SSD In-Storage Computing for List Intersection

Jianguo Wang't

tUniversity of California, San Diego
t{csjgwang, yannis, swanson}@cs.ucsd.edu

ABSTRACT

Recently, there has been a renewed interest of in-storage comput-
ing in the context of solid state drives (SSDs), called “Smart SSDs.”
Smart SSDs allow application-specific code to execute inside SSDs.
This allows applications to take advantage of the high internal band-
width that Smart SSDs provide. This work studies the offloading
of list intersection into Smart SSDs, because intersection is promi-
nent in both search engines and analytics queries. Furthermore, in-
tersection is interesting because the algorithms are more complex
than plain scans; they are affected by multiple parameters, as we
show, and provide lessons that can be used in other operations also.

We are interested to know whether Smart SSDs can accelerate
the processing of list intersection and reduce the consumed energy.
Intuitively, the answer is yes. However, the performance tradeoffs
on real devices are complex. We implement list intersection into a
real Samsung Smart SSD research prototype. We also provide an
analytical model to understand the key factors to the overall perfor-
mance, and when list intersection can benefit from Smart SSDs. Fi-
nally, we conduct experiments on the Samsung Smart SSD. Based
on the results (both analytical and experimental), we provide many
suggestions for both SSD vendors on how to manufacture powerful
Smart SSDs and for applications on how to make full use of the
functionalities that Smart SSDs provide.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems — Query Processing; H.3.3
[Information Search and Retrieval]: Search Process

Keywords
In-Storage Computing, Smart SSD, List Intersection

1. INTRODUCTION

In a conventional database architecture, solid state drives (SSDs)
are treated as storage-only units. As a result, data storage and com-
putation are strictly separated from one another: Data is stored
on SSDs, while computation is performed at the host CPU. If the
database wishes to examine a piece of data to make a decision or

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

DaMoN’16, June 27, 2016, San Francisco, CA, USA
© 2016 ACM. ISBN 978-1-4503-3638-3/15/06. .. $15.00
DOI: http://dx.doi.org/10.1145/2933349.2933353

Dongchul Park®
Yannis Papakonstantinou?

Yang-Suk Kee?
Steven Swansont

§Samsung Semiconductor Inc.

§{dongchu|.p1 , yangseok.ki}@ssi.samsung.com

execute a query, it must pull the data from SSDs through a (rel-
atively) slow interface (such as SATA, SAS, or PCle) into main
memory where the CPU has access to it.

However, recent studies indicate this “move data closer to code”
paradigm cannot make full use of SSDs for two major reasons [11,
24,33]. (1) Modern SSDs are usually manufactured with a higher
(2-4x) internal bandwidth than the host interface bandwidth. This
bandwidth over-provisioning is crucial to execute many compli-
cated FTL (Flash Translation Layer) tasks efficiently. As an ex-
ample, for the Samsung SSD used in our experiments, the internal
bandwidth is 1.5 GB/s while the host interface (SAS) bandwidth is
550 MB/s. Then the limited external bandwidth will squander the
high internal bandwidth that SSDs provide. (2) Modern SSDs usu-
ally embrace energy-efficient processors (like ARM series 32-bit
processors) to execute FTL tasks. The computing capabilities are
generally ignored by the conventional database architecture where
SSDs are treated as storage-only devices.

To fully exploit SSD potential, SSD in-storage computing (a.k.a
Smart SSD) was recently proposed [11,24,33]. The main idea is to
treat an SSD as a small machine (with ARM processors) to execute
some programs (e.g., C++ code) directly inside the SSDs. Upon
receiving a query, unlike conventional computing architectures that
have the host machine execute the query, now the host sends the
query (or some query operations) to the Smart SSD. The Smart
SSD reads necessary data from flash chips to its device DRAM,
and executes the query (or query steps) on its internal processors.
Then, only the results (expected to be much smaller than the raw
data) are returned to the host machine through the relatively slow
host interface. In this way, Smart SSDs change the traditional com-
puting paradigm to “move code closer to data” (a.k.a near-data pro-
cessing [3,34]).

Although the (ARM) CPU within the Smart SSD is less powerful
(e.g., lower clock speed and higher memory access latency) than
the host (Intel) CPU, the Smart SSD has two advantages which
make it compelling for some I/O-intensive and computationally-
simple applications. (1) The I/O time of accessing data is much
less because of the SSD’s high internal bandwidth. (2) More im-
portantly, energy can be reduced since ARM processors consume
much less power (3-4x) than host CPUs. The energy saving is
dramatically important in today’s data centers because energy can
take 42% of the total monthly operating cost in data centers [18];
this explains why enterprises like Google and Facebook recently
revealed plans to replace their Intel-based servers with ARM-based
servers to save energy and cooling cost [20, 25].

A major research question regarding offloading application-specific
code within Smart SSDs is what kinds of applications can benefit
from Smart SSDs? On the one hand, the high internal I/O band-
width opens up new opportunities; on the other hand, the process-

ing capabilities of Smart SSDs are still very limited. Researchers
have explored the offloading of some operations like scan [11] and
group-by [33] into Smart SSDs.

This paper explores the offloading of another important opera-
tion — list intersection into Smart SSDs, which has not been cov-
ered before. Intersection is at the core of many applications. For in-
stance, finding documents that contain all the query terms in search
engines requires the intersection of several inverted lists;' evaluat-
ing conjunctive predicates in analytical queries requires the inter-
section of several columns.

We are interested to know whether list intersection can benefit
from Smart SSDs. Intuitively we think the answer is yes, because
(1) list intersection is I/O-intensive especially when the lists are
very long. Running it inside SSDs can leverage the high internal
bandwidth. (2) List intersection is computationally-simple because
efficient algorithms (e.g., [7]) only evaluate a small portion of ev-
ery list to find results. Thus, it does not impose too much burden on
the computationally weak cores running inside SSDs. (3) The in-
tersection results (output) can be orders of magnitude smaller than
the original lists (input) [10]. Therefore, much less data will be
transferred though the slow interfaces.

However, the performance tradeoffs on real devices are complex.
We implement list intersection into a real Samsung Smart SSD
research prototype. We find that many factors can affect perfor-
mance. In this paper, we share our experience in accelerating list
intersection and reducing energy consumption with Smart SSDs.
The main contributions of this work are summarized as follows:

e We study the offloading of list intersection into Smart SSDs. Our
results have some implications for both SSD vendors on how to
manufacture powerful Smart SSDs and for applications on how
to make full use of the functionalities that Smart SSDs provide.

e We implement the intersection operation into a real Samsung
Smart SSD.

e We show the key factors that affect the overall performance and
energy consumption analytically and experimentally.

The rest of this paper is organized as follows. Section 2 pro-
vides an overview of the Samsung Smart SSD. Section 3 presents
the design and implementation details of offloading list intersec-
tion within Smart SSDs. Section 4 provides an analytical model to
analyze the performance tradeoffs. Section 5 shows the experimen-
tal results. Section 6 discusses some related studies of this paper.
Section 7 concludes the paper.

2. BACKGROUND OF SAMSUNG SMART
SSD

The key of the Smart SSD is its programming capability such
that user defined programs (e.g., C++ code) can execute within the
SSD. However, commercially available SSDs do not have this fea-
ture. Thus, we rely on the Samsung Smart SSD platform. In this
section, we present the background of the Samsung Smart SSD.
Figure 1 describes the architecture which consists of two major
components: Smart SSD firmware and host Smart SSD program.

The Smart SSD firmware is divided into three components: SS-
Dlet, Smart SSD runtime, and base device firmware. An SSDlet is a
Smart SSD program running inside the SSD. It implements applica-
tion logic and responds to a Smart SSD host program. The SSDlet

"Note that, many search engines including Google and Bing store
the inverted index on SSDs (instead of memory) due to the factors
such as cost, scalability, and energy [6,21,30,31].

Host Smart SSD Program

Session Management | |

.,., @-

Smart SSD Firmware

[SSDlet |

Operation

Smart SSD Runtime |

A

Base Device Firmware |

Flash Chips

Figure 1: Smart SSD architecture

is executed in an event-driven manner by the Smart SSD runtime
system, which implements the libraries of Smart SSD APIs. The
base device firmware is developed to support normal I/O operations
(like read and write) of a storage device.

The host Smart SSD program communicates with the Smart SSD
firmware through APIs. There are four important APIs, namely,
OPEN, CLOSE, GET and PUT. Out of which, OPEN and CLOSE
are session-related APIs while GET and PUT are operation-related
APIs. (1) OPEN: as the name suggests, it starts a session. Once a
session is created, runtime resources such as memory and threads
are assigned to run the SSDlet. (2) CLOSE: it terminates a session,
and all the resources will be reclaimed. (3) GET: it allows the host
Smart SSD program interact with an SSDlet. GET is used to check
the status of the SSDlet and receive the output results once they
are ready. It implements the polling mechanism (instead of the
interrupt mechanism) for SAS/SATA such that the host program
has to keep monitoring the status of the Smart SSD. That is because
traditional block devices cannot initiate a request to the host using
interrupts. (4) PUT: it is used to internally write data to the Smart
SSD device without help from any local file system.

3. DESIGN AND IMPLEMENTATION

In this section, we provide the system design of offloading inter-
section to Smart SSDs (Section 3.1), as well as the implementation
details (Section 3.2).

As the first investigation of list intersection on Smart SSDs, we
focus on the fundamental aspects of intersection. In particular, we
consider only two lists for intersection since multi-list intersection
can be performed efficiently by intersecting two lists in turn [7].

3.1 Design

Figure 2 shows how the Smart SSD interacts with the host sys-
tem. The host system sends some metadata (via OPEN) that is nec-
essary to perform list intersection, for example the addresses and
lengths of the lists. The Smart SSD then starts to load data (lists)
from flash chips to the device memory (DRAM) in pages (of 8 KB).
We secure 150 MB DRAM space (but is extensible) for list inter-
section. Note that, if the lists cannot fit in the device DRAM, we
can either increase the DRAM size, or partition the lists like [27]
such that each partition fits in the device DRAM. Out of the 150
MB space, 256 KB is a special DRAM area called core memory,
which can directly communicate with flash chips. That being said,
every page will be transferred from flash chips to the core memory

Host System
| Metadata
| ’ Load Lists ‘

Load Lists

]

Execute List Intersection ’ Execute List Intersection ‘

i€ I
€

M Results

Figure 2: The interaction of the host system and the Smart SSD

first, and copied to the (relatively) big device DRAM afterwards.
When all the lists are loaded to the device DRAM, the Smart SSD
executes list intersection. Once it is done, the results will be put to
an output buffer and then returned to the host side. The host system
keeps monitoring the status of the Smart SSD to receive the inter-
section results in a heart-beat manner (via GET). We set the polling
interval to be 1 ms (for performance reasons).

3.2 Implementation

We next present the list format and intersection algorithm used
in this work.

List format. Each entry in the list has the form (ID, payload),
where ID (4-byte integer) is the field for intersection and payload
represents arbitrary information about that ID. This data format is
generic to represent data in many applications such as databases
(both row-stored and column-stored) and search engines. In row-
stored databases, the payload represents other fields in a row; in
column-stored databases, the payload is empty and hence only the
ID is left; in search engines, the payload represents document fre-
quency and positional information of a posting [19]. In addition,
each list is sorted in ascending order of the ID.

Intersection algorithm. There are many intersection algorithms
in the literature, e.g., [7,9, 10]. We choose the SvS algorithm [7]
because of its simplicity as well as effectiveness in practice [7, 10].

The SvS algorithm works as follows [7]. Let L1 and L2 be two
lists (|L1] < |L2|). For every element e in L1, check whether e
appears in Lo (membership checking). If so, e is a result; other-
wise, probe the next element in L;. The membership checking is
usually implemented in binary search such that many elements can
be skipped; however, if the lists are of similar sizes, linear search is
more efficient.” In our experiments, we implement both, but only
display the faster one as the results (in Section 5).

4. ANALYTICAL MODEL

In this section, we provide an analytical model to analyze the
overall performance and energy consumption when carrying out
list intersection on regular and Smart SSDs. Table 1 shows a list of
parameters used in the analysis.

We focus on the energy consumption first. Let 7" and 7" be the
execution time for executing list intersection on the regular SSD
and the Smart SSD. Also, let P and P’ be the power (in Watts) of
the host (Intel) CPU and the device (ARM) CPU running within
the Smart SSD. Then, the energy F consumed by the regular SSD
is E =T x P, and the energy E’ consumed by the Smart SSD is

The time complexity of intersection is O(|L1| - log|L2|) and
O(|L1] 4+ |Lz2|) using binary search and linear search, respectively.
When (L1 L, the latter cost is cheaper.

~
~

Symbol Meaning Value
D total data size (of L1 and L2) 100 MB
s(s>4) entry size 256 bytes
00 >1) list size ratio (72)) 1000
|L1] number of entries in L1 ﬁ
|La| number of entries in Lo %
rir<1) intersection ratio (%) 1%
t host DRAM read time (4 bytes) 5ns
t/ device DRAM read time (4 bytes) 18 ns
T device DRAM copy time (4 bytes) 150 ns
b host interface bandwidth 550 MB/s
v’ internal bandwidth of SSD | 1500 MB/s

host CPU frequency 3.4 GHz
ik device CPU frequency 0.4 GHz
c instructions per cycle of host CPU 4
d instructions per cycle of device CPU 2

Table 1: A list of parameters for the analysis. In which, ¢, ¢/,
7,band b’ are obtained by our implemented programs; f, f’, c
and ¢’ are obtained from processor manuals.

E' =T x P'. Since P’ is 3-4x less than P, it is more likely that
E’ is less than E (although the results depend on different queries).

Next, we focus on estimating the execution time 7" and T". We
divide the processing of list intersection into four main stages and
analyze the cost of each stage individually. Thus, T (T") will be a
summation of the cost of each individual stage.

(1) Load data (Section 4.1). Load each list individually from flash
chips to memory (Section 4.1). On Smart SSDs, the memory
refers to the device DRAM while on regular SSDs, it refers to
the host DRAM.

(2) Memory copy (Section 4.2). Copy data from the core memory
to the device memory. This stage is only applicable to Smart
SSDs, because data can only be loaded from flash chips to the
small core memory (256 KB). This is an implementation is-
sue of the Samsung Smart SSD, and we will remove such a
constraint in the future. However, on regular SSDs, data can
directly go from flash chips to the host DRAM, without such
an extra data copy.

(3) Do intersection (Section 4.3). When all the lists are ready, run
the SvS algorithm for intersection on both Smart SSDs and
regular SSDs.

(4) Send results (Section 4.4). After the computation is finished,
send results back to the host. This stage is only applicable to
Smart SSDs.

4.1 Cost of Loading Data

Let T} and 77 be the time (in ms) of reading lists from the regular
SSD and the Smart SSD, then we have,

e Regular SSD:

D 100
legzﬁs:sl&ms
e Smart SSD:
D 100
TN =— = =
1=y = 1s00 * Y OTmS

To verify the accuracy of the model, Figure 3a shows the actual
time for loading the same amount of data. On the Smart SSD, the

actual time is 65 ms (the estimated time is 67 ms); on the regular
SSD, the actual time is 198 ms (the estimated time is 182 ms).

Remark. From the analysis, the internal bandwidth (b") is an im-
portant factor. The benefit of Smart SSDs comes from the high in-
ternal bandwidth. In general, SSDs are manufactured with a higher
internal bandwidth to execute many complicated FTL tasks. Based
on the current technology trends, there is no sign (at least in the
near future) of closing the gap between the two [3, 11].

Note that b’ /b is the upper bound of the performance gains that
Smart SSDs could potentially achieve. The value is 1500/550 =
2.73x in our case.

4.2 Cost of Memory Copy

This stage is only applicable to Smart SSDs by copying data
from the core memory (256 KB) to the (relatively) big device mem-
ory (150 MB). Recall the entry of each list has the form (ID, pay-
load). However, only the ID field (4 bytes) is used for intersection.
Thus, in this stage, we only copy the ID field from the core memory
to the device memory. Note that if the payload is empty, the entire
data has to be copied.

Let T4 be the cost of memory copy (for all the entries), since all
entries in the lists have to be copied, then,

T2’:€~T:%~150z59ms

To verify the accuracy of the model for this stage, Figure 3a
shows the actual time, which is 62.5 ms while the estimated time is
59 ms. The error rate is only 5.6%.

Remark. Based on the analysis, if D and 7 are fixed, then 7%
is inversely proportional to the entry size s. Consider an extreme
case where s = 4 (the payload is empty), then T can be as high
as 3750 ms! That is much higher than the I/O cost saving (which
is 182 — 67 = 115 ms). Thus, Smart SSDs cannot accelerate list
intersection when the entry size is very small (e.g., 4 bytes).

4.3 Cost of List Intersection in Memory

We next analyze the cost of carrying out list intersection in mem-
ory. It is very challenging to analyze, because it is related to dif-
ferent processors (Intel CPU and ARM CPU) which have different
architectures. Many hard-to-model factors like out-of-order execu-
tion, deep pipelining and branch prediction can affect the perfor-
mance.

We estimate the number N,,, of memory accesses and the num-
ber N. of CPU operations. Recall that the intersection algorithm
works as follows. For each element e € L, check whether e ap-
pears in Lo. In this algorithm, for every memory access, there are
around three associated CPU operations (compare, increment and
assignment). Thus we set N. = 3N,, in the cost model.

Next we estimate V,,,, which depends on the approach (either
binary search or linear search) for membership checking. For linear
search, N, can be estimated as 2(| L1 |+ |L2|). We set the constant
factor at 2, because every comparison usually moves one pointer at
a time. For binary search, N,,, = 2|L1| - log, | L2|.

Let T3 and T4 be the time of performing list intersection on the
regular SSD and the Smart SSD. Note that each CPU operation
takes % cycle (on average) to finish because of the superscalar ar-
chitecture, where c is the number of instructions per cycle. Thus,

11 3
T35 = Npm -t + Ne 7e = Nn(t+ cf)

e Regular SSD:

3 3

T3 =Npm —)=Nn T o 1
s (t+5) G+ 1531
| 2(]L1|logsy |L2])(5 +0.22) > binary search
T 2(JLa] + | L2]) (5 + 0.22) > linear search

e Smart SSD:

) = N (54 0.22)

3
c’f’) = Nm (18 + 2 x 0.4

:{ 2(|L1]log, |L2])(18 +3.75) > binary search

T5 = Np(t' +

) = Ny (18 + 3.75)

2(|L1| + |L2|) (18 + 3.75) > linear search

s =4 bytes s = 256 bytes

Nm =5x10" | Ny =7.8 % 10°
6=1 T3 = 261 ms Ts = 4.07 ms
(linear search) | T5 = 1087ms | T4 = 16.96 ms

Np = 1.2 x 10° | N,, = 14,512
6 = 1000 T3 =6.41 ms T3 =0.075 ms
(binary search) | T =26.72ms | 74 = 0.31ms

Table 2: Cost of list intersection, note that |L,| = ﬁ and

|L2| = ;2 (D = 100 MB by default)

To verify the accuracy of the model for this stage, Figure 3a
shows the actual time, which is 0.47 ms when s = 256 and 0 =
1000, while our estimated time is 0.31 ms (see Table 2). The gap
is due to many other factors such as out-of-order execution, deep
pipelining, branch prediction (or even functional calls). However,
this is the CPU time of executing list intersection, which is gener-
ally smaller than the I/O time in Section 4.1. Thus, our analytical
model can still capture the major factors that can affect the perfor-
mance of list intersection.

Remark. Compared to regular SSDs, Smart SSDs require more
time for performing list intersection in this stage. That is not sur-
prising because Smart SSDs suffer from high memory access la-
tencies (t' > t) and low-clocked processors (f' < f). However,
in some cases, the I/O cost saving of the first stage can justify the
penalty of this stage. For example, when § = 1000 and s = 256,
the Smart SSD introduces an overhead of only 0.31 — 0.075 =
0.235 ms (Table 2). That is because the intersection algorithm can
perform efficient skipping without scanning all the data.

The analysis also implies that, Smart SSDs suffer more from
slow memories than slow processors. That can be seen from the
two factors: ¢’ (which is 18) and C,if, (which is 3.75). That is be-
cause list intersection is computationally-simple in the sense that
every element needs at most several CPU operations. However,
accessing the element from memory is even more expensive than
those collected CPU operations. Thus in order for Smart SSDs to
accelerate list intersection, we should improve the memory access
speed first, e.g., by dedicating more caches.

4.4 Cost of Sending Results to Host

This stage is only applicable to the Smart SSD. Let s’ be the
entry size in the output results. Note that s" may be different from
s, where s is the size of the original entry (ID, payload), while s’ is
the size of the projected (result) entry (e.g., ID). Let T} be the cost
of sending intersection results back to the host, then,

T,_|L1|-r~s’_s<1€)r9)'7"5/_9 rs

t b - b T b 146 s
1 4 =

= 182 ms X % =2.8x%x 107" ms

141000 * 256

Remark. The cost of this stage depends on the intersection size,
which is |L1| X 7 in our case. In the worst case, the intersection is
the shortest list, which is at most half of the total data size. That
is, r = 100%, 6 = 1 and s’ = s such that, {7 - %/ = 1/2. For
the general k-list intersection (where k is the number of lists), the
intersection size is at most 1/k of the total data size. Hence, Smart
SSDs can reduce data movement by a factor of at least £ (which is
2 in our case) for list intersection.

However in some applications, if only the intersection size (rather
than the actual intersection results) is concerned, the cost of this
stage is negligible, because only a 4-byte integer will be transferred
to the host.

5. EXPERIMENTS

In this section, we empirically evaluate whether Smart SSDs can
accelerate list intersection. We describe the experimental setup in
Section 5.1, and present the experimental results in Section 5.2.

5.1 Experimental Setting

In our experiments, the host machine is a commodity server with
Intel i7 processor (3.40 GHz) and 8 GB memory running Win-
dows 7. The Smart SSD is a 400 GB SLC SSD, which is con-
nected to the host machine via a host bus adaptor (HBA). The host
interface bandwidth (SAS) is 550 MB/s. The internal bandwidth
is 1.5 GB/s. The regular SSD is an identical SSD but without im-
plementing any query offloading. The processor running inside the
Smart SSD is ARM Cortex-R4 with a clock speed of 400 MHz.

We measure the performance of list intersection in two aspects:
actual execution time and energy consumption. All the values are
averaged across three runs for accuracy. We use WattsUp® to mea-
sure the energy consumed. All the programs (running in Smart
SSDs and regular SSDs) are coded in C++.

5.2 Results

In this work, we use synthetic data with varying parameters to
understand the key factors to the overall performance and energy.
We use two lists Ly and Lo (|L1| < |L2|), and define the inter-

: : LynLy o .
section ratio 7 as % As explained in Section 3.2, each entry

in the list has the form (ID, payload). All the IDs are picked up
randomly (uniformly) from the domain [0, 232 — 1]. In all the ex-
periments, the total data size of the two lists is around 100 MB in
order to fit in the device memory. As explained in Section 3.1, if
the lists cannot fit in the device DRAM, we can increase DRAM
size or partition the lists such that each partition fits in the device
memory.

5.2.1 Effect of the Entry Size

Our first set of experiments evaluates the effect of the entry size
s, which is a very important parameter. We set the size of Lo as
100 MB and the size of L; as 0.1 MB. That is because in practice,
one list is usually longer than the other [10]. We set the intersec-
tion ratio as 1%, and vary s from 4 to 4096. Figure 3 plots the
results. Both the execution time and energy consumption decrease
as s increases, because the lists become shorter.

Figure 3a shows that, Smart SSDs can improve I/O performance.
However, when s is small, there is a significant overhead on mem-
ory copy. For example when s = 4, memcpy accounts for 85%
of the total execution time. That is because there is no cache in
the Samsung Smart SSD. Thus, the device DRAM access latency
is high. When s increases, the overhead of memcpy (also inter-
section) decreases because the number of entries decreases. When

Shttps://www.wattsupmeters.com

= |oad data == memcpy Zzintersection — send results
T dar 2000
'glzoo Smart SSD -e—
<1000 15004 Regular SSD —<—
£ a0 g
c 6004 2 1000
£ 400 o
3 1 o |
¢ 2001 500
O) T T
7 O g, 1 % By, 2 64 256 409
entry size (bytes) entry size (bytes)

(a) execution time (ms) (b) energy consumption (mlJ)

Figure 3: Effect of the entry size

= |0ad data zzzaintersection = send results
,g 250 1600
——— |
~ 200 ~1200 |
g 150
p= 800 1 Smart SO —e-
S 100 Regular SSD ——
5
3 50 40— o—— |
s 0
< 0 9pl, ¥ Y0 plt, 01 10 100 1000
list sizeratio list sizeratio

(a) execution time (ms) (b) energy consumption (mlJ)

Figure 4: Effect of the list size ratio

s = 256, it becomes faster to execute intersection within Smart
SSDs.

Figure 3b demonstrates the energy consumption, which is roughly
proportional to the execution time. But Smart SSDs consume much
less power (energy/time). For example, when s = 4, even if the
Smart SSD incurs 5.1 more execution time, it only consumes
1.3 x more energy than the regular SSD. When s = 64, the Smart
SSD consumes 2.6 % less energy than the regular SSD. That is be-
cause the ARM processor running inside the Smart SSD is much
more power-efficient. Similar facts can also be seen from Figure
4b and Figure 5b.

5.2.2 Effect of the List Size Ratio

We next evaluate the effect of the list size ratio (6), which deter-
mines to what extent the skipping can occur. We set the total size of
L1 and L to be 100 MB. We vary 6 from 1 to 1000, while fixing
the entry size s to be 256 bytes and the intersection ratio r to be
1%. Figure 4 shows the results.

It shows that, (1) there is a clear performance improvement when
0 increases from 100 to 1000. That is because of effective data
skipping (with binary search). Note that the execution time does
not change much when 6 increases from 1 to 100, that is because
linear search is applied. (2) It also show that, when s = 256, Smart
SSDs can accelerate list intersection for any 6.

5.2.3 Effect of the Intersection Ratio

Finally, we evaluate the effect of the intersection ratio r, which
is defined as % In this set of experiments, in order to clearly
see the effect of , we set |L1| = |Lz|, s = 256 and return the
entire entries in the intersection results. Figure 5 plots the results.

It reveals that, when r increases, the cost of sending back results
to the host also increases on the Smart SSD. It is not surprising
that r does not affect the performance of the regular SSD. When
r is 100%, Smart SSDs can no longer accelerate the processing of

= |0ad data == memcpy wzaintersection —— send results
,g 350 ‘Regul‘ar SSI‘D 1600
g ‘;’gg ?\1200
£ B0 e
% 128 T 4004
0 0268 20000y, %a29}% 0000, 810 1% 10% 100%

intersection ratio
(a) execution time (ms)

intersection ratio
(b) energy consumption (mJ)

Figure 5: Effect of the intersection ratio

list intersection, although the total amount of data transferred to the
host is reduced by 50%.

However in some applications, if we only care about the inter-
section size instead of the actual intersection results, the cost of
sending results back to the host will be almost free. That is because
only a 4-byte integer is needed to be transferred to the host.

6. RELATED WORK

The idea of in-storage computing has been around for decades.
Many research efforts have been devoted to making it practical.

As early as in the 1970s, initial work had already proposed to
leverage specialized hardware to accelerate query processing within

storage devices (i.e., hard disks at that time). As an example, CASSM

embedded a processor for each disk track (called “processor-per-
track”) [26]. Another example is the Ohio State Data Base Com-
puter (DBC) [14], which associated the processing logic with each
read/write head of a hard disk (called “processor-per-head”). How-
ever, none of the systems turned out to be successful due to high
design complexity and manufacturing cost.

In the late 1990s, the bandwidth of the hard disk kept increas-
ing while the cost of embedded processors kept decreasing. These
technology trends made it feasible to offload bulk computation to
each individual disk. Researchers explored in-storage computing in
terms of hard disks (e.g., active disks [1] or intelligent disks [15]).
The goal was to offload application-specific query operators inside
hard disks to save data movement. They examined the concept in
database area by offloading several primitive operators (e.g., se-
lection, group-by). Later on, Erik et al. extended the application
to the data mining and multimedia areas [23] (e.g., frequent sets
mining and edge detection). Although interesting, few real systems
adopted the proposals due to various reasons including limited hard
disk bandwidth, limited computing capabilities, and marginal per-
formance gains achieved.

With the advent of SSDs, researchers started to rethink about in-
storage computing in the context of SSDs (Smart SSDs). SSDs of-
fer many advantages over HDDs, notably very high internal band-
widths and computing capabilities. More importantly, executing
code inside SSDs can save energy due to less data movement and
power-efficient embedded ARM processors. These advantages make
the concept of in-storage computing on SSDs much more practical
and promising.

As a result, Smart SSDs gained much attention from industries.
For instance, IBM started to install Smart SSDs to the Blue Gene
supercomputers to boost performance [12]. Teradata’s Extreme
Performance Appliance [28] is another example of integrating SSDs
and database functionalities. Oracle’s Exadata [22] also started to
offload complex query processing into storage servers. Samsung
explored the potential of offloading map-reduce functions to Smart
SSDs [5, 13]. Smart SSDs were popular in academia too. For

example, Kim et al. investigated pushing down the scan opera-
tor and join operator to SSDs [16, 17]. Later on, Do et al. [11]
worked on a real Smart SSD (developed by Samsung). They in-
tegrated the Smart SSD with Microsoft SQL Server by offloading
two operators: scan and aggregation. Woods et al. built another
Smart SSD prototype with FPGAs [32]. They studied operations
including group-by and integrated the prototype with MySQL stor-
age engines. In the data mining area, Bae et al. studied offloading
functions like k-means [2]. In the data analytics area, De et al. pro-
posed to push down key-value stores inside SSDs [8]. In the system
area, Seshadri et al. built the Willow system [24] and studied the
offloading of many applications, e.g., file system, transactional pro-
cessing. Tseng et al. built the Morpheus system to offload object
deserialization [29].

Our work investigates the potential benefit of Smart SSDs to an-
other important operation — list intersection, which has not been
covered before.

7. CONCLUSION

Executing programs within Smart SSDs is a new computing paradigm

to make full use of the SSDs’ hardware capabilities. Rather than
transferring the data to main memory where the CPU can access
it, Smart SSDs execute code inside SSDs directly, exploiting the
high internal bandwidth that SSDs provide. This work studies the
offloading of an important operation — list intersection to Smart
SSDs. By working on the Samsung Smart SSD, we find many fac-
tors that can affect the performance and energy of executing list
intersection within Smart SSDs:

(1) Device memory speed. Although low-clocked on-device pro-
cessors slow down performance, the penalty incurred by high
memory access is even higher. This is a new result to the com-
munity while existing studies on Smart SSDs did not empha-
size [4,11,24].

(2) Internal bandwidth. The internal bandwidth of SSDs is very
important since the benefit of running list intersection within
Smart SSDs comes primarily from the high internal bandwidth.

(3) Entry size. The entry size is also an important factor to list in-
tersection, large entry sizes reduce memory accesses per page.
Smart SSDs can accelerate list intersection when the entry size
s is large enough.

(4) List size ratio. The list size ratio is also an important factor,
which determines to what extent the skipping can occur. The
higher the ratio is, the more likely that Smart SSDs can accel-
erate list intersection.

(5) Intersection size. Finally, the intersection size can also af-
fect the performance of Smart SSDs, because it determines the
amount of data transferred to the host. Smart SSDs can accel-
erate list intersection when the intersection size is small.

Our results also have implications for both SSD vendors to de-
sign powerful Smart SSDs and applications to fully utilize the ca-
pabilities of Smart SSDs. (1) On the SSD vendor side, while it is al-
ways good to have faster processors and high internal bandwidths,
it is urgent to improve the memory access speed. Sometimes, the
memory access time can even dominate the total query processing
time (Figure 3). To do so, SSD vendors can introduce more caches
(both data-cache and instruction-cache) to SSDs. (2) On the ap-
plication side, clearly not all applications can benefit from Smart
SSDs. They have to be I/O-intensive and computationally-simple.
Also, the number of memory accesses should be small and the out-
put size should be (much) smaller than the input size.

8. REFERENCES
[1] A. Acharya, M. Uysal, and J. Saltz. Active disks:

programming model, algorithms and evaluation. In ASPLOS,
pages 81-91, 1998.

[2] D. Bae, J. Kim, S. Kim, H. Oh, and C. Park. Intelligent ssd: a
turbo for big data mining. In CIKM, pages 1573-1576, 2013.

[3] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno,
R. Murphy, R. Nair, and S. Swanson. Near-data processing:
insights from a micro-46 workshop. Micro, IEEE,
34(4):36-42,2014.

[4] S. Cho, C. Park, H. Oh, S. Kim, Y. Yi, and G. R. Ganger.
Active disk meets flash: a case for intelligent ssds. In ICS,
pages 91-102, 2013.

[5] L. S. Choi, W. Yang, and Y. Kee. Early experience with
optimizing I/O performance using high-performance ssds for
in-memory cluster computing. In BigData, pages
1073-1083, 2015.

[6] T. Claburn. Google plans to use intel SSD storage in servers.
http://www .networkcomputing.com/storage/google-plans-
to-use-intel-ssd-storage-in-servers/d/d-id/1067741, 2008.

[7] J. S. Culpepper and A. Moffat. Efficient set intersection for
inverted indexing. TOIS, 29(1):1-25, 2010.

[8] A.De, M. Gokhale, R. Gupta, and S. Swanson. Minerva:
accelerating data analysis in next-generation ssds. In FCCM,
pages 9-16, 2013.

[9] E. D. Demaine, A. Lépez-Ortiz, and J. I. Munro. Adaptive
set intersections, unions, and differences. In SODA, pages
743-752, 2000.

[10] B. Ding and A. C. Konig. Fast set intersection in memory.
PVLDB, 4(4):255-266, 2011.

[11] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J.
DeWitt. Query processing on smart ssds: opportunities and
challenges. In SIGMOD, pages 1221-1230, 2013.

[12] lJiilich Research Center. Blue gene active storage boosts i/0
performance at jsc. http://cacm.acm.org/news/169841-blue-
gene-active-storage-boosts-i-o-performance-at-jsc, 2013.

[13] Y. Kang, Y. Kee, E. L. Miller, and C. Park. Enabling
cost-effective data processing with smart ssd. In MSST,
pages 1-12, 2013.

[14] K. Kannan. The design of a mass memory for a database
computer. In ISCA, pages 44-51, 1978.

[15] K. Keeton, D. A. Patterson, and J. M. Hellerstein. A case for
intelligent disks (idisks). SIGMOD Rec., 27(3):42-52, 1998.

[16] S. Kim, H. Oh, C. Park, S. Cho, and S. Lee. Fast, energy
efficient scan inside flash memory. In ADMS, pages 36-43,
2011.

[17] S. Kim, H. Oh, C. Park, S. Cho, S.-W. Lee, and B. Moon.
In-storage processing of database scans and joins.
Information Sciences, 327:183-200, 2016.

[18] W. Lang and J. M. Patel. Energy management for mapreduce
clusters. PVLDB, 2010.

[19] C.D. Manning, P. Raghavan, and H. Schtze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[20] R. Merritt. Facebook likes wimpy cores, cpu subscriptions.
http://www .eetimes.com/document.asp?doc_id=1261990,
2012.

[21] M. Miller. Bing’s new back-end: cosmos and tigers and
scope. http://searchenginewatch.com/sew/news/2116057/
bings-cosmos-tigers-scope-oh, 2011.

[22] Oracle Corporation. Oracle exadata white paper, 2010.

[23] E. Riedel, G. A. Gibson, and C. Faloutsos. Active storage for
large-scale data mining and multimedia. In VLDB, pages
62-73, 1998.

[24] S. Seshadri, M. Gahagan, S. Bhaskaran, T. Bunker, A. De,
Y. Jin, Y. Liu, and S. Swanson. Willow: a
user-programmable ssd. In OSDI, pages 67-80, 2014.

[25] M. Smolaks. Google is testing qualcomm’s 24-core arm
chipset. http://www.datacenterdynamics.com/servers-
storage/report-google-is-testing-qualcomms-24-core-arm-
chipset/95681.fullarticle, 2016.

[26] S.Y.W. Suand G. J. Lipovski. Cassm: a cellular system for
very large data bases. In VLDB, pages 456472, 1975.

[27] S. Tatikonda, B. B. Cambazoglu, and F. P. Junqueira. Posting
list intersection on multicore architectures. In SIGIR, pages
963-972, 2011.

[28] Teradata Corporation. Teradata extreme performance
alliance.
http://www .teradata.com/t/extreme-performance-appliance.

[29] H.-W. Tseng, Q. Zhao, Y. Zhou, M. Gahagan, and
S. Swanson. Morpheus: creating application objects
efficiently for heterogeneous computing. In ISCA, 2016.

[30] J. Wang, E. Lo, M. L. Yiu, J. Tong, G. Wang, and X. Liu.
The impact of solid state drive on search engine cache
management. In SIGIR, pages 693702, 2013.

[31] J. Wang, E. Lo, M. L. Yiu, J. Tong, G. Wang, and X. Liu.
Cache design of ssd-based search engine architectures: an
experimental study. TOIS, 32(4):1-26, 2014.

[32] L. Woods, Z. Istvan, and G. Alonso. Ibex - an intelligent
storage engine with support for advanced sql off-loading.
PVLDB, 7(11):963-974, 2014.

[33] L. Woods, J. Teubner, and G. Alonso. Less watts, more
performance: an intelligent storage engine for data
appliances. In SIGMOD, pages 1073-1076, 2013.

[34] S. L. Xi, O. Babarinsa, M. Athanassoulis, and S. Idreos.
Beyond the wall: near-data processing for databases. In
DaMoN, 2015.

