
The LSM RUM-Tree: A Log Structured Merge
R-Tree for Update-intensive Spatial Workloads

Jaewoo Shin
Department of Computer Science

Purdue University
shin152@purdue.edu

Jianguo Wang
Department of Computer Science

Purdue University
csjgwang@purdue.edu

Walid G. Aref
Alexandria University, Egypt, and

Purdue University
aref@purdue.edu

Abstract—Many applications require update-intensive work-
loads on spatial objects, e.g., social-network services and shared-
riding services that track moving objects (devices). By buffering
insert and delete operations in memory, the Log Structured
Merge Tree (LSM) has been used widely in various systems
because of its ability to handle insert-intensive workloads. While
the focus on LSM has been on key-value stores and their
optimizations, there is a need to study how to efficiently support
LSM-based secondary indexes. We investigate the augmentation
of a main-memory-based memo structure into an LSM secondary
index structure to handle update-intensive workloads efficiently.
We conduct this study in the context of an R-tree-based secondary
index. In particular, we introduce the LSM RUM-tree that
demonstrates the use of an Update Memo in an LSM-based R-
tree to enhance the performance of the R-tree’s insert, delete,
update, and search operations. The LSM RUM-tree introduces
novel strategies to reduce the size of the Update Memo to be
a light-weight in-memory structure that is suitable for handling
update-intensive workloads without introducing significant over-
head. Experimental results using real spatial data demonstrate
that the LSM RUM-tree achieves up to 9.6x speedup on update
operations and up to 2400x speedup on query processing over
the existing LSM R-tree implementations.

I. INTRODUCTION

In recent years, massive amounts of location data have been
generated continuously from mobile devices, social media, and
shared-riding services. As devices or objects move in space,
they update their locations and expect to have responsive ser-
vices (e.g., getting weather emergencies and location-targeted
advertisements). From a system’s perspective, it is challenging
to efficiently handle update-intensive location workloads, and
answer queries with low latency.

A widely-used approach for write-intensive workloads is
the Log-Structured Merge tree (or LSM, for short) [1]. The
main idea of LSM is to buffer data ingestion in memory, and
then periodically flush the buffers into disk. By the generic
framework for LSM secondary-key indexes [2], the LSM
R-tree has been proposed to handle write-intensive spatial
workloads. In an LSM secondary index (e.g., LSM R-tree),
determining the most recent state (e.g., the current location)
of an object is challenging because a secondary key (e.g.,
location) is not able to uniquely identify the object and shared
by multiple objects at different times. For example, the LSM
R-tree can be used in a social media application that tracks
the current location of users (e.g., smartphones) and wants
to send targeted advertisements to users. In this application,

the users continuously update their locations into the memory
layer of the LSM R-tree and the advertisers query, e.g., a
range search, the tree. Because an LSM index is an out-of-
place update structure, it produces a new object for the update.
Note that there is only one current location for users, and all
their previous locations are outdated. Thus, querying the LSM
R-tree may contain outdated locations of the users (i.e., false-
positive) and an additional processing is needed to validate
each of the results.

Alsubaiee et al. [2] address this issue by using an eager
strategy, where an additional data structure, namely, a deleted-
key B+-tree, is associated with an in-memory R-tree to store
the deleted objects’ keys. This indicates that an old version
of the object is deleted, and a new one is inserted. The
deleted-key B+-tree is also flushed to disk along with the
corresponding R-tree. This scheme induces extra overhead due
to the need to maintain and access the deleted-key B+-tree, and
thus affects negatively both the update and query performance.

Another solution to address the issue is to use a validation
strategy [3], where the deleted-key B+-tree that is coupled
with the R-tree is removed. Instead, a primary key index (i.e.,
a B+-tree holding the primary keys) with timestamps is used to
validate search results. The decoupled primary key index with
timestamps helps avoid the extra maintenance cost, and shows
improvement in update performance. However, this approach
induces extra overhead in the search operation to validate the
most recent state of an object. While enhancing the update
performance, this approach worsens the search in contrast to
the Eager strategy.

In this paper, we introduce the LSM RUM-Tree, an LSM-
based R-tree that utilizes an in-memory Update Memo (UM,
for short) to support update-intensive spatial workloads while
having excellent search performance. The LSM RUM-Tree
maintains multiple R-trees as previous works and a UM
component that resides only in memory. To control the size of
UM, we introduce four UM cleaning strategies that not only
reduce the consumed memory space of UM, but also improve
the overall performance. The experimental results demonstrate
that the LSM RUM-tree achieves up to 9.6x speedup on update
operations and up to 2400x speedup on search performance
over state-of-the-art LSM R-tree implementations.

The rest of this paper proceeds as follows. Section II
presents background material and the related works. Section III

2285

2021 IEEE 37th International Conference on Data Engineering (ICDE)

2375-026X/21/$31.00 ©2021 IEEE
DOI 10.1109/ICDE51399.2021.00238

introduces the LSM RUM-tree, Section IV presents cleaning
strategies for the LSM RUM-tree, Section V presents extensive
experiments of the LSM RUM-tree in comparison to previous
approaches, and Section VI contains concluding remarks.

II. BACKGROUND AND RELATED WORK

In this section, we summarize two prior approaches to
handle spatial workloads in the LSM R-tree. The goal of this
paper is to improve the performance of the LSM R-tree with
the use of the Update Memo (UM, for short). Thus, it is
important to understand how the LSM R-tree works for each
operation and how UM can accelerate the update procedure
for the R-tree.

A. The LSM R-tree

The LSM R-tree [2] is a spatial index to handle location
data efficiently and benefits from the LSM mechanism. By
applying a generic framework for secondary index LSM-
ification [2], the LSM R-tree is an optimized secondary index
for write-intensive spatial data workloads. To handle frequent
updates in the LSM R-tree index, two strategies, Eager [2] and
Validation [3], have been proposed. Traditionally, updating a
secondary key value, e.g., updating the location of an object,
requires maintaining both an LSM primary and secondary
indexes to ensure consistency among both indexes. However,
to simplify the presentation of the secondary index, we only
highlight the maintenance on the LSM R-tree.

1) Eager Strategy for LSM Secondary Indexes: Alsubaiee
et al. [2] introduce to LSM an additional deleted-key B+-
tree for each R-tree to make the LSM R-tree consistent.
The deleted-key B+ tree stores the primary keys (the object
identifiers) of the deleted/updated objects to validate the state
of an object given a query. The in-memory R-tree and its
corresponding deleted-key B+-tree are tightly coupled, and
they are flushed to disk together as a component. Although
the deleted-key B+-tree buffers the delete operations in the
memory layer, the extra maintenance cost and disk I/Os during
a search operation degrade the overall search performance.

Assume that we have an object, say o = 〈Loc,Oid, ...〉,
where Loc indicates the location of o, and Oid is o’s object
identifier. Because the R-tree indexes locations, Loc is the
secondary key for the R-tree index while Oid is a foreign
key that points to the primary key of the object in the
primary index, where the latter may contain other attributes
that describe o. To insert o into the LSM R-tree, we add o
into the in-memory R-tree, and do not need to access the
deleted-key B+-tree. To delete an entry o = 〈Loc,Oid〉 from
the LSM R-tree, we perform the following steps: (1) Remove
o = 〈Loc,Oid〉 from the in-memory R-tree index, if it exists,
and (2) Invalidate the outdated os in the disk components
by adding Oid into the deleted-key B+-tree in memory. To
update a spatial object o inside the LSM R-tree, we perform
the following: Delete the old object o = 〈Locold, Oid〉 (by
following the delete procedure above), and then insert the
new object o = 〈Locnew, Oid〉 into the LSM R-tree (by
following the insert procedure above). To search the LSM

R-tree (e.g., find all objects around Loc = (2, 2)), all the
R-trees, whether in memory or in disk, are searched to find
candidate query results because all the R-trees could have
qualifying objects. Then, the Oid of each candidate will need
to be searched against the existing deleted-key B+-trees, and
will be reported as output only if Oid does not exist in any
of the deleted-key B+-trees of a newer component than the
candidate’s component.

2) Validation Strategy for LSM Secondary Index: The
Validation strategy [3] addresses the update overhead of the
Eager strategy. It avoids using the deleted-key B+-tree and
uses the primary key index to validate the query results. The
Validation strategy adds a timestamp in each object in both the
primary key and secondary indexes. For inserts, it inserts an
object as 〈Loc,Oid, ts〉 into the R-tree where ts is a timestamp
for the insert using local wall-clock time. For deletes, the
Validation strategy only inserts a control entry into the primary
key index to indicate that the object is deleted. Thus, it
simplifies the delete or update procedures over the Eager
strategy. The update is the delete of an old object followed
by the insert of a new object. The query performance of the
Validation strategy still suffers due to the needed validation
steps using the primary index for direct validation or primary
key index for timestamp validation.

B. The RUM-Tree: The R-tree with Update Memo
The RUM-tree [4], [5] is another approach to handle update-

intensive spatial workloads. It augments an R-tree with an
Update Memo (UM) structure. The RUM-tree is a disk-based
R-tree index that has a UM in memory. It maintains a global
timestamp counter, and marks each object to show a temporal
relationship among the objects. Each UM entry is of the form:
〈Oid, ts, cnt〉, where ts is the timestamp of the most-recent
update to Oid in the RUM-tree, and cnt is the number of
obsolete versions of Object Oid in the index. By handling the
insert and update operations in UM, the RUM-tree achieves
significantly lower update cost without having big penalty
during search. The UM has several cleaning strategies for
removing the obsolete entries from both the R-Tree and the
UM to restrict the latter’s size. As a result, the RUM-tree
shows improved performance on updates over the traditional
R-tree [4]–[6].

III. THE LSM RUM-TREE
We introduce the new LSM RUM-tree; an LSM R-tree

augmented with an Update Memo. The goal of the LSM RUM-
tree is to efficiently handle update-intensive spatial workloads,
and improve search performance. From Section II-A, existing
strategies for LSM secondary indexes have degraded update
and search performances. To address this issue, in the LSM R-
tree we introduce an Update Memo within the LSM R-tree to
simplify the processing of deletes and updates in the memory
layer, and make disk-based search cost-efficient.

A. The Update Memo Structure (UM)
Refer to Figure 1a for illustration. In the LSM RUM-tree,

UM is based on a hash map that resides in memory. The key

2286

Update Memo

<(30,30),2,t8>

<(10,10),1,t1>
<(20,20),2,t2>

<3, t7, 1>

R-tree

Memory layer

Disk layer

<(30,30),3,t4>
<(40,40),4,t5>

<2, t8, 1>
<(50,50),5,t6>

<1, t3, 1>

(a) Structure Overview

ts oper. object
t1 INSERT 〈(10, 10), 1〉
t2 INSERT 〈(20, 20), 2〉
t3 DELETE 〈1〉
t4 INSERT 〈(30, 30), 3〉
t5 INSERT 〈(40, 40), 4〉
t6 INSERT 〈(50, 50), 5〉
t7 DELETE 〈3〉
t8 UPDATE 〈(30, 30), 2〉

(b) Example operations

Fig. 1: The LSM RUM-tree

to UM is an object identifier, and the value is a pair of recent
timestamp and obsolete objects counter. UM has several roles.
It keeps track of the deletes and updates ingested into the LSM
RUM-tree. Because UM resides only in memory, the update
to an UM entity takes constant time. Also, UM validates
candidate objects resulting from a search operation. As in
Section II-A, previous strategies need to perform extra work
to answer a query correctly. The Validation strategy needs to
validate output candidates of a search by comparing the output
candidates against the primary key index in a way similar to
that of the Eager strategy. Because UM is light-weight and
resides entirely in memory, we expect enhancement in search
performance over the previous approaches.

From Figure 1a, each object in the LSM RUM-tree is
represented as a triplet 〈Loc,Oid, ts〉, where Loc is the ob-
ject’s location, Oid is the object identifier, and ts is a global
timestamp counter – an integer value incremented by 1 for
each insert, delete, or update operation. The higher the value
of ts, the fresher the object in the index. An entry e in UM is
represented by a triplet 〈Oid, ts, cnt〉, where cnt is a counter
of the number of outdated objects with the same Oid in the
LSM RUM-tree. By default, the entry e = 〈Oid, ts, 1〉 is first
inserted into UM when deleting or updating an object with no
existing entry in UM. Otherwise, if Oid exists in UM in an
entry, say e, from a previous delete or update, we increment
e.cnt by 1. When an obsolete object is found and is removed
from the LSM RUM-tree, we decrement the object’s e.cnt by
1. Entry e is removed from UM when e.cnt = 0, i.e., there are
no obsolete entries for Oid currently in the LSM RUM-tree.

B. Lazy Maintenance in UM

UM buffers deletes and updates in memory. Below, we
discuss how the delete, update, and search operations in the
LSM RUM-tree utilize UM.

1) Insert: During an insert, first we increment the global
timestamp counter by 1Note that the timestamp counter is an
integer that gets incremented for each insert, delete, or update
operation. Once we read the global timestamp counter, say
ts, a new object onew = 〈Loc,Oid, ts〉 is added to the in-
memory R-tree UM tracks only object deletes and updates
and performs no special actions for inserts. The goal of the
LSM RUM-tree is to support both update- and insert-intensive
spatial workloads. If UM treats inserts as in the case of the
original RUM-tree [4], [5], the UM size grows linearly with

the number of objects for insert-intensive workloads. This
would result in significant memory-space overhead. In the
LSM RUM-tree, avoiding to maintain UM upon object inserts
prevents the unnecessary growth in UM size. In Section III-C,
we discuss in detail how we validate an object that has no
entry in UM.

Algorithm 1: Delete operation
input: Oid: Object id (primary key)

1 ts← timestamp counter++;
2 if entry e for Oid exist in UM then
3 e.ts← ts;
4 e.cnt++;

5 else
6 put enew = 〈Oid, ts, 1〉 into UM ;

2) Delete: To delete an object, we only add or modify the
object’s corresponding UM entry. As in Algorithm 1, if there
is an UM entry, say e, for a given Oid, we set e.ts field to the
global timestamp (Line 3) and increment e.cnt by 1 (Line 4).
If there is no such e in UM , we insert 〈Oid, ts, 1〉 into UM .
Note that the value of e.cnt corresponds to the number of
obsolete copies of a given Oid in the R-trees. Naturally, each
delete operation makes one additional obsolete object in the
R-tree. By tracking ts for freshness and cnt for the number
of obsolete objects of Oid, we not only have a clear sense of
a given object copy in the index whether it is fresh or not, but
also have a good grasp of the number of obsolete copies of
the object in the LSM RUM-tree. In the example in Figure 1a,
“t3 : DELETE 〈1〉” and “t7 : DELETE 〈3〉” add 〈1, t3, 1〉 and
〈3, t7, 1〉 into the UM, respectively.

3) Update: To process an update, we check whether or
not UM contains an entry, say e, with the same Oid. If e
exists in UM , we update e.ts to the current timestamp ts
and increment e.cnt by 1. If e does not exist, we add a new
entry enew = 〈Oid, ts, 1〉 into UM. Then, we add the new
object entry 〈Loc,Oid, ts〉 into the in-memory R-tree. Note
that update consists of both delete and insert. In the example in
Figure 1a, “t8 : UPDATE 〈(30, 30), 2〉” adds the entry 〈2, t8, 1〉
into the UM and inserts the new object 〈(30, 30), 2, t8〉 into the
in-memory R-tree. Notice that if there is another UPDATE for
the same object at t9, we update the UM entry from 〈2, t8, 1〉
to 〈2, t9, 2〉 and insert the new object with the timestamp t9
into the R-tree.

C. Search

The LSM RUM-tree does not require a disk I/O except for
accessing LSM R-trees on disk. Algorithm 2 illustrates how
to utilize the UM to validate search results that are returned
from the LSM R-tree. First, we check whether a candidate
Ocand from the R-tree search is fresh or not. If UM does not
contain an entry with the same Oid, then Ocand is fresh, and
is part of the search results. If there is an entry, say e, with
the same Oid, then the ts field of the candidate is compared
with e.ts from UM. If Ocand.ts < e.ts, then the candidate is

2287

Algorithm 2: Validation with Update Memo
input : candidates: The list of candidates for a search
output: results: The list of results of a search

1 for Ocand ← candidates do
2 Oid ← Ocand.Oid;
3 if entry e for Oid exists in UM then
4 if Ocand.ts == e.ts then
5 results.insert(Ocand);

6 else
7 results.insert(Ocand);

8 return results

obsolete, and is discarded. Observe that there is no case where
Ocand.ts > e.ts because we always maintain a UM entry to
reflect the most recent timestamp of an object. Also, if there is
a fresh object (e.g., “t5 : INSERT 〈(40, 40), 4〉” in Table 1b)
and there is no other updates on the same object, there is no
UM entry with the same Oid = 4.

Because UM is based on a hash map, massive amounts
of delete/update operations will increase the size of UM.
Also, as the size of the hash map increases, its lookup
performance deteriorates due to the large number of entries
in each hash map bucket and these result in degrading the
search performance. For these reasons, in the next section, we
introduce LSM-aware UM cleaning strategies to bound the
size of UM and improve search performance.

IV. LSM-AWARE UM CLEANING STRATEGIES

As in Section III-A, an entry e in UM will be removed when
the field cnt hits 0. Thus, our focus is on how to decrease e.cnt
for each operation running on the LSM RUM-tree. We present
4 cleaning strategies for the LSM RUM-tree: (1) Buffered
Cleaning, (2) Vacuum Cleaning, (3) Clean Upon Flush, and
(4) Clean Upon Merge. The first two are for UM cleaning
through the in-memory R-tree. In contrast, the remaining two
are for UM cleaning through the disk-side R-trees.

A. Buffered Cleaning

When an application uses the LSM RUM-tree as a sec-
ondary index to handle continuous update-intensive workloads
(e.g., tracking moving objects continuously), there is a high
chance that a node of the in-memory R-tree has multiple
obsolete objects. To clean UM and those in-memory R-tree
nodes, we introduce the Buffered Cleaning strategy that cleans
an in-memory R-tree node based on the accumulated updates
inside this node. This is particularly applicable for hot-spot
cleaning. We maintain an update counter for each node of the
in-memory R-tree. When the LSM RUM-tree buffers an update
operation, the update counter on the node is incremented by 1.
Once the counter hits some threshold, we remove the obsolete
objects from the node and clean the UM entry by decrementing
its cnt value by 1 for each of the removed obsolete objects.
When a new R-tree node is created (e.g., due to a node split)

or when Buffered Cleaning cleans a specific node, we set
the node’s update counter to 0. Notice that the threshold for
the update counter is a variable that decides the frequency
of invoking the Buffered Cleaning strategy. The lower the
threshold is set, the more frequent the Buffered Cleaning
strategy is invoked.

Algorithm 3: Node and Update Memo Cleaning
input : objects: The list of objects in a node

1 for O ← objects do
2 if entry e for Oid exists in UM then
3 if O.ts < e.ts then
4 remove O from objects;
5 e.cnt−−;
6 if e.cnt == 0 then
7 remove e from the Update Memo;

Algorithm 3 illustrates how to clean an R-tree node and
its corresponding entries in UM. While iterating over objects
in a node, we discard the obsolete objects from the node
by comparing the object’s timestamp with the timestamp in
the object’s entry in UM (Lines 2-4). If an obsolete object is
removed, we decrement by 1 the object’s corresponding e.cnt
entry in UM to track the number of obsolete objects with the
same Oid (Line 5). If e.cnt = 0, there are no obsolete objects
having the same Oid in the LSM RUM-tree. Thus, we remove
e from UM.

B. Vacuum Cleaning

Vacuum Cleaning complements Buffered Cleaning because
it targets mostly the hot-spot nodes in the LSM RUM-tree.
There are still some cases that Buffered Cleaning cannot
handle very well: (1) A node is on a cold-spot so the
counter for the Buffered Cleaning does not hit the threshold or
(2) Objects in a node have been obsoleted because of updates
in other nodes. Not cleaning these cold-spot nodes can result
in growing the size of UM and being not able to control it.
To make up for the cold-spot nodes not handled by Buffered
Cleaning, we introduce Vacuum Cleaning for fair cleaning of
in-memory R-tree nodes to bound UM’s size.

In Vacuum Cleaning, we maintain a global counter and
a vacuum cleaner. The global counter stores the number of
updates in the entire LSM RUM-tree, and the vacuum cleaner
holds the next leaf node to be cleaned in the in-memory R-
tree. Once the global counter hits some threshold by update
operations, the vacuum cleaner cleans the next node. The node
and UM cleaning are the same as the ones in Algorithm 3.
After this node’s cleaning is finished, we reset the global
counter to 0 and set the vacuum cleaner to the next leaf node.

Buffered and Vacuum Cleaning have several advantages.
They help reduce the UM size. Having obsolete objects in
the in-memory R-tree leads to unnecessary UM entries. By
cleaning the UM, we bound its size. Also, both cleaning

2288

E
ag

er

V
al

id
at

io
n

U
M

U
M

+F

U
M

+M

U
M

+F
M

U
M

+B
V

U
M

+F
M

B
V

0

100

200

300

400 (a) Gowalla
se

co
nd

s

E
ag

er

V
al

id
at

io
n

U
M

U
M

+F

U
M

+M

U
M

+F
M

U
M

+B
V

U
M

+F
M

B
V

0

500

1,000

1,500

2,000 (b) BerlinMOD

E
ag

er

V
al

id
at

io
n

U
M

U
M

+F

U
M

+M

U
M

+F
M

U
M

+B
V

U
M

+F
M

B
V

0

1,000

2,000

3,000 (c) ChicagoTaxi

Update Flush Merge

Fig. 2: Comparisons of Update Performance on LSM R-trees

strategies clean the nodes of the in-memory R-tree. Update-
intensive workloads cause many obsolete objects in an R-tree
node, and this leads to unnecessary R-tree node splits. By
cleaning the nodes in the in-memory R-tree, the node remains
fresh and avoids unnecessary splits due to being filled with
obsolete objects. Also, by cleaning R-tree nodes, we expect
to have improved search performance because there should be
less false-positive candidates while searching the R-tree.

C. Clean Upon Flush

In Clean Upon Flush, we bring the flushed component
up-to-date at the time of flushing without having too much
computational overhead. Mainly, we add the R-tree and UM
cleaning step just before flushing. When the LSM RUM-tree is
flushed into disk, it orders the objects by the Z-order or Hilbert
curves [7], [8] to be stored in disk efficiently. For Clean Upon
Flush, when the flush operation orders the objects, we check
whether the object is obsolete or not by comparing it with the
entry in the UM as in Algorithm 3. If the object is obsolete,
we discard the object so it does not get flushed to disk and
clean the corresponding UM entry. If the cnt of the UM entry
is 0, we remove the entry from UM.

D. Clean Upon Merge

Because the objects in disk components become obsolete
as new updates accumulate into the in-memory component,
we introduce Clean Upon Merge to clean the obsolete objects
on disk as well as their corresponding UM entries. During
LSM merge, multiple disk components are bulk-loaded and
are merged into a single disk component. For Clean Upon
Merge, we add a validation step as the one in Algorithm 3
on the bulk-loading procedures of the merge operation. When
bulk-loading the existing components, we check each object
on-the-fly against UM. If an object is obsolete, we discard it.
Obviously, we update the UM entries accordingly in a way
similar to Clean Upon Flush and the other cleaning strategies.

Clean Upon Flush and Clean Upon Merge are expected to
improve the performance in various ways. First, UM size is
reduced due to cleaning. Shrinking UM size is important in
all cleaning strategies. Moreover, all the objects in a new disk
component are fresh right after the time of the flushing or
merging. Thus, both can enhance search performance because

the size of the new component could be smaller than that
without cleaning, specifically in update-intensive workloads.

V. PERFORMANCE STUDY

We evaluate the LSM RUM-tree along with its insert,
delete, update, and search performance. All the experiments
are conducted on a machine running Mac OS 10.15.5 on Intel
Core i7 with 2.3 GHz, 16 GB memory, and 512 GB SSD.
We use three real datasets, Gowalla [9], BerlinMOD [10],
and ChicagoTaxi [11] with millions of points: Gowalla (6.4m),
BerlinMOD (56m) and ChicagoTaxi (15m). For the datasets,
there are 107k, 2k, and 5.2k unique keys (Object IDs),
respectively, along with their locations over time.

We implement the LSM RUM-tree inside AsterixDB [12],
and compare the LSM RUM-tree with the existing Eager and
Validation strategies already implemented in AsterixDB. The
LSM RUM-tree is open-sourced at http://bit.ly/lsmrum. For
the LSM RUM-tree, we set the budget of the in-memory R-
tree to 256 MB and the page size to 2 KB following [2].
The merge policy is set to the prefix policy with Threshold=5.
We augment the UM implementation into the already existing
LSM R-tree. To study the effect of only UM, we do not use
any optimization, such as a bloom filter [13] or range filter [14]
in the LSM R-tree since they are orthogonal to the focus of
this paper. Experiments run in a single-thread environment.

We use the following notation to refer to the various
cleaning strategies. UM denotes LSM RUM-tree without any
cleaning strategy, UM+(cleaning strategies) denotes LSM
RUM-tree with combinations of cleaning strategies, where F,
M, B, and V refer to Clean Upon Flush, Clean Upon Merge,
Buffered Cleaning, and Vacuum Cleaning, respectively. Due
to space limitation, we only present comparisons of the update
and search performance.

A. Update Performance

We measure the total execution time to complete the data
ingestion of all inserts and updates, excluding setup and data
feeding times. Figure 2 gives the update performance on
three datasets with respect to update procedures, the time to
process a flush operation, and the time to process a merge
operation by comparing the LSM RUM-tree mechanisms with
the Eager and the Validation strategies of the LSM R-tree.

2289

.0
1%

.0
7%

.4
1%

1.
56

%

4.
67

%

11
.7

6%

101

102

103 (a) Gowalla

selectivity

m
ill

is
ec

on
ds

.0
1%

.0
7%

.4
1%

1.
56

%

4.
67

%

11
.7

6%

100

101

102

103

104 (b) BerlinMOD

selectivity

.0
1%

.0
7%

.4
1%

1.
56

%

4.
67

%

11
.7

6%

100

101

102

103

104

(c) ChicagoTaxi

selectivity

Eager Validation UM UM+F UM+M UM+FM UM+BV UM+FMBV

Fig. 3: Comparisons of query performance on LSM R-trees

As in Section IV, the LSM RUM-tree cleaning strategies
clean obsolete objects in both the memory and disk layers
as well as in the UM entries. In update-intensive workloads,
cleaning obsolete objects improves the update performance
because it avoids unnecessary node splits in the R-tree and also
minimizes the flush/merge operations. From the experiments,
observe that the LSM RUM-tree with the various cleaning
strategies achieves 3x to 9.6x speedups over the Eager strategy
and 1.4x to 4x over the Validation strategy depending on the
different datasets.

B. Search Performance

After data ingestion is completed, we select 100 random
query points from each dataset and measure the average time
to get the query results. As in [3], the Validation strategy
is worse than the Eager strategy because of the extra vali-
dation steps. Figure 3 gives the search (query) performance
on each dataset for various query selectivities. Overall, the
UM strategy without any cleaning (i.e., UM) shows up to
3x better performance than the Validation strategy because
its in-memory structure does not require I/O for validation.
While UM is comparable to the Eager strategy on the Gowalla
dataset (Figure 3a), it gets worse on the other datasets by
one order of magnitude as in Figures 3b and 3c. Although
UM resides in memory, obsolete objects from a query require
massive amount of time to validate their states. Therefore, it is
essential to have appropriate cleaning strategies as discussed in
Section IV. Overall, UM+FMBV shows best performance in
all datasets. The big improvements are due to the cleaning
strategies. The cleaning strategies help reduce the size of
UM, clean obsolete objects, and shrink the size of the disk
component (i.e., the disk-based R-trees).

VI. CONCLUSIONS

In this paper, we introduce the LSM RUM-tree for update-
intensive spatial data workloads. We illustrate how to utilize
UM in the LSM RUM-tree for delete, update, and search
operations. The in-memory UM structure provides efficient
validation on query processing as well as simplified update
operations. Making UM light-weight is important to be held
in memory. To achieve this, we provide four UM cleaning

strategies. These strategies not only clean UM entries to shrink
its size, but also improve search performance as they also
help shrink the size of R-trees, and hence reduce the I/O
overheads. The performance study demonstrates that the LSM
RUM-tree handles update-intensive workloads efficiently and
outperforms the state-of-the-art LSM R-tree implementations.

ACKNOWLEDGMENT

Walid G. Aref acknowledges the support of the National
Science Foundation under Grant Numbers III-1815796 and
IIS-1910216.

REFERENCES

[1] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured
merge-tree (lsm-tree),” Acta Informatica, vol. 33, no. 4, pp. 351–385,
1996.

[2] S. Alsubaiee, A. Behm, V. Borkar, Z. Heilbron, Y.-S. Kim, M. J. Carey,
M. Dreseler, and C. Li, “Storage management in asterixdb,” Proceedings
of the VLDB Endowment (PVLDB), vol. 7, no. 10, pp. 841–852, 2014.

[3] C. Luo and M. J. Carey, “Efficient data ingestion and query processing
for lsm-based storage systems,” Proceedings of the VLDB Endowment
(PVLDB), vol. 12, no. 5, pp. 531–543, 2019.

[4] X. Xiong and W. G. Aref, “R-trees with update memos,” in 22nd
International Conference on Data Engineering (ICDE), 2006, pp. 22–22.

[5] Y. N. Silva, X. Xiong, and W. G. Aref, “The rum-tree: supporting
frequent updates in r-trees using memos,” The VLDB Journal, vol. 18,
no. 3, pp. 719–738, 2009.

[6] S. Chen, C. S. Jensen, and D. Lin, “A benchmark for evaluating moving
object indexes,” Proceedings of the VLDB Endowment (PVLDB), vol. 1,
no. 2, pp. 1574–1585, 2008.

[7] D. Hilbert, “Über die stetige abbildung einer linie aufein flächenstück,”
Mathematische Annalen, vol. 38, pp. 459–460, 1891.

[8] G. Peano, “Sur une courbe, qui remplit toute une aire plane,” Mathe-
matische Annalen, vol. 36, no. 1, pp. 157–160, 1890.

[9] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: user
movement in location-based social networks,” in Proceedings of ACM
International Conference on Knowledge Discovery and Data Mining
(SIGKDD). ACM, 2011, pp. 1082–1090.

[10] C. Düntgen, T. Behr, and R. H. Güting, “Berlinmod: a benchmark for
moving object databases,” The VLDB Journal, vol. 18, no. 6, p. 1335,
2009.

[11] C. D. Portal. (2019) Taxi Trips - 2019. [Online]. Available: https:
//data.cityofchicago.org/Transportation/Taxi-Trips-2019/h4cq-z3dy

[12] “AsterixDB.” [Online]. Available: http://asterix.ics.uci.edu/
[13] B. H. Bloom, “Space/time trade-offs in hash coding with allowable

errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.
[14] S. Alsubaiee, M. J. Carey, and C. Li, “Lsm-based storage and indexing:

An old idea with timely benefits,” in Second International ACM Work-
shop on Managing and Mining Enriched Geo-spatial Data (GeoRich),
2015, pp. 1–6.

2290

