
Evaluating List Intersection on SSDs for Parallel
I/O Skipping

Jianguo Wang Chunbin Lin Yannis Papakonstantinou Steven Swanson
Purdue University Amazon University of California San Diego

csjgwang@purdue.edu lichunbi@amazon.com {yannis, swanson}@cs.ucsd.edu

Abstract—List intersection is at the core of information re-
trieval systems. Existing disk-based intersection algorithms were
optimized for hard disk drives (HDDs) since HDDs have domi-
nated the storage market for decades. In particular, those HDD-
centric algorithms read every relevant list entirely to memory
to minimize expensive random reads by performing sequential
reads, although many entries in the list may be useless. Such a
tradeoff makes perfect sense on HDDs, because random reads
are one to two orders of magnitude slower than sequential
reads. However, fast solid state drives (SSDs) have changed this
landscape by improving random I/O performance dramatically.
More importantly, they are manufactured with multiple flash
channels to support parallel I/Os. As a result, the performance
gap between random and sequential reads becomes very small
on SSDs. This means that HDD-optimized intersection algorithms
might not be suitable on SSDs because the total amount of data
accessed is unnecessarily high.

To understand the impact of SSDs to list intersection, in
this work, we tune existing in-memory intersection algorithms
to be SSD-aware with the idea of parallel I/O skipping, and
experimentally evaluate them on synthetic and real datasets. The
results provide insights on how to design efficient SSD-optimized
intersection algorithms.

I. INTRODUCTION

List intersection is a fundamental operation in information
retrieval systems. For instance, finding documents that contain
all the query terms requires the intersection of several inverted
lists [16]. In this work, we focus on disk-resident systems
where the entire inverted index cannot fit in main memory and
therefore, at least partially, needs to be stored on secondary
storage. Since HDDs (hard disk drives) have been dominating
the storage market for decades, existing disk-based intersection
algorithms were mainly optimized for HDDs [1], [5], [6], [8].
Those algorithms aim to minimize the number of expensive
random reads. They generally carry out list intersection using
a two-phase process. (1) Read each list from disk to memory
in its entirety, so that each list requires only one random
read. This stage usually requires a single thread to access disk
because an HDD has only one magnetic disk head to serve
one I/O request simultaneously, thus, using multiple threads to
read a list does not improve performance [9]. We refer to it as
“list-at-a-time single-threaded” I/O access pattern. (2) Perform
intersection in memory, which can use multiple threads to
exploit multi-core CPUs. The two-phase paradigm is a perfect
fit for HDDs, because random reads on HDDs are one to two
orders of magnitude more expensive than sequential reads [23],
[25], due to the extremely slow disk seeks.

Today, solid state drives (SSDs) have become an alternative
secondary storage solution to HDDs in the storage market.
Compared to HDDs, SSDs have many advantages such as
low I/O latency, high I/O throughput, and low energy con-
sumption.As a result, SSDs are deployed in many large-scale
infrastructures, e.g., Amazon Redshift.

The landscape shifting from HDDs to SSDs has raised an
interesting research question: What is the impact of SSDs to
list intersection algorithms? There are two notable properties
of SSDs when compared to HDDs that can change the algo-
rithmic design decisions. (1) The first one is that random reads
are fast enough to be comparable with sequential reads. On
modern SSDs, random reads are only 1× ∼ 2× slower than
sequential reads [23]. (2) The second interesting property is
that an SSD supports parallel I/O because it is manufactured
to incorporate multiple flash channels [18]. Thus, it can serve
multiple I/O requests simultaneously. In contrast, an HDD has
only one disk head such that it can only serve a single I/O
request at the same time.

With the two new properties mentioned above, we specu-
late existing HDD-centric list intersection algorithms might
not work well on SSDs and we shall rethink SSD-aware
intersection algorithms by explicitly leveraging the unique
characteristics. A decent SSD-optimized intersection algorithm
should follow “page-at-a-time multi-threaded” I/O access pat-
tern (instead of the HDD’s “list-at-a-time single-threaded”
access pattern):

(1) Page-at-a-time: access a list page by page for reducing
unnecessary pages that do not contain intersection results
to leverage the SSD’s fast random reads. In this way, the
optimization goal should be minimizing the number of
pages accessed by skipping as many as possible of the
pages that do not contain intersection results. For example,
all the white-color pages in Figure 1 can be skipped.1 Note
that, skipping does not work well on HDDs because it
introduces many expensive random reads that do not pay
off (as we show later in experiments).

(2) Multi-threaded: issue multiple page-sized I/O requests
at the same time via multiple threads. We observe that
using a single thread, the page-at-a-time I/O access pattern
underutilizes the SSD’s bandwidth seriously. Meaning that
even if the total amount of data accessed is reduced, the

1Of course, if every page contains a result, none of the pages can be skipped.
However, in practice, many pages do not contain any intersection result.

1823

2021 IEEE 37th International Conference on Data Engineering (ICDE)

2375-026X/21/$31.00 ©2021 IEEE
DOI 10.1109/ICDE51399.2021.00161

L1 50 150 200 96050 150 200 960

L2 10 20 30 40 50 200 960 98050 200

L3 10 25 50 60 80 100 120 150 160 180 200 300 400 500 800 98050 60 200 300

Fig. 1. An example of list intersection on an SSD (assuming each page
contains two elements), only the gray-color pages contain intersection
results.

actual execution time may not be reduced as expected.
Fortunately, modern SSDs support concurrent I/O requests
with multiple flash channels. Thus, we shall use multiple
threads in order to saturate the SSD’s bandwidth if the
underlying lists are accessed page-by-page. Note that it
does not make sense to issue multiple threads to read a
list on an HDD because it has only one disk head.

Following “page-at-a-time multi-threaded” I/O access pat-
tern, then how to design efficient intersection algorithms for
SSDs? There are many algorithmic design choices in terms
of how to skip unnecessary pages efficiently and issue I/Os
in a parallel way. In this work, we tune existing in-memory
intersection algorithms to be SSD-conscious based on parallel
I/O skipping (via skip pointers and bloom filters), and exper-
imentally evaluate them on both real data and synthetic data.

Contribution. In this work, we carry out a series of
experiments on four algorithms on synthetic and real datasets
to understand the impact of SSDs to list intersection. The
results provide insights on how to design efficient SSD-centric
list intersection algorithms.

II. RELATED WORK

A. List Intersection on HDDs

Traditionally, the inverted index is stored on HDDs. To
reduce the I/O cost for list intersection, some earlier work
tried to avoid reading all the lists in their entirety [28]. A
solution mentioned in [28] is to load the shortest list first, and
intersect all the other lists in ascending order of their sizes. The
algorithm terminates once the current intersection results are
empty. In this way, some longer lists can be skipped. However,
the algorithm ends up reading all the lists if the intersection
results are not empty. Actually, for any list L, the algorithm
either reads L entirely, or does not read L at all. It does not
skip any blocks in a single list (the goal of our work). That
is because skipping introduces many random reads which are
very expensive on HDDs.

B. List intersection in memory

There is rich literature on the in-memory list intersection
problem.We classify the existing algorithms into four cate-
gories: comparison-based (Section II-B1), hash-based (Sec-
tion II-B2), partition-based (Section II-B3), and bitmap-based
(Section II-B4). We describe the existing algorithms using k
sorted lists L1, L2, · · · , Lk (|L1| ≤ |L2| ≤ · · · ≤ |Lk|).

1) Comparison-based intersection algorithms
The first comparison-based intersection algorithm is the

sort-merge algorithm [11], which would access the entire lists
if extended to SSDs.

To skip unnecessary comparisons, the SL (short-long) al-
gorithm [5] was proposed. It is the state-of-the-art algorithm
in the comparison-based algorithm class. For each element
e ∈ L1, SL checks whether e appears in all the other lists. If
yes, e is a result. The presence of e on Li can be obtained
by invoking Member(Li, e), which returns true if Li contains
e. In SL, Member(Li, e) can be implemented using binary
search or skip lists.We extend SL to SSDs, so that it skips
pages.

The SvS algorithm [7] is comparison-based algorithm,
which is a variant of SL. SvS starts from the shortest list and
intersects the other lists in ascending order of their sizes. In
other words, L1 and L2 are intersected first, then the results
of L1 ∩ L2 are intersected with L3. The process continues
until Lk. SvS also relies on Member(L, e) to test whether e
is in L. Thus, basically, SvS and SL are the same except that
SvS needs to maintain a result buffer if the number of lists
intersected exceeds two.

There is another algorithm called Zig-Zag (ZZ, a.k.a Adap-
tive) which uses Successor(L, e) for skipping [2], [6]. Suc-
cessor(L, e) returns the smallest element in L that is greater
than or equal to e. Every time an eliminator e is selected
(initially e is the first element of L1), then e is probed against
the other lists in a round-robin fashion. For the current list
Li, ZZ checks whether e is the same as Successor(Li, e).
If yes, the occurrence counter of e is increased (e is a
result if the counter reaches k). Otherwise, it updates e to
Successor(L, e). ZZ terminates once e is invalid.

If L is compressed (e.g., using PforDelta [29]), neither
Member(L, e) nor Successor(L, e) can be implemented ef-
ficiently. To allow skipping, a general technique is to build an
auxiliary data structure (e.g., skip list) over L [17], [20]. The
original list L is then split into segments. The auxiliary data
structure maintains for each segment the minimum/maximum
element (uncompressed). Thus, Member(L, e) and Succes-
sor(L, e) can be implemented by routing to the desired seg-
ment and decompressing it individually.

2) Hash-based intersection algorithms
The naive hash-based intersection algorithm [13] builds a

hash table to implement Member(L, e). If extended to SSDs,
we could build an external-memory hash table to support
skipping. However, the hash table takes too much space.
Moreover, it resembles SL [5] when extended to SSDs because
both of them route a search element to a page that potentially
contains the element. Bille et al. suggested another way of
using hash [3]. Unfortunately, if extended to SSDs, it would
not skip pages because all the elements have to be accessed
at least once in the worst case.

3) Partition-based intersection algorithms
Baeza-Yates et al. proposed an algorithm for intersection

based on the divide-and-conquer framework [1]. If extended
to SSDs, it would load the entire lists to memory because
every element has to be accessed at least once.

Ding and König proposed another partition-based algo-
rithm [8], which splits a list into partitions based on universal

1824

hash. Unfortunately, if extended to SSDs, it would also access
the entire lists (see Theorem 3.3 of [8]).

4) Bitmap-based intersection algorithms
Up to this point, we have represented a list as a sorted array.

The list can also be represented as a bitmap: set the i-th bit to
1 if and only if i is in the list. Then compute the intersection
using bitwise operations [5]. If extended to SSDs, the entire
bitmap of a list has to be loaded to memory.

C. SSD-Optimized Design in IR Systems

Several prior works have studied the impact of SSDs to IR
systems. Huang and Xia discussed allocating the inverted in-
dex on SSDs and HDDs [10] to maximize query performance
while minimizing operational cost. A similar issue was also
discussed in [15]. The impact of SSDs on cache management
was studied in [22], [25], [26]. They found that existing
cache policies optimized for HDDs do not work well on
SSDs. The issue of inverted index maintenance on SSDs was
studied in [12], [14] by leveraging the fast random accesses
of SSDs. However, all these works still used existing HDD-
centric list intersection algorithms. This work, in contrast,
focuses on experimenting SSD-aware intersection algorithms.
Besides that, this work is also different from [27] in that we
use off-the-shelf SSDs instead of Smart SSDs.

III. COMPARED ALGORITHMS

Although there is no prior SSD-oriented intersection algo-
rithm, some in-memory skipping-based intersection algorithms
can be naturally extended to SSDs to skip unnecessary pages,
as discussed in Section II. In this section, we present the
extended algorithms that will be experimented later on. Before
that, we describe the problem and list structure first.

Problem statement. Consider k (k ≥ 2) lists L1, L2, ..., Lk

(|L1| ≤ |L2| · · · ≤ |Lk|) stored on an SSD. Each list is stored
in pages of a typical size, e.g., 4KB [23], [25]. The problem
is to find the intersection of these lists, i.e.,

⋂k
i=1 Li, while

minimizing the total amount of pages accessed in order to
reduce the actual execution time.

We first focus on the intersection where all the lists are
stored on the SSD initialy in order to obtain clean results.
Then, we evaluate the impact of cache where some lists are
cached in main memory.

List structure. We follow a typical setting in IR systems
to represent and compress a list [17], [28]. Each entry is a
document ID di of 4 bytes before compression.2 All document
IDs in every list are sorted in ascending order. Depending
on different IR systems, the lists can be compressed using
a compression algorithm, e.g., PforDelta [29] and SIMDP-
forDelta [24]. We also evaluate the impact of different com-
pression schemes to the performance. If a list is compressed,
we follow prior work [17], [20] to build skip pointers such that
intersection only needs to examine those promising pages.

2All the evaluated algorithms are applicable to entries that contain other
auxiliary information, e.g., document frequencies and positions.

A. BL (Baseline)

We denote BL as the baseline algorithm that directly runs
the existing HDD-centric algorithm on the SSD. This serves
as a baseline when one uses SSDs to replace HDDs in their
systems. In particular, BL reads each of the k lists in its
entirety in a single thread and then runs multiple threads
for in-memory intersection. BL uses SL for the in-memory
intersection because it has high performance and widely used
in practice [5].

The advantage of BL is that it is simple and there is no
need to change existing algorithms when replacing HDDs with
SSDs. But the disadvantage is that BL can be slow because it
reads many unnecessary pages.

B. SL (Short-Long)

As mentioned in Section II-B1, an important operation used
in SL is Member(L, e), which checks whether element e is
in list L as illustrated in Section II-B1. In main memory,
it is usually implemented using binary search or skip lists.
On SSDs, we implement Member(L, e) by pre-computing
skip pointers [17]: we store for each page the minimum (or
maximum) uncompressed ID (called a skip pointer).

Member(L, e) can be implemented efficiently by using skip
pointers. A page that potentially contains e can be identified
efficiently. Then, SL reads the page to verify whether e is
actually in L. In this way, many unnecessary pages can be
skipped. Also, the skip pointers of a list are stored in memory.

Note that SL is equivalent to SvS that intersects two lists
at a time. Thus, we do not consider SvS in this work.

C. ZZ (Zig-Zag)

The Zig-Zag (ZZ) intersection algorithm [2], [6] adopts
another way of using skip pointers for intersection as described
in Section II-B1. ZZ implements Successor(L, e) to find the
successor of e in L instead of implementing Member(L, e).
When extended to SSDs, we can implement Successor(L, e)
using skip pointers and only read the promising page to skip
unnecessary pages. The skip pointers are stored in memory.

D. BF (Bloom-Filter)

We observe that skip pointer based intersection algorithms,
i.e., SL and ZZ still incur unnecessary page accesses. Because
the skip pointers can only route element e to the page whose
range covers e. However, e may still not exist in that page, in
which case reading it is wasteful.

To solve the problem, a natural idea is to use bloom
filters [4]. In particular, we build for each page an in-memory
bloom filter to improve the SL algorithm.3 We denote the
algorithm as BF (bloom-filter). Whenever a target page P
(whose range contains e) is identified by the skip pointers,
instead of loading P immediately, BF performs a bloom test
between e and the bloom filter of P . If e fails the bloom test

3Note that ZZ cannot benefit from bloom filters because ZZ relies on
Successor(L, e) instead of Member(L, e) while bloom filters can only be
helpful for membership testing.

1825

(i.e., the bloom test returns false), there is no need to read P .
Otherwise BF reads it.

Remark. Skip pointers and bloom filters used in SL, ZZ, and
BF reduce data movement, but also increase random reads.
The tradeoff makes sense on SSDs where random reads are
comparable to sequential reads. But on HDDs, they cannot
improve the performance due to expensive random reads.

E. Parallel intersection algorithms

All the algorithms experimented (BL, SL, ZZ, BF) in this
work are evaluated in multiple threads. We discuss in detail
how to make the algorithms in parallel. The key question is:
how to partition the k lists for parallel intersection? We want
to create many independent intersection tasks such that each
thread works on one task individually. We choose the state-of-
the-art partition strategy proposed in [21]. It works as follows.
Assume there are N threads, then it partitions L1 into N even
sublists: L1

1, L2
1, · · · , LN

1 . For each sublist Li
1 (1 ≤ i ≤ N), it

performs binary search of Li
1[0] on Lj (j ≥ 2) to partition Lj

into N sublists. Thus, the N intersection tasks are: (L1
1∩L1

2∩
· · · ∩L1

k), (L
2
1 ∩L2

2 ∩ · · · ∩L2
k), · · · , (LN

1 ∩LN
2 ∩ · · · ∩LN

k).
Every intersection task will be executed by the corresponding
algorithm.

Remark. Parallel I/O is crucial to SSD-based list intersection,
much more important than ever before. It is precisely and
particularly suitable for SSDs and skipping-based intersection:
(i) if lists are accessed entirely without skipping, it is not
necessary to apply parallel intersection because sequentially
loading a long list can already saturate the SSD’s I/O band-
width. Just because of skipping, parallelism becomes the only
way to fully utilize the SSD’s I/O bandwidth; (ii) if lists
are stored on HDDs, parallelism cannot improve performance
because HDDs only have one disk moving head that can serve
at most one disk I/O simultaneously.

IV. RESULTS ON SYNTHETIC DATA

In this section, we present experimental results on synthetic
datasets to understand the impact of the key parameters.

Experimental settings. We conduct experiments on a com-
modity machine (Intel i7 3.10 GHz CPU, 4 physical cores,
8 hyper-threaded cores, 16GB DRAM) with Windows 8 in-
stalled. Our experimental platform also includes an SSD (Sam-
sung 850 Pro SSD 256GB) and an HDD (Seagate HDD 2TB,
7200rpm). All the algorithms are coded in C++. Moreover, the
page size is 4KB by default (in both HDD and SSD).

Synthetic datasets. To study the effect of crucial parameters
to the overall performance, we generate synthetic data by
fixing all the other parameters when evaluating the effect of
a particular parameter. Unless otherwise stated, we use the
default settings shown in Table I.

A. Effect of number of threads

We first examine the effect of parallelism, which is very
important to the performance. We use the default settings
(shown in Table I) except we vary the number of threads from

TABLE I
DEFAULT PARAMETERS USED IN SYNTHETIC DATA

Parameters Default
number of threads 32

number of lists 2
list size |L1| = 104, |L2| = 107

list size ratio 1000
intersection ratio 1% of |L1|
bloom filter size 4 bits (per element)
data distribution uniform (from domain [0, 232 − 1])

 0

 200

 400

 600

 800

1 2 4 8 16 32

ti
m

e
(m

s)

number of threads

(a) on SSD

 0

 2000

 4000

 6000

 8000

 10000

1 2 4 8 16 32
ti

m
e

(m
s)

number of threads

(b) on HDD

Fig. 2. Effect of number of threads

1 to 32. Figure 2 shows the execution time of the algorithms
on both SSD and HDD.

(1) For the baseline algorithm BL, Figure 2 demonstrates
that multiple threads do not help much in reducing the
execution time on both SSD and HDD. That is because BL
loads the whole list from disk to memory using a single thread
and executes intersection in memory where the I/O cost is
absolutely the performance bottleneck. Note that for list-at-a-
time I/O access pattern, using a single thread is able to saturate
the disk bandwidth for both SSD and HDD.

(2) For SL, the results are very interesting. Let’s first look
at the results of SL on the SSD. Figure 2a shows that when the
number of threads is 1, SL is even slower than BL although SL
reads less data than the baseline BL (6553 pages vs. 11177
pages). That is because BL can fully utilize the SSD’s I/O
bandwidth by reading a whole list at a time but SL cannot
because it reads a page at a time in order to skip unnecessary
pages. However, as the number of threads increases, the
performance of SL becomes better while BL does not increase
much. At the point when the number of threads is 8, SL
runs 1.3X faster than BL. This confirms our conjecture that
on SSDs, we should access a list by using “page-at-a-time
multi-threaded” I/O access pattern instead of the conventional
“list-at-a-time single-threaded” access pattern.

To make the results comprehensive, we also report the
execution time on the HDD in Figure 2b. It shows a completely
different picture with the SSD in the sense that SL always runs
slower than the baseline BL no matter how many threads are

1826

Fig. 3. Effect of list size ratio

used. More importantly, increasing the number of threads (on
the HDD) can even make the performance slower, e.g., SL
runs slower when the number of threads increases from 1 to
2. That is because of expensive random seeks introduced by
multiple threads. Note that when the number of threads is 1,
SL has similar performance to BL because those random seeks
are short under a single thread and short seeks tend to have
high performance as explained in [19]. However, for multiple
threads, random seeks tend to be long due to the context switch
between different threads.This confirms that HDD-optimized
intersection algorithms should read the whole list to memory
instead of skipping pages.

This also explains that if we treat the SSD as a drop-off disk
and apply an existing HDD-centric algorithm BL, it becomes
sub-optimal. For example, the intersection time (BL) on the
HDD is 474ms; if we only replace the HDD with the SSD
without changing any algorithm, then the time (BL on the
SSD) drops to 199ms due to SSD’s fast I/O performance. How-
ever, if we optimize the intersection algorithm by leveraging
SSD’s unique properties, the time (SL on the SSD) can drop
to 125ms, which makes a better use of the SSD.

(3) For ZZ, it reads the same number of pages with SL
when the number of lists is two.4 As a result, the execution
time of ZZ is the same as SL on the SSD. But on the HDD, ZZ
is slower than SL because ZZ introduces more back-and-forth
random accesses.

(4) For BF on the SSD, it can improve the performance
of SL a lot because the intersection size is small. But on the
HDD, bloom filters will not help because they introduce many
random accesses by filtering out non-promising pages.

B. Effect of list size ratio

We define the list size ratio w as |L2|
|L1| . We fix |L2| = 107, set

the intersection size at 1% of |L1|, and vary w from 1 to 104.
Figure 3 demonstrates that when w is small (e.g., w ≤ 10), all
the algorithms fail to skip any pages, because many elements
in L1 are routed to the same page of L2, making the page’s
reference count too high. Thus, many pages in L2 become
relevant. When w ≥ 100, the skipping-based algorithms (e.g.,
SL and BF) start to skip and their performance improves.

C. Effect of intersection ratio

The intersection ratio is also an important parameter. In
this experiment, we fix |L2| = 107, |L1| = |L2|

1000 , and vary

4But ZZ reads more data than SL when the number of lists exceeds two.
We omit the results on more lists due to space limit.

Fig. 4. Effect of intersection ratio

the intersection ratio r from 0.01% (of |L1|) to 100% (of
|L1|). Figure 4 shows the results. It shows that BL and SL
do not change much as r varies. For BL, that is because it
experiences a bottleneck of reading all the lists, no matter what
the intersection ratio is. For SL, as long as a page range in
L2 covers an element, that page has to be loaded regardless of
whether the page really contains the element. That is because
SL only maintains the range information via skip pointers.
But the performance of BF improves when r becomes smaller
because bloom filters can rule out some unnecessary pages.

V. RESULTS ON REAL DATA

In this section, we present results on a real dataset.
We use the dataset ClueWeb5 that includes 41 million

Web pages crawled by CMU in 2012. The total data size is
around 300GB. It is a standard benchmark in the information
retrieval community. The query log contains 131,654 real
queries from the TREC 2005 and 2006 (efficiency track).6

During experiments, we run the queries over the corresponding
dataset. In particular, for each query that contains k query
terms, we compute list intersection among those k inverted
lists to report the average execution time and the number of
page accesses.

We run each algorithm in 32 threads and set the bloom
filter size as 4 bits per element. We pick up three compression
approaches, namely, SIMDPforDelta, SIMDPforDelta*, and
SIMDBP128*, because they have high performance and low
space overhead as reported in prior work [24].

Figure 5 shows the results. (1) Overall, all the skipping-
based algorithms (i.e., ZZ, SL, BF) read less amount of data
than the baseline BL, and therefore they also run faster than
BL on the SSD as reported in Figure 5a. However, they run
slower than BL on the HDD in Figure 5b due to expensive
random reads introduced by skipping. It explains why existing
list intersection algorithms for HDDs prefer loading the entire
list to memory, i.e., “list-at-a-time single-threaded” I/O access
pattern. This also confirms our conjecture that HDD-centric
intersection algorithms become sub-optimal on SSDs. Thus,
we shall deploy skipping-based parallel algorithms (i.e., “page-
at-a-time multi-threaded” I/O access pattern) for intersection
in SSD-resident IR systems.

(2) On the SSD, ZZ performs worse than SL due to more
accesses to longer lists, especially when the number of lists
exceeds two. Thus, we should favor SL towards ZZ.

5http://www.lemurproject.org/clueweb12.php/
6http://trec.nist.gov/

1827

 0

 20

 40

 60

 80

 100

 120

Uncompressed

SIMDPforDelta

SIMDPforDelta*

SIMDBP128

ti
m

e
(m

s)

compression algorithms

(a) time on SSD

 0

 200

 400

 600

 800

 1000

 1200

Uncompressed

SIMDPforDelta

SIMDPforDelta*

SIMDBP128

ti
m

e
(m

s)

compression algorithms

(b) time on HDD

 0

 2000

 4000

 6000

 8000

Uncompressed

SIMDPforDelta

SIMDPforDelta*

SIMDBP128

n
u
m

b
er

 o
f

p
a
g
es

compression algorithms

(c) number of pages

Fig. 5. Results on ClueWeb data

(3) The results show that compression plays an important
role. The performance gap between skipping-based algorithms
and the baseline BL is high on uncompressed lists. But when
the lists are compressed, the gap becomes smaller. That is
because if a list is compressed, then a page contains more
elements. Thus, it becomes more difficult to skip a page during
intersection.

(4) Figure 5 also shows an interesting result regard-
ing different compression algorithms. As reported in [24],
SIMDBP128* is the fastest for in-memory intersection. How-
ever, on disks (both SSD and HDD), SIMDBP128* is worse
than SIMDPforDelta and SIMDPforDelta*. That is because
SIMDBP128* consumes too much space overhead, incurring
high I/O cost.

(5) Figure 5 shows an interesting result about the bloom
filter based approach BF. Overall, it cannot improve much
over SL on the SSD. We investigate the queries, and find that
on a majority of queries BF incurs a high false positive rate.

VI. CONCLUSION

In this work, we conducted a series of experiments to
examine the impact of fast SSDs to list intersection algorithms.
The overall message of the work is that, although simply
replacing HDDs by SSDs and directly running existing HDD-
optimized intersection algorithms on the SSD can improve
performance (since SSDs are faster than HDDs), SSDs are
highly underutilized, because the design decisions are still
made for HDDs. Thus, we strongly recommend practitioners
to re-optimize their systems explicitly for SSDs.

REFERENCES

[1] R. Baeza-Yates, R. Salinger, and S. Chile. Experimental analysis of a
fast intersection algorithm for sorted sequences. In SPIRE, pages 13–24,
2005.

[2] J. Barbay and C. Kenyon. Adaptive intersection and t-threshold
problems. In SODA, pages 390–399, 2002.

[3] P. Bille, A. Pagh, and R. Pagh. Fast evaluation of union-intersection
expressions. In ISAAC, pages 739–750, 2007.

[4] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
CACM, 13(7):422–426, 1970.

[5] J. S. Culpepper and A. Moffat. Efficient set intersection for inverted
indexing. TOIS, 29(1):1–25, 2010.

[6] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Adaptive set
intersections, unions, and differences. In SODA, pages 743–752, 2000.

[7] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Experiments on
adaptive set intersections for text retrieval systems. In ALENEX, pages
91–104, 2001.

[8] B. Ding and A. C. König. Fast set intersection in memory. PVLDB,
4(4):255–266, 2011.

[9] P. Ghodsnia, I. T. Bowman, and A. Nica. Parallel I/O aware query
optimization. In SIGMOD, pages 349–360, 2014.

[10] B. Huang and Z. Xia. Allocating inverted index into flash memory for
search engines. In WWW, pages 61–62, 2011.

[11] F. K. Hwang and S. Lin. A simple algorithm for merging two disjoint
linearly-ordered sets. SICOMP, 1972.

[12] W. Jung, H. Roh, M. Shin, and S. Park. Inverted index maintenance
strategy for flashssds: Revitalization of in-place index update strategy.
Inf. Syst., 49:25–39, 2014.

[13] D. E. Knuth. The Art of Computer Programming. Addison Wesley
Longman Publishing Co., 1973.

[14] R. Li, X. Chen, C. Li, X. Gu, and K. Wen. Efficient online index
maintenance for SSD-based information retrieval systems. In HPCC,
pages 262–269, 2012.

[15] R. Li, C. Li, W. Xiao, H. Jin, H. He, X. Gu, K. Wen, and Z. Xu. An
efficient SSD-based hybrid storage architecture for large-scale search
engines. In ICPP, pages 450–459, 2012.

[16] Y. Liu, J. Wang, and S. Swanson. Griffin: uniting CPU and GPU in
information retrieval systems for intra-query parallelism. In PPoPP,
pages 327–337, 2018.

[17] A. Moffat and J. Zobel. Self-indexing inverted files for fast text retrieval.
TOIS, 14(4):349–379, 1996.

[18] H. Roh, S. Park, S. Kim, M. Shin, and S.-W. Lee. B+-tree index
optimization by exploiting internal parallelism of flash-based solid state
drives. PVLDB, 5(4), 2011.

[19] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling.
Computer, 27(3):17–28, 1994.

[20] P. Sanders and F. Transier. Intersection in integer inverted indices. In
ALENEX, pages 71–83, 2007.

[21] S. Tatikonda, B. B. Cambazoglu, and F. P. Junqueira. Posting list
intersection on multicore architectures. In SIGIR, pages 963–972, 2011.

[22] J. Tong, G. Wang, and X. Liu. Latency-aware strategy for static list
caching in flash-based web search engines. In CIKM, pages 1209–1212,
2013.

[23] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L. Wiener, and
G. Graefe. Query processing techniques for solid state drives. In
SIGMOD, pages 59–72, 2009.

[24] J. Wang, C. Lin, Y. Papakonstantinou, and S. Swanson. An experimental
study of bitmap compression vs. inverted list compression. In SIGMOD,
pages 993–1008, 2017.

[25] J. Wang, E. Lo, M. L. Yiu, J. Tong, G. Wang, and X. Liu. The impact of
solid state drive on search engine cache management. In SIGIR, pages
693–702, 2013.

[26] J. Wang, E. Lo, M. L. Yiu, J. Tong, G. Wang, and X. Liu. Cache design
of ssd-based search engine architectures: An experimental study. TOIS,
32(4):1–26, 2014.

[27] J. Wang, D. Park, Y. Kee, Y. Papakonstantinou, and S. Swanson. SSD
in-storage computing for list intersection. In DaMoN, pages 4:1–4:7,
2016.

[28] J. Zobel and A. Moffat. Inverted files for text search engines. CSUR,
38:1–56, 2006.

[29] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-scalar RAM-CPU
cache compression. In ICDE, 2006.

1828

