

Challenges. There are unique challenges in realizing an
optimized LSM-tree over disaggregated memory. (1) The ultra-
fast networking significantly narrows the performance gap
between local and remote memories. Thus, software overhead
that traditionally has not been a concern for slower devices,
e.g., SSDs or HDDs, has now become a performance bottle-
neck for modern hardware with high-performance networks.
Thus, it makes sense to minimize software overhead in this
new setting. (2) The memory node has CPU cores to perform
arbitrary computing that does not exist in other memory hier-
archies. This provides an opportunity to improve performance,
e.g., near-data processing. (3) In contrast to being block-
addressable as is the case in conventional storage devices,
remote memory is byte-addressable. Thus, index design needs
to be aware of byte-addressability. (4) Another challenge is the
effective use of the complex communication interfaces as they
become crucial in the case of memory disaggregation, e.g.,

RDMA is non-trivial as it involves many alternative primitive,
e.g., one- vs. two-sided RDMA (Sec. II-B). Realizing efficient
RDMA communication requires careful design.

The dLSM Approach. This paper presents dLSM, a
purpose-built LSM-based index for disaggregated memory.
dLSM investigates LSM-based indexing in this setting, and
introduces a number of optimizations to address the afore-
mentioned challenges. dLSM reduces the software overhead,
e.g., the synchronization and flushing overheads, to unlock
the full potential of fast networking. dLSM offloads LSM-
tree compaction to the remote memory node to reduce data
movement by exploiting the CPUs in memory nodes. dLSM
tunes the index layout to leverage byte-addressability in the
remote memory. dLSM optimizes communication including
customized RPC and asynchronous I/O.

The paper makes the following contributions:

• Index design over disaggreagted memory: We present
the design of dLSM, the first optimized LSM-based index
for disaggregated memory. dLSM is implemented in C++
(with approximately 41,000 LOC), and is available as
open-source at https://github.com/ruihong123/dLSM.

• Reducing software overhead: dLSM reduces the soft-
ware overhead, e.g., the synchronization overhead.

• Near-data computing for remote compaction: dLSM
applies the idea of near-data computing in the context
of the disaggregated memory architecture, and pushes
down the LSM-tree compaction to the remote memory
to significantly reduce data transfer.

• Customized optimizations for byte-addressability:
dLSM is tuned to deprecate the concept of block struc-
tures to leverage the byte-addressability in disaggregated
memory to improve performance.

• Customized optimizations for RDMA: We instanti-
ate dLSM over RDMA-enabled disaggregated memory.
dLSM applies RDMA-specific optimizations, e.g., asyn-
chronous I/O and customized RPC for high performance.

We instantiate dLSM over RDMA as a case study. However,
many of the ideas (e.g., reducing software overhead and cus-
tomized optimizations for byte-addressability) can be applied
to other technologies, e.g., CXL [4].

II. BACKGROUND

A. Resource Disaggregation

Resource disaggregation is an innovative technology in data
centers [8], [27], [28], [71], [80], [82], [84], in large part due to
the recent breakthroughs in fast networking technologies, e.g.,
RDMA [45], [50]. Traditionally, data centers are composed of
servers that physically contain predefined amounts of compute,
memory, and storage connected by high-speed buses on the
same server box. However, in a fully disaggregated data center,
resources are separated into “disaggregated” components con-
nected by a fast network fabric. This brings in many benefits,
e.g., higher resource utilization, better elasticity, and lower
cost [1], [27], [51], [81]–[84].

There are two popular types of resource disaggregation:
(1) Storage disaggregation that decouples compute from stor-
age; (2) Memory disaggregation that separates compute from
memory. Industrial-strength systems, e.g., Amazon AWS, Al-
ibaba Cloud, and Microsoft Azure, have deployed storage
disaggregation into production. They have reinvented database
systems, e.g., Aurora [68], PolarDB [26], and Socrates [14] to
explicitly optimize for disaggregated storage.

Recently, memory disaggregation has gained significant
attention in both industry and academia [1], [5], [27], [48],
[81], [82], [84]. In contrast to storage disaggregation, it is
more challenging to optimize DBMSs for memory disaggre-
gation because the performance issues become more severe for
memory disaggregation [48], [80]–[82]. Moreover, memory
disaggregation usually relies on a high-speed network fabric,
e.g., RDMA, while storage disaggregation can be built based
on conventional RPCs [68].

B. Interconnection for Disaggregated Memory

Ultra-fast networking technologies exist for interconnecting
compute and memory nodes. For example, Remote Direct
Memory Access (RDMA, for short) is a high-speed inter-
memory communication mechanism with low latency. It al-
lows direct access to memory in remote nodes [45]. RDMA
bypasses the host operating system when transferring data
to avoid extra data copy. RDMA is conducted over Infini-
band or lossless Ethernet. RDMA’s kernel-bypassing and low-
latency features make it applicable to high-performance data
centers [1], [5], [27], [84]. Another promising communication
technology is Compute Express Link (CXL) [4], which is
a high-speed interconnection between advanced CPU and
periperal devices, e.g., CXL-extended memory. CXL connec-
tion protocols guarantee cache coherence between CPU cache
and connected memory. Thus, the CPU can directly access the
remote CXL-based memory via load and store.

C. Log-structured Merge (LSM) Tree

The LSM-tree [59] is a widely used index in modern
data systems. It is optimized for write-intensive workloads by
trading random writes for sequential writes. It has a memory
component and multiple disk components. Writes are first
inserted into the memory component, and when it gets full,
it is flushed to disk to form a new disk component. The disk
components can be merged through a compaction phase to
form multiple layers. The LSM-tree is an immutable index
structure as all the disk components are immutable.

There are many implementations of the LSM-tree. Among
these, RocksDB [10] – improved version of LevelDB [6] –
is probably the most widely adopted implementation. We use
the RocksDB implementation to introduce LSM-tree concepts
and terminology. Inserts, updates, and deletes are all appended
entries into a write buffer. The entries are first written into
a write batch that are committed all at once. Then, the write
batches are assigned with sequence numbers to reflect the time
order of the entries. To guarantee durability, the write batch
is written to a write-ahead log (WAL). Then, the key-value

https://github.com/ruihong123/dLSM

pairs are inserted into an in-memory skip list [62], termed the
MemTable. When the size of the MemTable reaches a certain
threshold, it is switched to an immutable read-only table that
waits for a scheduled flushing task. Flushing serializes the
MemTable to files termed sorted string tables (SSTables, for
short) that contain data blocks, index blocks, and bloom filters.

The SSTables are organized into different levels. The newly
flushed SSTables are dumped into Level 0. Since the SSTables
in Level 0 are not sorted to improve write performance, there
is a limit (level0 stop writes trigger) for the total number of
SSTables in Level 0; exceeding the limit results in a write stall.
When the number of SSTables at one level reaches a preset
threshold, a compaction process is triggered to merge data
files into the next level. Compaction works as follows. The
target SSTables are picked from two consecutive levels. All
the SSTables within one level will be ordered, and they do not
have overlaps (except Level 0). Multiple background threads
handle flush and compaction tasks. When a task finishes, a
background thread modifies the LSM-tree metadata to record
this change in LSM-tree structure.

In order for a reader to fetch a key-value pair, a sequence
number is assigned for this reader to ensure that the proper
version is read, and any read-write conflicts are resolved
through snapshot isolation [10]. In order to have a consistent
view of the LSM-tree, the reader gets an immutable copy of
the LSM-tree metadata that corresponds to a snapshot. During
the read process, the reader thread traverses the MemTable
and immutable tables, and then traverses the SSTables from
Levels 0 to n. Whenever the reader finds the matched key-
value pair, it returns directly and skips the remaining tables.
It also leverages bloom filters to improve read performance
because if a key-value is not present in the bloom filter of a
SSTable then it is not necessary to check that SSTable.

III. OVERVIEW OF DLSM ARCHITECTURE

Figure 2 gives the architecture of dLSM deployed on one
compute node and one memory node following prior LSM-
tree designs, e.g., as in RocksDB [10] and LevelDB [6] that
are designed for a single-node setting. This is appropriate to
describe dLSM’s design. Even in this configuration, there are
non-trivial and interesting challenges as mentioned in Sec. I.
We discuss in Sec. IX how to extend dLSM to multiple
compute and memory node configurations.

In the disaggregated memory setup that we study, a compute
node has strong computing resources and limited memory
capacity, while a memory node has limited computing power
and large memory size. This asymmetric architecture is ex-
ploited in dLSM so that the compute and memory nodes hold
different components of an LSM index. The compute node
keeps the MemTable and immutable tables while the memory
node stores the SSTables. Moreover, the compute node keeps
the LSM-tree metadata, index blocks, and bloom filters for the
SSTables to improve read performance.

Writes. dLSM supports concurrent writes and guarantees
snapshot isolation with minimal software overhead to best
unlock the potential of low-latency remote memory (Sec. IV).

Memory nodeCompute node

Writers

Readers

Background
threads

LSM-tree

Network Write

Network Read

SSTable

SSTable SSTable

SSTableSSTable SSTableMemTables

Background
threads

LSM-tree
metadata RPC

Network Read

Modify

Table
Cache

WorkWork

Near-data
compaction

Fig. 2: Overall architecture of dLSM

The MemTable is implemented as a lock-free skip list. When
the MemTable is full, it is switched into an immutable
MemTable ready to be flushed. Multiple background threads
flush the immutable MemTable to remote memory using
asynchronous I/O. When flushing finishes, the background
thread modifies the LSM-tree metadata in a copy-on-write
manner to support snapshot isolation.

Compaction. To reduce data movement between the com-
pute and memory nodes, dLSM offloads the compaction pro-
cess to the memory node. This is termed near-data compaction
(Sec. V). Basically, the compute node decides which SSTables
to compact and sends relevant metadata information to the
memory node via an RPC. The memory node gets the input
SSTables’ metadata from the RPC to perform compaction. Af-
ter compaction completes, the compute node receive the reply
to modify the LSM-tree metadata accordingly. dLSM addresses
a number of challenges related to near-data compaction to
improve performance (Sec. V).

Reads. The reader traverses the MemTable, immutable
MemTable, and SSTables in the LSM-tree from the newest to
the oldest according to the LSM-tree metadata. With snapshot
isolation, a read refers to a proper version of the LSM-
tree metadata before searching the tables. A read does not
conflict with the background compaction or flushing processes.
To accelerate reads, dLSM uses bloom filters, and has a
new index layout to directly locate a single key-value pair
without fetching the whole block to take advantage of byte-
addressability in the remote memory (Sec. VI).

IV. MINIMIZING SOFTWARE OVERHEAD

We present an optimization to improve dLSM’s throughput
by minimizing software overhead. For relatively slow storage
devices (e.g., SSDs or HDDs), software overhead is negligible.
However, it can be a performance bottleneck for the ultra
fast networking, e.g. RDMA. Significant software overhead is
present in existing disk-based LSM-tree implementations [40].
This is due to maintaining concurrency control in the presence
of concurrent writes to the MemTable. Snapshot Isolation [21]
is a concurrency technique that provides consistent reads in the
presence of writes and background compaction.

To support efficient concurrent writes to the MemTable,
dLSM follows existing systems in using a lock-free skip list to

Seq: 5000

Seq: 4999

Seq: 5001

Seq: 5002

Sequence
number

generator

Table switch Flush

Memtable

Writer 1

Writer 2

Writer 3

Writer 4

Immutable
Tables

Seq:3000~3999Seq:4000~4999

Fig. 3: Concurrent in-memory writes in dLSM

minimize lock use. To support snapshot isolation, dLSM relies
on an atomic sequence number generator implemented by
fetch_and_add to assign a sequence number to each writer
without locking (Figure 3). However, correctly switching the
MemTable to be immutable when multiple writers detect that it
is full remains a challenge, especially if we want to minimize
the lock synchronization to avoid its overhead.

A straightforward solution is to use double-checked locking
to guarantee that only one writer switches the MemTable
successfully. With double-checked locking, the lock is not
acquired unless the writer finds that the current MemTable
exceeds its size limit. However, this is problematic because
a newer MemTable cannot be guaranteed to contain the most
updated version of a key. The reason is that assigning the se-
quence number and inserting the key-value pair to MemTable
are not collectively atomic. To illustrate, suppose there are
two writers w1 and w2 inserting two different values v1 and
v2, respectively, for the same key k, and assume that w1’s
sequence number is larger than w2’s (implying that v1 is the
newer version). Using the above approach, it is possible, for
w1 to insert v1 into the old MemTable while w2 inserts v2 into
the new MemTable. Then, it is problematic when a reader later
searches for k. The result will be v2 and not v1 because the
read process stops upon finding the first matched key.

The dLSM Approach. dLSM introduces a new approach to
make MemTable immutable. To avoid the problem mentioned
above, each MemTable in dLSM is assigned a predefined range
of sequence numbers at its creation, e.g. 4000 – 4999 in Fig-
ure 3. The new MemTable’s range is a consecutive range after
the current MemTable’s range. When writers insert the key-
value pair into the MemTable, they check the sequence number
against the sequence number range of the current MemTable
to decide if a MemTable switch is required. Figure 3 gives
an example where the sequence number range of the current
MemTable is 4000 – 5000. Four concurrent writers try to
insert key-value pairs into the MemTable. Writers of 4999,
5000 insert directly into the current MemTable as the sequence
number is within the range. The writers of 5001 and 5002
are outside the range of the current MemTable’s sequence
number range. Both try to switch the MemTable. Double-
checked locking guarantees that only one writer can switch
the MemTable. This solution predefines which MemTable each
key-value pair belongs to so that a key-value pair with a new
sequence number is guaranteed to be inserted into a new table.
If the sequence number range of a MemTable is sufficiently
large, then writers will rarely have their sequence numbers
outside the MemTable’s range, so the lock is rarely used. Thus,

synchronization overhead of in-memory writes is minimized.

V. NEAR-DATA COMPACTION

We investigate the use of near-data compaction to leverage
the compute capability of the remote memory node. It has the
potential to improve performance by reducing data movement.

Main Idea. Near-data computing [9], [22], [25], [43], [77]
moves execution closer to data to reduce data movement.
dLSM adopts this strategy by offloading the LSM-tree com-
paction process entirely to the remote memory node. The
compaction phase, if executed on the compute node, would
read many SSTables from the memory node, and then would
write back the merged SSTable to the memory node. This
would lead to significant data transfer over the network.
Moreover, the compaction process does not require much
compute power, which is perfect for the remote memory node.

Near-data computing has been around for decades in
several contexts, e.g., database machines [30], [31], object
databases [38], [69], active disks [47], [63], Smart SSDs [33],
[44], [60], [70], and storage disaggregation [9], [22], [25], [43].
We investigate its use in realizing an LSM-based index for
RDMA-enabled disaggregated memory. The novelty in dLSM
is in applying near-data computing to this new environment
and in handling all implementation challenges. dLSM differs
from other works on LSM-tree remote compaction for stor-
age disaggregation, e.g., Rockset [9], Nova-LSM [43], and
Hailstorm [22]. Rockset [9] offloads the compaction to the
compaction servers, but needs to fetch the SSTables over the
network as the data is stored separately in S3.

Challenges. It is non-trivial to efficiently offload com-
paction to the remote memory. In dLSM, we address the
following questions: (1) How to place LSM-tree’s metadata to
ensure efficient near-data compaction while facilitating query
processing? (Sec. V-A), and (2) How to perform garbage
collection in the context of near-data compaction? (Sec. V-B)

A. Placing LSM-tree Metadata

An important issue for near-data compaction is to decide
where to store the LSM-tree metadata. Metadata is critical to
LSM reads, writes, and compaction as it maintains SSTable,
e.g., the position and structures of the table contents in remote
memory. We can place this metadata in remote memory to
easily perform the compaction task and efficiently access the
metadata for compaction. However, this significantly hurts
query performance as readers need to access the metadata from
remote memory (e.g., using RDMA read) to find the SSTables.
Thus, query latency will be high.

Instead, dLSM maintains the LSM-tree metadata in the
compute node.2 The compute node decides which SSTables
to compact and triggers near-data compaction through a cus-
tomized RPC (Sec. X-D). When the memory node receives
the RPC, it compacts these SSTables. dLSM applies the
compaction strategy as in Sec. II-C. To reduce write-stalls

2Note that it is possible to store a copy of LSM-tree metadata in the memory
node but the key point is that the compute node initiates and controls the
timing of compaction and the memory node performs the task.

from Level 0, it uses multiple background compaction threads
to divide a large compaction task into multiple parallel sub-
compaction tasks. When compaction finishes, the memory
node sends an acknowledgement to the compute node. Then,
the compute node issues another RPC to copy the metadata of
the compacted SSTables to the desired working space.

We include implementation optimizations in dLSM to avoid
network round trips and memory copy by allowing the memory
node to allocate memory locally. In particular, memory in the
memory node is divided into two disjoint memory regions
where one region is controlled (and allocated) by the compute
node for regular MemTable flushing while the other memory
region is controlled by the memory node itself for near-data
compaction. Then, the memory node can perform compaction
in its private memory space. After compaction finishes, the
memory node sends the metadata of the new SSTables to the
compute node in an RPC reply. The compute node modifies
the LSM-tree metadata according to the reply and makes the
new SSTables visible to readers. From our experiments, on
average, the SSTable metadata is modified every 0.02s. Thus,
metadata updates are synchronized by a mutex lock.

B. Garbage Collection

It is challenging to perform garbage collection for near-data
compaction. The following issues need to be addressed:

• How to garbage collect SSTables efficiently and correctly
when both compute and memory nodes are involved in
remote memory allocation (due to near-data compaction)?

• When to garbage collect the SSTables?
To address the first challenge, dLSM allows the compute and

memory nodes to garbage collect memory allocated by each
side. Memory allocated for near-data compaction is recycled
by the memory node, and memory allocated for flushing is
recycled by the compute node. In dLSM, the SSTable metadata
contains the node ID denoting its origin. During garbage
collection, a compute node’s garbage collector identifies from
the node ID where the table is originally created. If it is local,
the garbage collector recycles its remote memory by the local
allocator. Else, an RPC (See Section X-D) is triggered to re-
cycle the tables’ memory remotely. To reduce communication,
multiple garbage collection tasks are grouped locally first and
are sent in batch to the remote memory.

To address the second challenge, during reads, a dLSM’s
reader pins a snapshot of LSM-tree metadata before searching
the SSTables. The LSM-tree metadata snapshot further pins
all the SSTables that it contains. When a MemTable flush
or SSTable compaction finishes, the LSM-tree metadata is
modified in a copy-on-write manner to create multiple LSM-
tree metadata snapshots. When reading finishes, a reader
unpins the LSM-tree metadata snapshot and unpins relevant
SSTables that are garbage collected automatically.

VI. OPTIMIZING FOR BYTE-ADDRESSABILITY

We study how SSTables can be optimized for byte-
addressability. LSM-based indexes, e.g., RocksDB, use block-
based SSTables as the table format because they are opti-

KV KV KV KV KV KV

Key-value IndexBloom filter

Compute node

Memory node

Point query Range query

Byte-addressable SSTable

Sequential RDMA

Key-value Index (cached)

Random RDMA

Bloom filter (cached)

Fig. 4: Byte-addressable SSTable layout in dLSM

mized for block-based disk storage, e.g., HDDs and SSDs.
However, for memory disaggregation, remote memory is byte-
addressable. Existing designs become sub-optimal as fetching
a single key-value pair still requires accessing a whole block
causing read amplification. Although there are other data
formats for SSTables, e.g., Cuckoo Hashing table format [16]
or PlainTable [34], they fall short, e.g., Cuckoo Hashing does
not support range query efficiently; PlainTable relies on mmap
that cannot be efficiently applied to remote memory settings.

Next, we introduce a new SSTable design optimized for
disaggregated memory to leverage byte-addressability.

Data layout. dLSM drops the notion of “blocks” to directly
access a single key-value pair (Figure 4). This improves read
performance by reducing read amplification as we can directly
fetch a single key-value pair without fetching the whole block.
Also, the design can improve write performance by eliminating
extra memory copy as we do not need to wrap the key-
value pairs into blocks anymore. Thus, building an SSTable is
accelerated as the key-value pairs are directly serialized to the
target buffer without waiting to form a block. To support range
query efficiently, key-value pairs for an SSTable are sorted and
stored in a continuous memory region.

Index layout. To make good use of byte-addressability, the
index needs to quickly address every key-value pair. Note that
the index mentioned in Section VI indexes the blocks inside
the SSTables. Key-value pairs are variable-length. Thus, an
index entry contains the key, offset, and length. dLSM uses
binary search to answer point and range queries. To avoid
network round trips during query processing, the compute
node caches the index. Index size is expected to fit in a
compute node’s local memory as it only stores keys (not
values). If a compute node has limited memory, dLSM stores
the hot SSTables in the LSM-tree top levels into local memory.

Supporting point and range queries. Refer to Figure 4.
For a point query, the compute node uses a bloom filter to
check if the target key is located in this table, and if so, the
reader uses the index to locate the address of the target key-
value pair. Then, the reader issues an network read to fetch the
single key-value pair from remote memory. For range queries,
fetching every key-value pair one at a time has significant
performance penalty as every key-value pair requires a random
I/O. Instead, dLSM prefetches large chunks of key-value pairs
by sequential I/O. Specifically, when handling a range query,

the compute node creates an iterator with sub-iterators across
all the levels. The sub-iterators locate the first keys in the range
by SSTable’s index. Then, the sub-iterators prefetch the data
chunks in the SSTable. The outer iterator scans the next key-
value pairs of all sub-iterators until it reaches end of range.

VII. OPTIMIZING FOR MIXED R/W WORKLOADS

We observe that, dLSM achieves moderate performance on
the mixed workloads with reads and writes when compared to
the performance of the 100% read or 100% write workloads.
The root cause is that the background compaction in Level
0 cannot catch up with the ultra-fast write performance to
MemTables, so that the SSTables in Level 0 are accumulated
quickly. Thus, a read scans many SSTables in Level 0 to search
a key as these SSTables have overlapping ranges. Directly
limiting the number of SSTables in Level 0 does not work
well because this affects the write performance.

To address this challenge, we follow Nova-LSM’s ap-
proach [43] to divide the entire key range into λ (λ ≥ 1) shards
based on the range information and build a separate LSM-tree
per shard. This adds more parallelism to Level 0’s compaction
and also reduces the number of SSTables that a reader needs
to traverse. We evaluate the impact of λ in Figure 10.

VIII. PERSISTENCE

dLSM is an LSM index targeted for use in main-memory
databases (e.g., VoltDB [11]) with memory disaggregation.
Thus, we do not provide persistence in the index part (fol-
lowing the prior index works including Sherman [71], an
optimized B-tree index for disaggregated memory, and other
indexing works, e.g., [32], [75], [85], [86]) because data
persistence is achieved at the database layer. The index is re-
built either from scratch (e.g., Hekaton [32]) or from the last
checkpoint (e.g., VoltDB [11]). To illustrate, many modern
main-memory databases, e.g., VoltDB [11], BatchDB [55],
and PACMAN [74], do not use traditional redo/undo logging
for persistence in order to achieve fast performance. Instead,
they use an alternative technique termed command log [56]
that logs the high-level operations, e.g., SQL and stored
procedures, in contrast to logging the physical updates into
the index. The index is periodically flushed to disk. If the
system crashes, the logged operations are re-executed from
the last transactional consistent checkpoint. Thus, as long as
the index provides a transactional consistent checkpoint, the
overall database system can be recovered by the command log.
dLSM offers this LSM-based index that natively provides a
transactional consistent checkpoint through snapshot isolation.

IX. MULTI-COMPUTE AND MULTI-MEMORY NODES

To serve massive amounts of data and improve scalability,
dLSM can be distributed and deployed across multiple com-
pute and memory nodes. dLSM’s scale out consists of two
parts: Scaling out for compute nodes and memory nodes. For
compute nodes, the key question is how to guarantee cache
coherence across multiple compute nodes. Existing solutions

LSM-Tree
Shard 1.1

LSM-Tree
Shard 2.3

Memory node 1

Memtables

Shard 1.1

Compute node 1
Memtables

Shard 1.2
Memtables

Shard 1.3
Memtables

Shard 2.1

Compute node 2
Memtables

Shard 2.2
Memtables

Shard 2.3

LSM-Tree
Shard 1.2

LSM-Tree
Shard 2.1

Memory node 2

LSM-Tree
Shard 1.3

LSM-Tree
Shard 2.2

Memory node 3

c = 2, m = 3, 𝜆 = 3

Fig. 5: Supporting multi-compute and multi-memory nodes

include single-writer-multiple-readers [27], [68], software-
level cache coherence protocol [61], [72] or range sharding
across the compute node [43]. The first solution cannot ensure
strong data consistency as other readers cannot see the updates
buffered in the MemTables immediately. The second solution
can bring in huge overhead for the cache coherence protocol.
In dLSM, we follow the sharding solution, which is popular
in existing LSM-based systems [2], [3], [9], [13], [42], [66].

To scale out memory nodes, a key question is how to
distribute data among memory nodes. A finer granularity (by
uniformly distributing the data chunks for every SSTable)
benefits load balancing, but it forces near-data compaction to
have network I/O. To benefit from near-data compaction, we
distribute the data in the granularity of small shards so that all
the data in the same range are stored in the same node.

Specifically, let c, m, and λ be the number of compute
nodes, memory nodes, and shards within a compute node,
respectively. From Figure 5, dLSM assigns the c · λ shards
evenly among the m memory nodes in round-robin fashion
to achieve best load balancing. For each shard, dLSM builds
an individual LSM-tree that is stored in a single memory
node with MemTables being cached in a single compute node.
The advantage of this design is that there is no synchroniza-
tion overhead for single-shard key-value accesses but at the
expense of distributed transactions for cross-shard accesses.
Sec. XI-C8 evaluates this multi-node design for dLSM.

X. INSTANTIATING DLSM OVER RDMA

RDMA-enabled disaggregated memory is well-studied [37],
[71], [79], [86]. Thus, we use it to instantiate and test dLSM.

A. dLSM Codebase

dLSM is coded from scratch but it reuses certain data
structures (e.g., concurrent skip list, bloom filters, immutable
MemTables) from LevelDB and RocksDB to avoid reinventing
the wheel. The codebase is open-source that contains approx-
imately 41,000 lines of C++ code (with around 4,500 lines of
code from RocksDB and 10,500 lines of code from LevelDB).

B. RDMA Manager

How to efficiently utilize ibverbs plays an important role
in designing the LSM index over disaggregated memory. In
dLSM, the RDMA manager is the intermediate implementation
connecting dLSM’s codebase to ibverbs. All the resources for
dLSM’s RDMA, e.g., the queue pair, the completion queue, the
protect domain, and registered memory are managed by the

RDMA manager. The RDMA manager translates read/write
operations and RPCs into RDMA primitives. It provides the
interfaces for registering the memory, connecting a queue pair,
and invoking RDMA primitives (e.g., RDMA read, RDMA
write, RDMA send, RDMA receive, and RDMA atomic). Both
the compute and memory nodes build up their functions based
on the RDMA manager.

For each RDMA operation, both the source and desti-
nation memory buffers are registered into the NIC through
ibv reg mr. The registration pins the memory to prevent it
from being swapped. Performing frequent RDMA registrations
by small blocks can introduce non-negligible overhead. Thus,
dLSM pre-registers large memory regions for both remote and
local memories, and then reallocates memory in the user space.

To support highly concurrent accesses, a unique challenge in
RDMA programming lies in how to organize multiple queue
pairs in the system. Since a single queue pair can have at
most one completion queue, all the threads accessing the same
queue pair will have their completion notifications mixed up.
In dLSM, every thread creates a thread-local queue pair and
registered buffer in the RDMA manager to perform one-sided
RDMA. Thus, threads do not collide with each other when
polling the completion from the same completion queue, and
no synchronization over the buffer is needed to transfer the
data. dLSM’s RDMA manager is generic, and can be used by
other memory disaggregated systems.

C. Asynchrounous IO for MemTable Flushing

Local memory in compute nodes is limited. Thus, MemTa-
bles are flushed periodically to remote memory. When flushing
cannot catch up with in-memory writes, the writers slow down
their write rate or wait til the background flush completes.
Thus, improving MemTable flush speed is essential.

Main Idea.
The RDMA primitives allow us to issue RDMA work

request and check the work request’s completion separately.
We redesign the MemTable flushing process to take advantage
of this asynchronous feature. In dLSM, background workers do
not wait for I/O completion and continue to serialize the data
over new buffers instead.

Challenges. Utilizing asynchronous I/O does not simply
replace the I/O interface. One issue is how to seamlessly
integrate asynchronous I/O into the flushing process. Another
issue is buffer recycling. When the data in a buffer is success-
fully transmitted to the remote node using RDMA write, we
call the buffer a finished buffer. The flushing thread needs to
recycle the finished buffers to reduce memory footprint. But
asynchronous I/O for RDMA does not specify which buffer
the finished RDMA operation refers to. Thus, it needs a new
way to recycle the finished buffers.

The dLSM Approach. Figure 6 illustrates dLSM’s design.
To address the first challenge, dLSM prepares multiple buffers
for the MemTable flushing thread. Asynchronous flushing in
dLSM proceeds as follows: (1) The thread directly serializes
the data into the write buffer without any data copy. (2) When
the buffer is full, the asynchronous write work request is

Memtable

Completion queueFlush buffer n
Data
block

…

Flush buffer 2

Flush buffer 1

RNIC

n … 3 2

1

Send queue

Background
thread1

2

3

4

Fig. 6: Efficient flushing in dLSM

submitted, and the thread continues to serialize the data into
the next buffer without blocking. (3) The write request is pro-
cessed on the RDMA Network Interface Card (NIC). Multiple
work requests can be pending in the send queue. (4) The
writer thread checks for work request completions every time
it submits a new request. If it finds that a work request has been
finished, it can reuse the old buffer. Otherwise, it allocates a
new buffer for the next serialization and flushing task.

To handle the second challenge, dLSM leverages the FIFO
feature of the RDMA work request queue. The pending flush
buffers are organized as a linked-list-style queue that reflects
the order of the issued work requests. The flushing thread
maintains pointers to the linked list’s head and tail. The head
is the buffer that is about to finish data transmission, and the
tail is the newest buffer that is still being serialized. When the
background threads fill a buffer and issue an RDMA write, the
thread may allocate a new buffer and append it to the tail of
the linked list. When an I/O finishes in the completion queue,
the linked list’s head is popped and is recycled.

D. Customized RPC for Near-data Compaction

One way to implement RPC is to use two-sided RDMA send
& receive. But this needs a centralized message dispatcher to
forward the message to the target thread. This could create
a potential bottleneck for RPC throughput with heavy traffic.
dLSM utilizes one-sided RDMA write to issue a reply message
so that the message can bypass the dispatcher. Below, we
describe the general-purpose RPC in dLSM to handle simple
operations such as queue pair establishing and remote memory
allocation and the customized RPC for near-data compaction.

1) General-purpose RPC: The RPC for the general case
proceeds as below.

1) The requester allocates an RDMA-registered buffer to
receive the reply message.

2) The address and the remote-access key (rkey) of the
buffer are attached to the RPC request (realised by
RDMA send & receive).

3) The responder processes the RPC, and returns the results
by an RDMA write to the reply buffer.

4) The requester continuously polls a boolean flag at the end
of the reply buffer. When the polling result is TRUE, the
message is guaranteed to be ready. The polling thread can
directly handle the reply message.

The reply message bypasses the dispatcher. Thus, dLSM
can achieve higher RPC throughput. If necessary, dLSM can
maintain multiple dispatchers and queue pairs.

2) Customized RPC for Near-data Compaction: The RPC
of near-data compaction is more complex than that of the
general case for the following reasons:

• Usually, near-data compaction takes longer time than the
general case. Thus, the compute node needs a sleep and
wake up mechanism through RDMA to avoid wasting the
CPU resources on the compute node.

• Also, the size of an RPC argument (e.g., metadata of
many SSTables to compact) for near-data compaction
is usually bigger than the general case that requires
specialized handling for high performance.

We introduce a customized RPC for near-data compaction.
Sleep & wake up through RDMA write with immediate.

dLSM uses RDMA write with immediate to make the RPC
dispatcher aware of the reply message and wake up the
corresponding requester thread to handle the reply message.
The requester attaches a 4-byte number as the unique ID in the
near-data compaction RPC request, and goes to sleep. When
the responder sends the reply, it sets the unique ID as the
immediate in the RDMA write reply message. The unique ID
helps the thread notifier identify which requester this reply
message belongs to so the thread notifier can awaken the
corresponding thread.

Large RPC argument through RDMA read. To support
highly concurrent RPCs, the request message in a general-
purpose RPC is usually small, e.g., 10s of bytes, to reduce
the overhead of message dispatching on the responder side.
However, for near-data compaction, the argument size is larger,
e.g., 100s to 1000s of bytes as the argument contains all
necessary metadata for SSTables compaction.
dLSM does not attach the compaction metadata in the RPC

request message. Instead, compaction metadata is serialized
into an RDMA registered buffer. Then, the address, size, and
remote key for the serialized buffer are attached to the RDMA
request message. Upon having an RDMA request, the remote
memory node gets the required compaction metadata from the
compute node via an RDMA read. Upon metadata access, RPC
workers in the thread pool can read the remote table content
locally in the memory node. After compaction finishes, the
memory node sends the metadata of the new SSTables to the
compute node using an RDMA write.

XI. EXPERIMENTS

A. Baselines

Since there is no prior LSM index over disaggregated
memory, we use the following baselines to evaluate dLSM:

Baseline #1: RocksDB-RDMA (8KB). This baseline is a
port of an existing LSM-tree to the RDMA-extended remote
memory. We choose RocksDB due to its wide adoption and its
recognition as the prototypical LSM implementation. We refer
to this baseline by “RocksDB-RDMA (8KB)”. The block size
is 8KB by default in RocksDB’s benchmark.

RocksDB relies on a file system that interacts with the
underlying storage device to perform common file operations.
To port RocksDB over RDMA, we implement an RDMA-
oriented file system to perform data reads and writes over
remote memory instead of local storage. Write-ahead logging
is disabled for fair comparison (see Sec. VIII).

Baseline #2: RocksDB-RDMA (2KB). This is similar to
Baseline #1 with one difference being a smaller block size to
better leverage byte-addressability in the remote memory. We
choose 2KB and term this baseline “RocksDB-RDMA (2KB)”.

Baseline #3: Memory-RocksDB-RDMA. This baseline
uses an even smaller block size that matches the size of
a key-value pair. The SSTable index blocks are cached on
the compute node for better performance. Prefetching is en-
abled to accelerate sequential reads during compaction. We
term this baseline “memory-optimized RocksDB-RDMA” (or
“Memory-RocksDB-RDMA”, for short).

Baseline #4: Nova-LSM [43]. This baseline is an optimized
LSM-tree for storage disaggregation (instead of memory dis-
aggregation). We use Nova-LSM’s available source code [43].
We configure the file system in Nova-LSM as tmpfs, a
memory-oriented file system in Linux that stores all the files
in main memory to avoid disk accesses. For Nova-LSM to
achieve high performance, the compute node contains multi-
ple sub-ranges that allow concurrent background compaction.
Besides that, write-ahead logging is also disabled.

Baseline #5: Disaggregated B-tree (Sherman [71]). The
last baseline is a highly optimized B-tree termed Sherman [71]
for the memory disaggregated architecture. We use Sherman’s
available source code [71].

B. Experimental Setup

Platform. We conduct the experiments mostly on a platform
consisting of two servers each having 8 NUMA nodes), but our
experiments only use one NUMA node per server to eliminate
the impact of NUMA remote memory access. Each NUMA
node has a Xeon Platinum 8168 CPU (24 cores, 2.7GHz) and
384GB of DRAM. Two servers are connected by an RDMA-
enabled Mellanox EDR Connectx-4 NIC with a bandwidth of
100Gb/s. Each node runs Ubuntu 18.04.5. For the scalability
experiments that require multiple compute and memory nodes,
we use CloudLab [36] (as in Sec. XI-C8).

Datasets. We run the standard benchmark “db bench” of
RocksDB. We insert 100 million random key-value pairs in
each system. The default key size is 20 bytes and value size
is 400 bytes. The query set is 100 million key-value pairs.

Parameter Configurations. We set the same parameters
of dLSM and other baseline solutions. The SSTable file size
is 64MB and the bloom filters’ key size is 10 bits. For in-
memory buffers, the MemTable size is 64MB. We set 12 and 4
background threads for compaction and flushing, respectively.
The number of immutable tables is 16 to fully utilize the
background flushing threads. To accelerate compaction further,
subcompaction is enabled with 12 workers. These parame-
ters are largely consistent with RocksDB’s settings. Unless
otherwise stated, dLSM is configured to have 1 shard. For

0
1
2
3
4
5
6

1 2 4 8 16

M
op

s/
se

c

num. of threads

Nova−LSM

RocksDB−RDMA (2KB)

RocksDB−RDMA (8KB)

Sherman

Memory−RocksDB−RDMA

dLSM

 0

 1

 2

 3

 1 2 4 8 16

M
o
p
s/

se
c

num. of threads

 0

 1

 2

 3

 4

 5

 6

 1 2 4 8 16

M
o
p
s/

se
c

num. of threads

(a) Normal mode (b) Bulkload mode

Fig. 7: Evaluating write performance

Nova-LSM [43], the subrange is 64 to maximize concurrency
in background compaction. In Sherman [71], we follow the
default block size (1KB) in the source code. To minimize
RDMA remote accesses, we follow [71] to cache the internal
nodes of the B-tree in local memory.

C. Results

1) Evaluating Write Performance: In this experiment, we
evaluate the write performance of dLSM by comparing it with
the five baseline solutions. We use the “randomfill” benchmark
in RocksDB to generate 100 million random key-value pairs,
and insert them into the different systems.

In this benchmark, an important parameter, termed
level0 stop writes trigger, represents the maximum number
of unsorted files (i.e., SSTables) in Level 0 in LSM-tree vari-
ants. When the number of files exceeds the predefined param-
eter, the writers stall to wait for the compaction of Level 0 to
complete. Thus, the smaller the number of files, the more fre-
quent the write stall becomes. In this experiment, we evaluate
dLSM in two modes with different level0 stop writes trigger:

• Normal mode: level0 stop writes trigger is 36 that is the
default value in RocksDB.

• Bulkload mode: level0 stop writes trigger is infinity. In
this case, there is no write stall triggered.

Figure 7(a) gives the write throughput with different number
of threads under the “Normal mode”. The random write
throughput of dLSM can achieve as high as 2.6 million op-
erations per second and dLSM outperforms the other baseline
solutions significantly. Specifically, dLSM is 1.7× ∼ 3.1×
faster than RocksDB-RDMA (8KB), 1.6× ∼ 3.9× faster than
RocksDB-RDMA (2KB), 1.9× ∼ 3.5× faster than Memory-
RocksDB-RDMA, 2.5× ∼ 3.0× faster than Nova-LSM, and
1.8× ∼ 11.7× faster than Sherman [71]. The performance
advantage of dLSM demonstrates the effectiveness of dLSM’s
optimizations including reducing software overhead, near-data
compaction, optimized RDMA communications, and byte-
addressable index design. Observe that Sherman [71] only
caches internal B-tree nodes in local memory and stores
leaf nodes in remote memory. Thus, in Sherman every write
operation needs to invoke an RDMA read operation to fetch
the leaf page to local memory, modifies it, and writes back
to the remote memory. This creates considerable performance

overhead. dLSM improves write performance by buffering
writes to local memory (MemTables) first and converts random
writes to large sequential writes. We observe a bottleneck for
LSM-based competitors when the number of threads increases.
The reason is that background compaction at Level 0 cannot
catch up with SSTable flushing from the compute node,
making the front-end writers stall.

Figure 7(b) gives the write throughput for the “Bulkload
mode” when varying the number of threads. In this mode, there
are no write stalls resulting from background compaction. Ev-
ery writer completes its task as soon as it inserts the key-value
pair into the MemTable. Therefore, the system performance
purely represents the in-memory write performance without
write stalls. dLSM outperforms all competitor baselines and
demonstrates the effectiveness of minimizing software over-
head (as in Sec. IV). Specifically, dLSM is up to 4.6× faster
than RocksDB-RDMA (8KB), 4.0× faster than RocksDB-
RDMA (2KB), 3.5× faster than Memory-RocksDB-RDMA,
and 3.8× faster than Nova-LSM. Note that Sherman [71] is
not applicable to this mode.

2) Evaluating Read Performance: We evaluate the ran-
dom read performance of dLSM against the baseline solu-
tions. We run the “randomread” benchmark in RocksDB. We
run 100 million random key-value queries and report the
throughput. The generated keys have the same range as the
keys in the “randomfill” benchmark. To remove the impact
of overlapped SSTables, the benchmark starts after all the
background compaction tasks finish. Figure 8 gives the results
for various numbers of threads. dLSM outperforms all other
LSM-tree solutions. The reason is that dLSM is optimized
for byte-addressable remote memory (See Sec. VI). Memory-
RocksDB-RDMA and RocksDB-RDMA (2KB) are faster than
RocksDB-RDMA (8KB) due to the smaller block size that
can reduce the amount of unnecessary data accessed. dLSM
has higher read performance than Memory-RocksDB because
it does not need to go through the block wrapper. Nova-LSM
is slower due to the long read path and memory copy when
fetching a key-value from the remote node’s tmpfs.

When compared with Sherman [71], dLSM has slightly
worse read performance (up to 12.5% when the number of
threads is 16). This is expected, because Sherman is a B+-
tree that only involves one RDMA access for every read by
caching all the internal nodes in the local memory. In contrast
dLSM, being LSM-based, may issue more than one RDMA
operations depending on the levels of the LSM-tree, although
it uses bloom filters to skip some RDMA accesses. However,
dLSM achieves 1.8× ∼ 11.7× faster writes than Sherman [71]
(Figure 7a), which shows a good tradeoff.

3) Evaluating Varied Data Sizes: In this experiment, we
evaluate the performance of dLSM under various data sizes.
We run “randomfill” and then “randomread” with increased
number of key-value pairs and report the throughput. The
inserted key range is also increased with the number of
loaded key-value pairs. Figure 9 gives the performance results.
There is decrease in performance for all the competitors when
increasing data size. For LSM-based indexes, a larger data size

0
1
2
3
4
5
6

1 2 4 8 16

M
op

s/
se

c

num. of threads

Nova−LSM

RocksDB−RDMA (2KB)

RocksDB−RDMA (8KB)

Sherman

Memory−RocksDB−RDMA

dLSM

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 4 8 16

M
o

p
s/

se
c

num. of threads

Fig. 8: Evaluating read performance

increases the compaction workload, resulting in slow write
performance. A similar trend has been observed in existing
LSM-tree studies [17]. Besides that, read latency for LSM-
trees increases because the data fills up more levels, resulting
in more RDMA reads. Note that increasing the data within
one memory node is not the ideal way to accommodate a
large data set. A better way is to increase the data over
multiple memory nodes (see Section XI-C8). For Sherman,
the performance decreases mainly due to the higher CPU
cache misses and the bigger memory footprint. Observe that
space usage in the remote memory is different across the
competitors. With 100 million key-value pairs, RocksDB-
RDMA (8KB) takes 39GB, RocksDB-RDMA (2KB) takes
44GB, Memory-RocksDB-RDMA takes 52GB, dLSM takes
59GB, and Sherman takes 68GB.

4) Evaluating Mixed Performance: We evaluate the perfor-
mance of dLSM against the baselines on the mixed workloads
with reads and writes by using the “randomreadrandomwrite”
benchmark in RocksDB. This benchmark has the same number
of keys and the same key range as in the previous experiments.
Recall that in Sec. VII, dLSM can have different number of
shards. We use dLSM-λ to indicate that dLSM uses λ shards.

Figure 10 gives the results for various read/write ratios.
dLSM outperforms all LSM-tree variants in all cases although
it loses to Sherman slightly when the read ratio is 95% and
100%, which is expected since dLSM is write-optimized. It
also shows that sharding improves the performance on the
mixed workloads. For example, when the read ratio is 50%,
dLSM-8 is 1.7× faster than dLSM-1 because there is more
parallelism for Level 0 compaction and readers only need to
search a smaller number of SSTables in Level 0.

5) Evaluating Range Query Performance: In this exper-
iment, we evaluate dLSM’s performance during table scan
by running “readseq” in RocksDB. The benchmark creates
an iterator iterating through the whole database. All LSM
systems enable table prefetching to improve performance by
sequential I/O.Sherman [71] uses the cached internal nodes to
accelerate the sequential read for table scan. We omit the result
of Nova-LSM in this experiment due to a bug on the range
index for Nova-LSM. The results in Figure 11 demonstrate

 0

 1

 2

 3

100M 200M 400M 800M 1600M

M
o
p
s/

se
c

Number of loaded key

RocksDB−RDMA (2KB)

Sherman

RocksDB−RDMA (8KB)

Memory−RocksDB−RDMA

dLSM

 0

 1

 2

 3

100M 200M 400M 800M 1600M

M
o
p
s/

se
c

 0

 1

 2

 3

100M 200M 400M 800M 1600M

M
o
p
s/

se
c

(a) Random fill (write) (b) Random read

Fig. 9: Evaluating varied data sizes

0

2

4

0 25 50 95 100

M
op

s/
se

c

RocksDB−RDMA (2KB)

RocksDB−RDMA (8KB)

Sherman

Memory−RocksDB−RDMA

dLSM−1

dLSM−2

dLSM−4

dLSM−8

 0

 1

 2

 3

 4

0% 25% 50% 95% 100%

M
o
p
s/

se
c

read ratio

Fig. 10: Evaluating mixed read-write performance

that dLSM outperforms RocksDB-RDMA (8KB) by 1.3×,
RocksDB-RDMA (2KB) by 1.5×, Memory-RocksDB-RDMA
by 2.5× and Sherman by 1.8×. Compared to LSM-tree
competitors, the huge performance advantage of dLSM comes
from the removal of block unwrapping. Another reason is that
the iterators in RocksDB baselines is still block-based that
needs to access the SSTable index frequently, while dLSM can
directly parse the key-value pairs from the prefetched buffer.
Compared with Sherman [71], the performance advantage of
dLSM comes from the larger chunk (several MBs) prefetching
with one RDMA round trip, while Sherman fetches data in
blocks (1KB). The reason RocksDB-RDMA (8K) is faster than
RocksDB-RDMA (2K) and Memory-RocksDB-RDMA is that
RocksDB-RDMA (8KB) unwraps the block less frequently
due to the larger block size.

6) Evaluating Compaction: In this experiment, we study
the impact of near-data compaction and its CPU utilizations
in dLSM. We run the “randomfill” benchmark under normal
mode with different remote CPU utilization and remote CPU
cores. We also test the performance under different pressures
of front-end insertion. We compare the results of performing

 0

 2

 4

 6

 8

M
o
p
s/

se
c

RocksDB−RDMA (2KB)

RocksDB−RDMA (8KB)

Sherman

Memory−RocksDB−RDMA

dLSM

Fig. 11: Evaluating range query performance

0

1

2

3

Remote 3 cores

Remote 6 cores

Remote 12 cores

Remote 24 cores

Local 24 cores

M
o

p
s/

se
c

Compaction CPU placement

16 front−end writers 8 front−end writers 1 front−end writer

92% 92%
87%

86% 86%

62%

72% 72%

34%

43%
43%

18%

Fig. 12: The impact of remote CPU cores on near-data
compaction

compaction in the compute node vs. memory node to demon-
strate the effect of near-data compaction (Sec. V). Figure 12
presents the results. The percentage over the bar represents
the CPU utilization over all cores during the benchmark.
From left to right, the figure shows the impact of near-
data compaction with different remote computing power. The
last group of the bars represents the system performance
without near-data compaction. When there is little computing
power, CPU utilization is very high and the performance is
bounded by the background compaction. As we add more
remote computing power, performance enhances, but there is
an upper limit (for 12 cores). The reason is that Level 0’s
compactions are overlapped so they have to be done together.
When there is a small number of front-end writers, e.g., 1
front-end writer, near-data compaction does not help much
because performance is bounded by the front-end insertions.
With sufficient front-end writes, near-data compaction can
boost dLSM’s performance by 60%.

7) Evaluating Byte-addressable SSTable: In this experi-
ment, we study the impact of byte-addressable SSTables for
read and write. We enable and disable the byte-addressable
index design of Sec. VI, termed dLSM and dLSM-Block,
respectively. dLSM-Block uses 8KB as the block size for SSTa-
bles. We run the “randomfill” and “randomread” benchmarks
to test the performance of random writes and reads. From
Figure 13, dLSM is faster than dLSM-Block for both writes
and reads, especially for reads (up to 60% improvement).
The reason is that byte-addressability can directly fetch a
single key-value pair without accessing a whole block. Write
performance improves due to eliminating unnecessary data
copy once the notion of “block” is removed.

8) Evaluating Multi-node Design: In this experiment, we
evaluate the multi-node design of dLSM to support multiple
compute nodes and multiple memory nodes as described
in Sec. IX. We use CloudLab3 [36] that provides multiple
nodes. We choose the instance type of c6220, where each
node contains two Xeon E5-2650v2 processors (8 cores each,
2.6GHz) and 64GB memory. The nodes are connected by
an RDMA-enabled Mellanox FDR Connectx-3 NIC with a
bandwidth of 56Gb/s. Each node runs Ubuntu 18.04.1.

3https://www.cloudlab.us/

 0

 1

 2

 3

 1 2 4 8 16

M
o
p
s/

se
c

num. of threads

dLSM−Block dLSM

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 4 8 16

M
o
p
s/

se
c

num. of threads

dLSM−Block dLSM

(a) Random fill (write) (b) Random read

Fig. 13: Evaluating byte-addressable SSTable

We show three experiments: scale out memory nodes only;
scale out compute nodes only; scale out both compute and
memory nodes. We run the benchmarks “randomfill” and
“randomread” under normal mode, with minor modifications
to support the multi-node setup. All the other LSM-tree
parameters are set the same as in the previous experiments.

In the first experiment, we fix the number of compute nodes
to 1 and scale out memory resources as well as the data volume
from 1 node (50 million key-value pairs) to 16 nodes (800 mil-
lion key-value pairs). This experiment shows a different way
to increase the data size compared to Section XI-C3, in which
data is increased within a single server. From Figure 14(a),
increasing the data size over multiple memory nodes leads to
performance degradation for both reads and writes. The reason
is the same as the reason when increasing the data size within a
single server (Section XI-C3). In Figure 14(a), we add a black
dotted line to represent the result of holding the same amount
of data within a single server. Notice that increasing the data
size over multiple memory servers has better scalability than
that in a single server, especially for the writes. The reason
is that the remote computing power increases as we add the
memory nodes, which accelerates the compaction.

In the second experiment, we fix the number of memory
nodes to 1 and scale out the compute resources from 1
to 8 nodes. We set the data size to 50 million key-value
pairs. From Figure 14(b), writing has better scalability than
reading. The reason is that the sequential I/Os for writes can
utilize more RDMA bandwidth than random I/Os for reads.
Besides that, we find that scaling up the computing node will
increase the space consumption in the memory node, making
the experiment out of memory at 8 nodes.

Finally, we vary the number of compute and memory nodes
together from 1 to 8 and the data size has been increased
from 50 Million to 400 Million. We use xCyM to indicate
x compute nodes and y memory nodes in the system and
set λ to 8. Sherman and NovaLSM are also tested in this
setup. Figure 15 gives the results, indicating that dLSM scales
well for multiple nodes and dLSM achieves better performance
compared to the other competitors.

XII. RELATED WORK

Resource Disaggregation. Resource disaggregation offers
great benefits in data centers for cost efficiency, resource uti-
lization, and elasticity. Achieving good performance in disag-

https://www.cloudlab.us/

0
0.2
0.4
0.6
0.8
1
1.2

1 2 4 8 16R
at

io
 w

rt
o

1
M

em
or

y
no

de

num. of Memory Nodes

Random Write Random Read

50%

60%

70%

80%

90%

100%

110%

1 2 4 8 16

T
h

ro
u

g
h

p
u

t
R

a
ti

o
 w

rt
o

 1

num. of memory nodes

0%

100%

200%

300%

400%

500%

 1 2 4 8

T
h

ro
u

g
h

p
u

t
R

a
ti

o
 w

rt
o

 1

num. of compute nodes

(a) Scale out memory resource (b) Scale out compute resource

Fig. 14: Evaluating scalability

0
4
8
12
16
20

1C1M 2C2M 4C4M 8C8M

M
op
s/
se
c

num. of nodes

NovaLSM Sherman dLSM

 0

 4

 8

 12

 16

 20

1C1M 2C2M 4C4M 8C8M

M
o

p
s/

se
c

num. of nodes

 0

 2

 4

 6

 8

 10

 12

1C1M 2C2M 4C4M 8C8M

M
o

p
s/

se
c

num. of nodes

(a) Random fill (write) (b) Random read

Fig. 15: Evaluating multi-node design

gregated architectures requires redesign of many aspects, e.g.,
operating systems [65], hardware [52], and networking [39],
[41]. dLSM focuses on the data indexing aspect. Besides that,
industrial efforts, e.g., IBM Cloud [1], Intel RSD [5], and HP
”The Machine” [46], have realized resource disaggregation in
production hardware and systems.

Databases for Disaggregated Architectures. Database
systems require significant rethinking to leverage disaggre-
gated architectures. Cloud-native databases (OLTP and OLAP)
are re-designed to follow this trend, e.g., Aurora [68], Po-
larDB [26], Socrates [14], Taurus [29], Snowflake [28], and
FlexPushdownDB [77] are built on top of a distributed shared
storage pool. The innovation is in separating storage from
compute to support independent scaling (of compute and
storage) and elasticity. Many optimizations are adopted, e.g.,
caching, offloading, and shipping logs. These works still
couple compute with memory in the same server, while dLSM
focuses on memory disaggregation.

Recently, works that optimize databases for memory dis-
aggregation, e.g., Zhang et al., [81], [82] study the impact
of memory disaggregation on OLAP databases (both disk-
based and memory-based) [81], [82] and report significant
performance degradation that motivates further optimization
as shown in [83]. Farview [48] is an analytical database
system optimized for memory disaggregation using FPGA. It
separates query processing from buffering, and uses near-data
computing to offload operations, e.g., selection and aggrega-
tion, to reduce data transfer. dLSM offloads compaction of
the LSM-tree. PolarDB is a customized cloud-native database
that disaggregates memory [27], [84] with index prefetching,
optimistic locking, and optimized recovery. Zuo et al. [86]

develop a hash index for disaggregated memory but it cannot
support range queries as in dLSM. Sherman [71] is a highly
optimized B-tree index structure for the disaggregated memory
architecture. dLSM focuses on LSM indexes with disaggre-
gated memory and has not been studied in [27], [48], [71],
[81], [82], [84]. Experiments show that dLSM achieves much
faster write performance over Sherman [71] while offering
comparable read performance (Figure 7 and Figure 8).

RDMA-optimized Databases. Many works optimize
databases for RDMA networking, e.g., see [18], [23] for an
overview. Proposals include using RDMA to extend mem-
ory [50] and remote cache [80] to improve query process-
ing [19], [64], B-tree [85], hashing [57], transactions [78], and
enhancing availability [79]. In contrast, dLSM targets LSM-
tree indexing for RDMA-enabled remote memory.

Distributed Shared Memory. Proposals exist for building
distributed shared memory from multiple servers connected by
RDMA [12], [24], [35], [37], [49], [58], [61], [67]. The main
idea is to implement a shared memory pool that can elastically
provide any amount of memory resources as needed. dLSM’s
memory node can be replaced by a shared memory pool to
mimic a near-infinite memory resource.

LSM-tree for Non-volatile Memory. In a disaggregated
memory architecture, local and remote memories form a
hierarchy similar to that of local and non-volatile memories,
e.g., Intel 3D Xpoint. Recent research optimizes the LSM-
tree (or key-value stores, in general) for non-volatile memory,
e.g., [15], [20], [53], [54], [73], [76]. However, there are at
least two main differences in dLSM: (1) The remote memory
node in dLSM supports offloading (i.e., near-data compaction)
while non-volatile memory does not provide offloading. Even
if there are Smart SSDs [33], [44], [70], they can perform
very limited offloading. (2) dLSM has RDMA-specific opti-
mizations that those works do not have.

XIII. CONCLUSION

In this paper, we investigate realizing an LSM-based index
over disaggregated memory. dLSM utilizes several optimiza-
tions to best leverage the communication layer’s features,
e.g., the byte-addressable low-latency of RDMA-based re-
mote memory. The main ideas include reducing software
overhead, near-data compaction, byte-addressability, and ef-
ficient RDMA communication. Experiments show that dLSM
achieves higher performance than porting existing LSM-trees
or running the optimized B-tree to the disaggregated memory
architecture. As can be seen from this study and the opti-
mizations introduced, ultra-fast communication technologies
play an important role in the performance and optimization of
indexes over disaggregated memory. It is important to abstract
communication properties further, and study their effects on
index realization over disaggregated memory.

ACKNOWLEDGMENT

Walid Aref acknowledges the support of the National Sci-
ence Foundation under Grant Number IIS-1910216. M. Tamer
Özsu’s research is supported by a grant from NSERC Canada.

REFERENCES

[1] Advancing Cloud with Memory Disaggregation, https://www.ibm.com/
blogs/research/2018/01/advancing-cloud-memory-disaggregation/.

[2] Apache Cassandra, https://cassandra.apache.org/.
[3] Apache HBase, https://hbase.apache.org/.
[4] Compute Express Link: The Breakthrough CPU-to-Device Interconnect

, https://www.computeexpresslink.org/about-cxl.
[5] Intel RSD, https://www.intel.com/content/www/us/en/

architecture-and-technology/rack-scale-design-overview.html.
[6] LevelDB, https://github.com/google/leveldb.
[7] Open Fabrics Enterprise Distribution (OFED) Performance Tests, https:

//github.com/linux-rdma/perftest.
[8] Oracle Exadata , https://www.oracle.com/engineered-systems/exadata/.
[9] Remote Compactions in RocksDB-Cloud, https://rockset.com/blog/

remote-compactions-in-rocksdb-cloud/.
[10] RocksDB, http://rocksdb.org/.
[11] VoltDB, https://www.voltdb.com/.
[12] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. Gandhi, P. Sub-

rahmanyam, L. Suresh, K. Tati, R. Venkatasubramanian, and M. Wei.
Remote Memory in the Age of Fast Networks. In Proceedings of the
Symposium on Cloud Computing (SoCC), pages 121–127, 2017.

[13] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. R. Borkar, Y. Bu,
M. J. Carey, I. Cetindil, M. Cheelangi, K. Faraaz, E. Gabrielova,
R. Grover, Z. Heilbron, Y. Kim, C. Li, G. Li, J. M. Ok, N. Onose,
P. Pirzadeh, V. J. Tsotras, R. Vernica, J. Wen, and T. Westmann.
AsterixDB: A Scalable, Open Source BDMS. Proceedings of the VLDB
Endowment (PVLDB), 7(14):1905–1916, 2014.

[14] P. Antonopoulos, A. Budovski, C. Diaconu, A. H. Saenz, J. Hu,
H. Kodavalla, D. Kossmann, S. Lingam, U. F. Minhas, N. Prakash,
V. Purohit, H. Qu, C. S. Ravella, K. Reisteter, S. Shrotri, D. Tang,
and V. Wakade. Socrates: The New SQL Server in the Cloud. In
Proceedings of the ACM International Conference on Management of
Data (SIGMOD), pages 1743–1756, 2019.

[15] J. Arulraj, J. J. Levandoski, U. F. Minhas, and P. Larson. BzTree: A
High-Performance Latch-free Range Index for Non-Volatile Memory.
Proceedings of the VLDB Endowment (PVLDB), 11(5):553–565, 2018.

[16] R. Balasundaram. Cuckoo Hashing Table Format (http://rocksdb.org/
blog/2014/09/12/cuckoo.html), 2014.

[17] O. Balmau, F. Dinu, W. Zwaenepoel, K. Gupta, R. Chandhiramoorthi,
and D. Didona. SILK: preventing latency spikes in log-structured merge
key-value stores. In USENIX Annual Technical Conference (ATC), pages
753–766, 2019.

[18] C. Barthels, G. Alonso, and T. Hoefler. Designing Databases for Future
High-Performance Networks. IEEE Database Engineering Bulletin,
40(1):15–26, 2017.

[19] C. Barthels, S. Loesing, G. Alonso, and D. Kossmann. Rack-Scale In-
Memory Join Processing using RDMA. In Proceedings of the ACM
International Conference on Management of Data (SIGMOD), pages
1463–1475, 2015.

[20] L. Benson, H. Makait, and T. Rabl. Viper: An Efficient Hybrid
PMem-DRAM Key-Value Store. Proceedings of the VLDB Endowment
(PVLDB), 14(9):1544–1556, 2021.

[21] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J. O’Neil, and P. E.
O’Neil. A Critique of ANSI SQL Isolation Levels. In Proceedings of
the ACM International Conference on Management of Data (SIGMOD),
pages 1–10, 1995.

[22] L. Bindschaedler, A. Goel, and W. Zwaenepoel. Hailstorm: Disaggre-
gated Compute and Storage for Distributed LSM-based Databases. In
Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages
301–316, 2020.

[23] C. Binnig, A. Crotty, A. Galakatos, T. Kraska, and E. Zamanian. The
End of Slow Networks: It’s Time for a Redesign. Proceedings of the
VLDB Endowment (PVLDB), 9(7):528–539, 2016.

[24] Q. Cai, W. Guo, H. Zhang, D. Agrawal, G. Chen, B. C. Ooi, K. Tan,
Y. M. Teo, and S. Wang. Efficient Distributed Memory Management with
RDMA and Caching. Proceedings of the VLDB Endowment (PVLDB),
11(11):1604–1617, 2018.

[25] W. Cao, Y. Liu, Z. Cheng, N. Zheng, W. Li, W. Wu, L. Ouyang,
P. Wang, Y. Wang, R. Kuan, Z. Liu, F. Zhu, and T. Zhang. POLARDB
Meets Computational Storage: Efficiently Support Analytical Workloads
in Cloud-Native Relational Database. In USENIX Conference on File
and Storage Technologies (FAST), pages 29–41, 2020.

[26] W. Cao, Z. Liu, P. Wang, S. Chen, C. Zhu, S. Zheng, Y. Wang, and
G. Ma. PolarFS: An Ultra-Low Latency and Failure Resilient Distributed
File System for Shared Storage Cloud Database. Proceedings of the
VLDB Endowment (PVLDB), 11(12):1849–1862, 2018.

[27] W. Cao, Y. Zhang, X. Yang, F. Li, S. Wang, Q. Hu, X. Cheng, Z. Chen,
Z. Liu, J. Fang, B. Wang, Y. Wang, H. Sun, Z. Yang, Z. Cheng, S. Chen,
J. Wu, W. Hu, J. Zhao, Y. Gao, S. Cai, Y. Zhang, and J. Tong. PolarDB
Serverless: A Cloud Native Database for Disaggregated Data Centers.
In Proceedings of the ACM International Conference on Management
of Data (SIGMOD), pages 2477–2489, 2021.

[28] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes, J. Bock,
J. Claybaugh, D. Engovatov, M. Hentschel, J. Huang, A. W. Lee,
A. Motivala, A. Q. Munir, S. Pelley, P. Povinec, G. Rahn, S. Triantafyllis,
and P. Unterbrunner. The Snowflake Elastic Data Warehouse. In
Proceedings of the ACM International Conference on Management of
Data (SIGMOD), pages 215–226, 2016.

[29] A. Depoutovitch, C. Chen, J. Chen, P. Larson, S. Lin, J. Ng, W. Cui,
Q. Liu, W. Huang, Y. Xiao, and Y. He. Taurus Database: How to be
Fast, Available, and Frugal in the Cloud. In Proceedings of the ACM
International Conference on Management of Data (SIGMOD), pages
1463–1478, 2020.

[30] D. J. DeWitt, S. Ghandeharizadeh, and D. A. Schneider. A Performance
Analysis of the Gamma Database Machine. In Proceedings of the ACM
International Conference on Management of Data (SIGMOD), pages
350–360, 1988.

[31] D. J. DeWitt and P. B. Hawthorn. A Performance Evaluation of Data
Base Machine Architectures (Invited Paper). In International Conference
on Very Large Data Bases (VLDB), pages 199–214, 1981.

[32] C. Diaconu, C. Freedman, E. Ismert, P. Larson, P. Mittal, R. Stonecipher,
N. Verma, and M. Zwilling. Hekaton: SQL Server’s Memory-Optimized
OLTP Engine. In Proceedings of the ACM International Conference on
Management of Data (SIGMOD), pages 1243–1254, 2013.

[33] J. Do, Y. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt.
Query Processing on Smart SSDs: Opportunities and Challenges. In
Proceedings of the ACM International Conference on Management of
Data (SIGMOD), pages 1221–1230, 2013.

[34] S. Dong. PlainTable – A New File Format (http://rocksdb.org/blog/2014/
06/23/plaintable-a-new-file-format.html), 2014.

[35] A. Dragojevic, D. Narayanan, M. Castro, and O. Hodson. FaRM:
Fast Remote Memory. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), pages 401–414,
2014.

[36] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and
P. Mishra. The Design and Operation of CloudLab. In USENIX Annual
Technical Conference (ATC), pages 1–14, 2019.

[37] P. Fent, A. van Renen, A. Kipf, V. Leis, T. Neumann, and A. Kemper.
Low-Latency Communication for Fast DBMS Using RDMA and Shared
Memory. In International Conference on Data Engineering (ICDE),
pages 1477–1488, 2020.

[38] M. J. Franklin, B. T. Jónsson, and D. Kossmann. Performance Tradeoffs
for Client-Server Query Processing. In Proceedings of the ACM
International Conference on Management of Data (SIGMOD), pages
149–160, 1996.

[39] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal,
S. Ratnasamy, and S. Shenker. Network Requirements for Resource
Disaggregation. In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 249–264, 2016.

[40] G. Golan-Gueta, E. Bortnikov, E. Hillel, and I. Keidar. Scaling
concurrent log-structured data stores. In L. Réveillère, T. Harris, and
M. Herlihy, editors, Proceedings of the Tenth European Conference on
Computer Systems (EuroSys), pages 32:1–32:14, 2015.

[41] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin. Efficient
Memory Disaggregation with Infiniswap. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
pages 649–667, 2017.

[42] D. Huang, Q. Liu, Q. Cui, Z. Fang, X. Ma, F. Xu, L. Shen, L. Tang,
Y. Zhou, M. Huang, W. Wei, C. Liu, J. Zhang, J. Li, X. Wu, L. Song,
R. Sun, S. Yu, L. Zhao, N. Cameron, L. Pei, and X. Tang. TiDB: A Raft-
based HTAP Database. Proceedings of the VLDB Endowment (PVLDB),
13(12):3072–3084, 2020.

https://www.ibm.com/blogs/research/2018/01/advancing-cloud-memory-disaggregation/
https://www.ibm.com/blogs/research/2018/01/advancing-cloud-memory-disaggregation/
https://cassandra.apache.org/
https://hbase.apache.org/
https://www.computeexpresslink.org/about-cxl
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://github.com/google/leveldb
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://www.oracle.com/engineered-systems/exadata/
https://rockset.com/blog/remote-compactions-in-rocksdb-cloud/
https://rockset.com/blog/remote-compactions-in-rocksdb-cloud/
http://rocksdb.org/
https://www.voltdb.com/
http://rocksdb.org/blog/2014/09/12/cuckoo.html
http://rocksdb.org/blog/2014/09/12/cuckoo.html
http://rocksdb.org/blog/2014/06/23/plaintable-a-new-file-format.html
http://rocksdb.org/blog/2014/06/23/plaintable-a-new-file-format.html

[43] H. Huang and S. Ghandeharizadeh. Nova-LSM: A Distributed,
Component-based LSM-tree Key-value Store. In Proceedings of the
ACM International Conference on Management of Data (SIGMOD),
pages 749–763, 2021.

[44] Z. István, D. Sidler, and G. Alonso. Caribou: Intelligent Distributed
Storage. Proceedings of the VLDB Endowment (PVLDB), 10(11):1202–
1213, 2017.

[45] A. Kalia, M. Kaminsky, and D. G. Andersen. Design Guidelines for High
Performance RDMA Systems. In USENIX Annual Technical Conference
(ATC), pages 437–450, 2016.

[46] K. Keeton. Memory-Driven Computing. https://www.usenix.org/
sites/default/files/conference/protected-files/fast17 slides keeton.pdf. In
USENIX Conference on File and Storage Technologies (FAST), 2017.

[47] K. Keeton, D. A. Patterson, and J. M. Hellerstein. A Case for Intelligent
Disks (IDISKs). SIGMOD Record, 27(3):42–52, 1998.

[48] D. Korolija, D. Koutsoukos, K. Keeton, K. Taranov, D. S. Milojicic,
and G. Alonso. Farview: Disaggregated Memory with Operator Off-
loading for Database Engines. In Conference on Innovative Data Systems
Research (CIDR), 2022.

[49] H. A. Lagar-Cavilla, J. Ahn, S. Souhlal, N. Agarwal, R. Burny, S. Butt,
J. Chang, A. Chaugule, N. Deng, J. Shahid, G. Thelen, K. A. Yurt-
sever, Y. Zhao, and P. Ranganathan. Software-Defined Far Memory
in Warehouse-Scale Computers. In Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 317–330, 2019.

[50] F. Li, S. Das, M. Syamala, and V. R. Narasayya. Accelerating
Relational Databases by Leveraging Remote Memory and RDMA. In
Proceedings of the ACM International Conference on Management of
Data (SIGMOD), pages 355–370, 2016.

[51] H. Li, D. S. Berger, S. Novakovic, L. Hsu, D. Ernst, P. Zardoshti,
M. Shah, I. Agarwal, M. D. Hill, M. Fontoura, and R. Bianchini.
First-generation Memory Disaggregation for Cloud Platforms. CoRR,
abs/2203.00241, 2022.

[52] K. T. Lim, J. Chang, T. N. Mudge, P. Ranganathan, S. K. Reinhardt,
and T. F. Wenisch. Disaggregated Memory for Expansion and Sharing
in Blade Servers. In International Symposium on Computer Architecture
(ISCA), pages 267–278, 2009.

[53] J. Liu, S. Chen, and L. Wang. LB+-Trees: Optimizing Persistent
Index Performance on 3DXPoint Memory. Proceedings of the VLDB
Endowment (PVLDB), 13(7):1078–1090, 2020.

[54] B. Lu, X. Hao, T. Wang, and E. Lo. Dash: Scalable Hashing on Persistent
Memory. Proceedings of the VLDB Endowment (PVLDB), 13(8):1147–
1161, 2020.

[55] D. Makreshanski, J. Giceva, C. Barthels, and G. Alonso. BatchDB:
Efficient Isolated Execution of Hybrid OLTP+OLAP Workloads for
Interactive Applications. In Proceedings of the ACM International
Conference on Management of Data (SIGMOD), pages 37–50, 2017.

[56] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker. Rethinking
Main Memory OLTP recovery. In International Conference on Data
Engineering (ICDE), pages 604–615, 2014.

[57] C. Mitchell, Y. Geng, and J. Li. Using One-Sided RDMA Reads to Build
a Fast, CPU-Efficient Key-Value Store. In USENIX Annual Technical
Conference (ATC), pages 103–114, 2013.

[58] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and
M. Oskin. Latency-Tolerant Software Distributed Shared Memory. In
USENIX Annual Technical Conference (ATC), pages 291–305, 2015.

[59] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil. The Log-
Structured Merge-Tree (LSM-Tree). Acta Informatica, 33(4):351–385,
1996.

[60] I. L. Picoli, P. Bonnet, and P. Tözün. LSM Management on Computa-
tional Storage. In Proceedings of the International Workshop on Data
Management on New Hardware (DaMoN), pages 17:1–17:3, 2019.

[61] M. Pröbstl, P. Fent, M. E. Schüle, M. Sichert, T. Neumann, and
A. Kemper. One Buffer Manager to Rule Them All: Using Distributed
Memory with Cache Coherence over RDMA. In International Workshop
on Accelerating Analytics and Data Management Systems Using Modern
Processor and Storage Architectures (ADMS@VLDB), pages 17–26,
2021.

[62] W. Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees.
Communications of the ACM (CACM), 33(6):668–676, 1990.

[63] E. Riedel, G. A. Gibson, and C. Faloutsos. Active Storage for Large-
Scale Data Mining and Multimedia. In International Conference on Very
Large Data Bases (VLDB), pages 62–73, 1998.

[64] A. Salama, C. Binnig, T. Kraska, A. Scherp, and T. Ziegler. Rethinking
Distributed Query Execution on High-Speed Networks. IEEE Data
Engineering Bulletin, 40(1):27–37, 2017.

[65] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS: A Disseminated,
Distributed OS for Hardware Resource Disaggregation. In USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
pages 69–87, 2018.

[66] R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger,
K. Niemi, A. Woods, A. Birzin, R. Poss, P. Bardea, A. Ranade,
B. Darnell, B. Gruneir, J. Jaffray, L. Zhang, and P. Mattis. CockroachDB:
The Resilient Geo-Distributed SQL Database. In Proceedings of the
ACM International Conference on Management of Data (SIGMOD),
pages 1493–1509, 2020.

[67] K. Taranov, S. D. Girolamo, and T. Hoefler. CoRM: Compactable
Remote Memory over RDMA. In Proceedings of the ACM International
Conference on Management of Data (SIGMOD), pages 1811–1824,
2021.

[68] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta, R. Mittal,
S. Krishnamurthy, S. Maurice, T. Kharatishvili, and X. Bao. Ama-
zon Aurora: Design Considerations for High Throughput Cloud-Native
Relational Databases. In ACM Conference on Management of Data
(SIGMOD), pages 1041–1052, 2017.

[69] K. Voruganti, M. T. Özsu, and R. C. Unrau. An Adaptive Hybrid Server
Architecture for Client Caching ODBMSs. In International Conference
on Very Large Data Bases (VLDB), pages 150–161, 1999.

[70] J. Wang, D. Park, Y.-S. Kee, Y. Papakonstantinou, and S. Swanson.
SSD In-storage Computing for List Intersection. In Proceedings of
the International Workshop on Data Management on New Hardware
(DaMoN), pages 4:1–4:7, 2016.

[71] Q. Wang, Y. Lu, and J. Shu. Sherman: A Write-Optimized Distributed
B+Tree Index on Disaggregated Memory. In ACM International Con-
ference on Management of Data (SIGMOD), pages 1033–1048, 2022.

[72] R. Wang, J. Wang, S. Idreos, M. T. Özsu, and W. G. Aref. The Case
for Distributed Shared-Memory Databases with RDMA-Enabled Mem-
ory Disaggregation. Proceedings of the VLDB Endowment (PVLDB),
16(1):15–22, 2022.

[73] T. Wang, J. J. Levandoski, and P. Larson. Easy Lock-Free Indexing in
Non-Volatile Memory. In International Conference on Data Engineering
(ICDE), pages 461–472, 2018.

[74] Y. Wu, W. Guo, C. Chan, and K. Tan. Fast Failure Recovery for
Main-Memory DBMSs on Multicores. In Proceedings of the ACM
International Conference on Management of Data (SIGMOD), pages
267–281, 2017.

[75] M. Xiao, H. Wang, L. Geng, R. Lee, and X. Zhang. Catfish: Adaptive
RDMA-enabled R-Tree for Low Latency and High Throughput. In
International Conference on Distributed Computing Systems (ICDCS),
pages 164–175, 2019.

[76] B. Yan, X. Cheng, B. Jiang, S. Chen, C. Shang, J. Wang, K. Huang,
X. Yang, W. Cao, and F. Li. Revisiting the Design of LSM-tree Based
OLTP Storage Engine with Persistent Memory. Proceedings of the VLDB
Endowment (PVLDB), 14(10):1872–1885, 2021.

[77] Y. Yang, M. Youill, M. E. Woicik, Y. Liu, X. Yu, M. Serafini, A. Aboul-
naga, and M. Stonebraker. FlexPushdownDB: Hybrid Pushdown and
Caching in a Cloud DBMS. Proceedings of the VLDB Endowment
(PVLDB), 14(11):2101–2113, 2021.

[78] E. Zamanian, J. Shun, C. Binnig, and T. Kraska. Chiller: Contention-
centric Transaction Execution and Data Partitioning for Modern Net-
works. In Proceedings of the ACM International Conference on
Management of Data (SIGMOD), pages 511–526, 2020.

[79] E. Zamanian, X. Yu, M. Stonebraker, and T. Kraska. Rethinking
Database High Availability with RDMA Networks. Proceedings of the
VLDB Endowment (PVLDB), 12(11):1637–1650, 2019.

[80] Q. Zhang, P. A. Bernstein, D. S. Berger, and B. Chandramouli. Redy:
Remote Dynamic Memory Cache. Proceedings of the VLDB Endowment
(PVLDB), 15(4):766 – 779, 2022.

[81] Q. Zhang, Y. Cai, S. Angel, V. Liu, A. Chen, and B. T. Loo. Rethinking
Data Management Systems for Disaggregated Data Centers. In Confer-
ence on Innovative Data Systems Research (CIDR), 2020.

[82] Q. Zhang, Y. Cai, X. Chen, S. Angel, A. Chen, V. Liu, and B. T. Loo.
Understanding the Effect of Data Center Resource Disaggregation on
Production DBMSs. Proceedings of the VLDB Endowment (PVLDB),
13(9):1568–1581, 2020.

[83] Q. Zhang, X. Chen, S. Sankhe, Z. Zheng, K. Zhong, S. Angel, A. Chen,
V. Liu, and B. T. Loo. Optimizing Data-intensive Systems in Disaggre-
gated Data Centers with TELEPORT. In ACM International Conference
on Management of Data (SIGMOD), pages 1345–1359, 2022.

https://www.usenix.org/sites/default/files/conference/protected-files/fast17_slides_keeton.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/fast17_slides_keeton.pdf

[84] Y. Zhang, C. Ruan, C. Li, J. Yang, W. Cao, F. Li, B. Wang, J. Fang,
Y. Wang, J. Huo, and C. Bi. Towards Cost-Effective and Elastic Cloud
Database Deployment via Memory Disaggregation. Proceedings of the
VLDB Endowment (PVLDB), 14(10):1900–1912, 2021.

[85] T. Ziegler, S. T. Vani, C. Binnig, R. Fonseca, and T. Kraska. Design-
ing Distributed Tree-based Index Structures for Fast RDMA-capable

Networks. In Proceedings of the ACM International Conference on
Management of Data (SIGMOD), pages 741–758, 2019.

[86] P. Zuo, J. Sun, L. Yang, S. Zhang, and Y. Hua. One-sided RDMA-
Conscious Extendible Hashing for Disaggregated Memory. In USENIX
Annual Technical Conference (ATC), pages 15–29, 2021.

	Introduction
	Background
	Resource Disaggregation
	Interconnection for Disaggregated Memory
	Log-structured Merge (LSM) Tree

	Overview of dLSM Architecture
	Minimizing Software Overhead
	Near-data Compaction
	Placing LSM-tree Metadata
	Garbage Collection

	Optimizing for Byte-Addressability
	Optimizing for Mixed R/W Workloads
	Persistence
	Multi-Compute and Multi-Memory Nodes
	Instantiating dLSM over RDMA
	dLSM Codebase
	RDMA Manager
	Asynchrounous IO for MemTable Flushing
	Customized RPC for Near-data Compaction
	General-purpose RPC
	Customized RPC for Near-data Compaction

	Experiments
	Baselines
	Experimental Setup
	Results
	Evaluating Write Performance
	Evaluating Read Performance
	Evaluating Varied Data Sizes
	Evaluating Mixed Performance
	Evaluating Range Query Performance
	Evaluating Compaction
	Evaluating Byte-addressable SSTable
	Evaluating Multi-node Design

	Related Work
	Conclusion
	References

