TiDB: A Raft-based HTAP Database

Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang: Xiaoyu Ma, Fei Xu, Li Shen, Liu Tang,
Yuxing Zhou, Menglong Huang, Wan Wei, Cong Liu, Jian Zhang, Jianjun Li, Xuelian Wu,
Lingyu Song, Ruoxi Sun, Shuaipeng Yu, Lei Zhao, Nicholas Cameron, Liquan Pei, Xin Tang
PingCAP

{huang, liugi, cuigiu, fangzhuhe, maxiaoyu, xufei, shenli, tl, z, menglong,

weiwan, liucong, zhangjian, Jjay,

wuxuelian,

songlingyu, sunruoxi, yusp,

zhaolei, nick, liquanpei, tangxin}@pingcap.com

ABSTRACT

Hybrid Transactional and Analytical Processing (HTAP) databases
require processing transactional and analytical queries in isolation
to remove the interference between them. To achieve this, it is nec-
essary to maintain different replicas of data specified for the two
types of queries. However, it is challenging to provide a consistent
view for distributed replicas within a storage system, where ana-
Iytical requests can efficiently read consistent and fresh data from
transactional workloads at scale and with high availability.

To meet this challenge, we propose extending replicated state
machine-based consensus algorithms to provide consistent replicas
for HTAP workloads. Based on this novel idea, we present a Raft-
based HTAP database: TiDB. In the database, we design a multi-
Raft storage system which consists of a row store and a column
store. The row store is built based on the Raft algorithm. It is scal-
able to materialize updates from transactional requests with high
availability. In particular, it asynchronously replicates Raft logs to
learners which transform row format to column format for tuples,
forming a real-time updatable column store. This column store al-
lows analytical queries to efficiently read fresh and consistent data
with strong isolation from transactions on the row store. Based on
this storage system, we build an SQL engine to process large-scale
distributed transactions and expensive analytical queries. The SQL
engine optimally accesses row-format and column-format replicas
of data. We also include a powerful analysis engine, TiSpark, to
help TiDB connect to the Hadoop ecosystem. Comprehensive ex-
periments show that TiDB achieves isolated high performance un-
der CH-benCHmark, a benchmark focusing on HTAP workloads.
PVLDB Reference Format:

Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li
Shen, Liu Tang, Yuxing Zhou, Menglong Huang, Wan Wei, Cong Liu, Jian
Zhang, Jianjun Li, Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu,
Lei Zhao, Nicholas Cameron, Liquan Pei, Xin Tang. TiDB: A Raft-based

HTAP Database. PVLDB, 13(12): 3072-3084, 2020.
DOI: https://doi.org/10.14778/3415478.3415535

1. INTRODUCTION

Relational database management systems (RDBMS) are popu-
lar with their relational model, strong transactional guarantees, and

*Zhuhe Fang is the corresponding author.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 13, No. 12

ISSN 2150-8097.

DOIL: https://doi.org/10.14778/3415478.3415535

3072

SQL interface. They are widely adopted in traditional applica-
tions, like business systems. However, old RDBMSs do not pro-
vide scalability and high availability. Therefore, at the beginning
of the 2000s [11], internet applications preferred NoSQL systems
like Google Bigtable [12] and DynamoDB [36]. NoSQL systems
loosen the consistency requirements and provide high scalability
and alternative data models, like key-value pairs, graphs, and doc-
uments. However, many applications also need strong transac-
tions, data consistency, and an SQL interface, so NewSQL systems
appeared. NewSQL systems like CockroachDB [38] and Google
Spanner [14] provide the high scalability of NoSQL for Online
Transactional Processing (OLTP) read/write workloads and still ma-
intain ACID guarantees for transactions [32]. In addition, SQL-
based Online Analytical Processing (OLAP) systems are being de-
veloped quickly, like many SQL-on-Hadoop systems [16].

These systems follow the “one size does not fit all” paradigm
[37], using different data models and technologies for the different
purposes of OLAP and OLTP. However, multiple systems are very
expensive to develop, deploy, and maintain. In addition, analyzing
the latest version of data in real time is compelling. This has given
rise to hybrid OLTP and OLAP (HTAP) systems in industry and
academia [30]. HTAP systems should implement scalability, high
availability, and transnational consistency like NewSQL systems.
Besides, HTAP systems need to efficiently read the latest data to
guarantee the throughput and latency for OLTP and OLAP requests
under two additional requirements: freshness and isolation.

Freshness means how recent data is processed by the analytical
queries [34]. Analyzing the latest data in real time has great busi-
ness value. But it is not guaranteed in some HTAP solutions, such
as those based on an Extraction-Transformation-Loading (ETL) pro-
cessing. Through the ETL process, OLTP systems periodically re-
fresh a batch of the latest data to OLAP systems. The ETL costs
several hours or days, so it cannot offer real-time analysis. The ETL
phase can be replaced by streaming the latest updates to OLAP sys-
tems to reduce synchronization time. However, because these two
approaches lack a global data governance model, it is more com-
plex to consider consistency semantics. Interfacing with multiple
systems introduces additional overhead.

Isolation refers to guaranteeing isolated performance for seper-
ate OLTP and OLAP queries. Some in-memory databases (such as
HyPer [18]) enable analytical queries to read the latest version of
data from transactional processing on the same server. Although
this approach provides fresh data, it cannot achieve high perfor-
mance for both OLTP and OLAP. This is due to data synchroniza-
tion penalties and workload interference. This effect is studied in
[34] by running CH-benCHmark [13], an HTAP benchmark on Hy-
Per and SAP HANA. The study found that when a system co-runs
analytical queries, its maximum attainable OLTP throughput is sig-

nificantly reduced. SAP HANA [22] throughput was reduced by
at least three times, and HyPer by at least five times. Similar re-
sults are confirmed in MemSQL [24]. Furthermore, in-memory
databases cannot provide high availability and scalability if they
are only deployed on a single server.

To guarantee isolated performance, it is necessary to run OLTP
and OLAP requests on different hardware resources. The essen-
tial difficulty is to maintain up-to-date replicas for OLAP requests
from OLTP workloads within a single system. Besides, the system
needs to maintain data consistency among more replicates. Note
that maintaining consistent replicas is also required for availabil-
ity [29]. High availability can be achieved using well-known con-
sensus algorithms, such as Paxos [20] and Raft [29]. They are
based on replicated state machines to synchronize replicas. It is
possible to extend these consensus algorithms to provide consis-
tent replicas for HTAP workloads. To the best of our knowledge,
this idea has not been studied before.

Following this idea, we propose a Raft-based HTAP database:
TiDB. It introduces dedicated nodes (called learners) to the Raft
consensus algorithm. The learners asynchronously replicate trans-
actional logs from leader nodes to construct new replicas for OLAP
queries. In particular, the learners transform the row-format tuples
in the logs into column format so that the replicas are better-suited
to analytical queries. Such log replication incurs little overhead on
transactional queries running on leader nodes. Moreover, the la-
tency of such replication is so short that it can guarantee data fresh-
ness for OLAP. We use different data replicas to separately process
OLAP and OLTP requests to avoid interference between them. We
can also optimize HTAP requests based on both row-format and
column-format data replicas. Based on the Raft protocol, TiDB
provides high availability, scalability, and data consistency.

TiDB presents an innovative solution that helps consensus alg-
orithms-based NewSQL systems evolve into HTAP systems. New-
SQL systems ensure high availability, scalability, and data dura-
bility for OLTP requests by replicating their database like Google
Spanner and CockroachDB. They synchronize data across data repli-
cas via replication mechanisms typically from consensus algorithms.
Based on the log replication, NewSQL systems can provide a colum-
nar replica dedicated to OLAP requests so that they can support
HTAP requests in isolation like TiDB.

We conclude our contributions as follows.

e We propose building an HTAP system based on consensus al-
gorithms and have implemented a Raft-based HTAP database,
TiDB. It is an open-source project [7] that provides high avail-
ability, consistency, scalability, data freshness, and isolation for
HTAP workloads.

e We introduce the learner role to the Raft algorithm to generate a
columnar store for real-time OLAP queries.

e We implement a multi-Raft storage system and optimize its reads
and writes so that the system offers high performance when scal-
ing to more nodes.

e We tailor an SQL engine for large-scale HTAP queries. The en-
gine can optimally choose to use a row-based store and a colum-
nar store.

e We conduct comprehensive experiments to evaluate TiDB’s per-
formance about OLTP, OLAP, and HTAP using CH-benCHmark,
an HTAP benchmark.

The remainder of this paper is organized as follows. We describe
the main idea, Raft-based HTAP, in Section 2, and illustrate the ar-
chitecture of TiDB in Section 3. TiDB’s multi-Raft storage and
HTAP engines are elaborated upon in Sections 4 and 5. Experi-
mental evaluation is presented in Section 6. We summarize related
work in Section 7. Finally, we conclude our paper in Section 8.

------ # Asynchronous replication
-.—.— Quorum replication

Raft group i — e Write/Read _ Read
‘_/./ ‘./ T~ - S~
Raft 09 Raft 09 Raft 09 Raft 09
module é module é module é module é
State machine State machine State machine State machine
T] T] T]
\1 Ml il | (AR
Follower Follower Leader Learner

Figure 1: Adding columnar learners to a Raft group

2. RAFT-BASED HTAP

Consensus algorithms such as Raft and Paxos are the foundation
of building consistent, scalable, and highly-available distributed
systems. Their strength is that data is reliably replicated among
servers in real time using the replicated state machine. We adapt
this function to replicate data to different servers for different HTAP
workloads. In this way, we guarantee that OLTP and OLAP work-
loads are isolated from each other, but also that OLAP requests
have a fresh and consistent view of the data. To the best of our
knowledge, there is no previous work to use these consensus algo-
rithms to build an HTAP database.

Since the Raft algorithm is designed to be easy to understand
and implement, we focus on our Raft extension on implementing
a production-ready HTAP database. As illustrated in Figure 1, at
a high level, our ideas are as follows: Data is stored in multi-
ple Raft groups using row format to serve transactional queries.
Each group is composed of a leader and followers. We add a
learner role for each group to asynchronously replicate data from
the leader. This approach is low-overhead and maintains data con-
sistency. Data replicated to learners are transformed to column-
based format. Query optimizer is extended to explore physical
plans accessing both the row-based and column-based replicas.

In a standard Raft group, each follower can become the leader to
serve read and write requests. Simply adding more followers, there-
fore, will not isolate resources. Moreover, adding more followers
will impact the performance of the group because the leader must
wait for responses from a larger quorum of nodes before respond-
ing to clients. Therefore, we introduced a learner role to the Raft
consensus algorithm. A learner does not participate in leader elec-
tions, nor is it part of a quorum for log replication. Log replication
from the leader to a learner is asynchronous; the leader does not
need to wait for success before responding to the client. The strong
consistency between the leader and the learner is enforced during
the read time. By design, the log replication lag between the leader
and learners is low, as demonstrated in the evaluation section.

Transactional queries require efficient data updates, while ana-
Iytical queries such as join or aggregation require reading a sub-
set of columns, but a large number of rows for those columns.
Row-based format can leverage indexes to efficiently serve trans-
actional queries. Column-based format can leverage data compres-
sion and vectorized processing efficiently. Therefore, when repli-
cating to Raft learners, data is transformed from row-based format
to column-based format. Moreover, learners can be deployed in
separate physical resources. As a result, transaction queries and
analytical queries are processed in isolated resources.

Our design also provides new optimization opportunities. Be-
cause data is kept consistent between both the row-based format
and column-based format, our query optimizer can produce physi-
cal plans which access either or both stores.

We have presented our ideas of extending Raft to satisfy the
freshness and isolation requirements of an HTAP database. To
make an HTAP database production ready, we have overcome many
engineering challenges, mainly including:

3073

Figure 2: TiDB architecture

(1) How to build a scalable Raft storage system to support highly
concurrent read/write? If the amount of data exceeds the avail-
able space on each node managed by the Raft algorithm, we
need a partition strategy to distribute data on servers. Besides,
in the basic Raft process, requests are processed sequentially,
and any request must be approved by the quorum of Raft nodes
before responding to clients. This process involves network
and disk operations, and thus is time-consuming. This over-
head makes the leader become a bottleneck to processing re-
quests, especially on large datasets

(2) How to synchronize logs into learners with low latency to keep
data fresh? Undergoing transactions can generate some very
large logs. These logs need to be quickly replayed and materi-
alized in learners so that the fresh data can be read. Transform-
ing log data into column format may encounter errors due to
mismatched schemas. This may delay log synchronization.

(3) How to efficiently process both transactional and analytical
queries with guaranteed performance? Large transactional que-
ries need to read and write huge amounts of data distributed in
multiple servers. Analytical queries also consume intensive re-
sources and should not impact online transactions. To reduce
execution overhead, they also need to choose optimal plans on
both a row-format store and a column-format store.

In the following sections, we will elaborate the design and imple-
mentation of TiDB to address these challenges.

3. ARCHITECTURE

In this section, we describe the high-level structure of TiDB,
which is illustrated in Figure 2. TiDB supports the MySQL pro-
tocol and is accessible by MySQL-compatible clients. It has three
core components: a distributed storage layer, a Placement Driver
(PD), and a computation engine layer.

The distributed storage layer consists of a row store (TiKV) and
a columnar store (TiFlash). Logically, the data stored in TiKV is
an ordered key-value map. Each tuple is mapped into a key-value
pair. The key is composed of its table ID and row ID, and the value
is the actual row data, where the table ID and row ID are unique
integers, and the row ID would be from a primary key column. For
example, a tuple with four columns is encoded as:
Key:{table{tableID} _record{rowID}}

Value: {col0, coll, col2, col3}

To scale out, we take a range partition strategy to split the large key-
value map into many contiguous ranges, each of which is called
a Region. Each Region has multiple replicas for high availabil-
ity. The Raft consensus algorithm is used to maintain consistency
among replicas for each Region, forming a Raft group. The leaders
of different Raft groups asynchronously replicate data from TiKV
to TiFlash. TiKV and TiFlash can be deployed in separate physi-
cal resources and thus offer isolation when processing transactional
and analytical queries.

Placement Driver (PD) is responsible for managing Regions, in-
cluding supplying each key’s Region and physical location, and au-
tomatically moving Regions to balance workloads. PD is also our

Log replication.

Partition

Region 1 ‘«>

Region 2 —+=

Region 3

Table :] :
(K-V map) - :
Figure 3: The architecture of multi-Raft storage

timestamp oracle, providing strictly increasing and globally unique
timestamps. These timestamps also serve as our transaction IDs.
PD may contain multiple PD members for robustness and perfor-
mance. PD has no persistent state, and on startup a PD member
gathers all necessary data from other members and TiKV nodes.

The computation engine layer is stateless and is scalable. Our
tailored SQL engine has a cost-based query optimizer and a dis-
tributed query executor. TiDB implements a two-phase commit
(2PC) protocol based on Percolator [33] to support transactional
processing. The query optimizer can optimally select to read from
TiKV and TiFlash based on the query.

The architecture of TiDB meets the requirement of an HTAP
database. Each component of TiDB is designed to have high avail-
ability and scalability. The storage layer uses the Raft algorithm to
achieve consistency between data replicas. The low latency repli-
cation between the TiKV and TiFlash makes fresh data available to
analytical queries. The query optimizer, together with the strongly-
consistent data between TiKV and TiFlash, offers fast analytical
query processing with little impact on transactional processing.

Besides the components mentioned above, TiDB also integrates
with Spark, which is helpful to integrate data stored in TiDB and
the Hadoop Distributed File System (HDFS). TiDB has a rich set
of ecosystem tools to import data to and export data from TiDB and
migrate data from other databases to TiDB.

In the following sections, we will do a deep dive on the dis-
tributed storage layer, the SQL engine, and TiSpark to demonstrate
the capability of TiDB, a production-ready HTAP database.

4. MULTI-RAFT STORAGE

Figure 3 shows the architecture of the distributed storage layer
in TiDB, where the objects with the same shape play the same
role. The storage layer consists of a row-based store, 7iKV, and
a column-based store, TiFlash. The storage maps a large table into
a big key-value map which is split into many Regions stored in
TiKV. Each Region uses the Raft consensus algorithm to maintain
the consistency among replicas to achieve high availability. Mul-
tiple Regions can be merged into one partition when data is repli-
cated to TiFlash to facilitate table scan. The data between TiKV
and TiFlash is kept consistent through asynchronous log replica-
tion. Since multiple Raft groups manage data in the distributed
storage layer, we call it multi-Raft storage. In the following sec-
tions, we describe TiKV and TiFlash in detail, focusing on opti-
mizations to make TiDB a production-ready HTAP database.

4.1 Row-based Storage (TiKV)

A TiKV deployment consists of many TiKV servers. Regions
are replicated between TiKV servers using Raft. Each TiKV server
can be either a Raft leader or follower for different Regions. On
each TiKV server, data and metadata are persisted to RocksDB,
an embeddable, persistent, key-value store [5]. Each Region has
a configurable max size, which is 96 MB by default. The TiKV
server for a Raft leader handles read/write requests for the corre-
sponding Region.

3074

When the Raft algorithm responds to read and write requests, the
basic Raft process is executed between a leader and its followers:
(1) A Region leader receives a request from the SQL engine layer.
(2) The leader appends the request to its log.

(3) The leader sends the new log entries to its followers, which in
turn append the entries to their logs.

(4) The leader waits for its followers to respond. If a quorum of
nodes respond successfully, then the leader commits the re-
quest and applies it locally.

(5) The leader sends the result to the client and continues to pro-
cess incoming requests.

This process ensures data consistency and high availability. How-
ever, it does not provide efficient performance because the steps
happen sequentially, and may incur large I/O overheads (both disk
and network). The following sections describe how we have opti-
mized this process to achieve high read/write throughput, i.e., solv-
ing the first challenge described in Section 2.

4.1.1 Optimization between Leaders and Followers

In the process described above, the second and third steps can
happen in parallel because there is no dependency between them.
Therefore, the leader appends logs locally and sends logs to fol-
lowers at the same time. If appending logs fails on the leader but a
quorum of the followers successfully append the logs, the logs can
still be committed. In the third step, when sending logs to follow-
ers, the leader buffers log entries and sends them to its followers
in batches. After sending the logs, the leader does not have to wait
for the followers to respond. Instead, it can assume success and
send further logs with the predicted log index. If errors occur, the
leader adjusts the log index and resends the replication requests. In
the fourth step, the leader applying committed log entries can be
handled asynchronously by a different thread because at this stage
there is no risk to consistency. Based on the optimizations above,
the Raft process is updated as follows:

(1) A leader receives requests from the SQL engine layer.

(2) The leader sends corresponding logs to followers and appends
logs locally in parallel.

(3) The leader continues to receive requests from clients and re-
peats step (2).

(4) The leader commits the logs and sends them to another thread
to be applied.

(5) After applying the logs, the leader returns the results to the
client.

In this optimal process, any request from a client still runs all the
Raft steps, but requests from multiple clients are run in parallel, so
the overall throughput increases.

4.1.2 Accelerating Read Requests from Clients

Reading data from TiKV leaders is provided with linearizable
semantics. This means when a value is read at time ¢ from a Re-
gion leader, the leader must not return a previous version of the
value for read requests after 7. This can be achieved by using Raft
as described above: issuing a log entry for every read request and
waiting for that entry to be committed before returning. However,
this process is expensive because the log must be replicated across
the majority of nodes in a Raft group, incurring the overhead of
network I/0. To improve performance, we can avoid the log syn-
chronization phase.

Raft guarantees that once the leader successfully writes its data,
the leader can respond to any read requests without synchronizing
logs across servers. However, after a leader election, the leader role
may be moved between servers in a Raft group. To achieve reading
from leaders, TiKV implements the following read optimizations
as described in [29].

3075

The first approach is called read index. When a leader responds
to a read request, it records the current commit index as a local read
index, and then sends heartbeat messages to followers to confirm
its leader role. If it is indeed the leader, it can return the value
once its applied index is greater than or equal to the read index.
This approach improves read performance, though it causes a little
network overhead.

Another approach is lease read, which reduces the network over-
head of heartbeats caused by the read index. The leader and fol-
lowers agree on a lease period, during which followers do not issue
election requests so that the leader is not changed. During the lease
period, the leader can respond to any read request without connect-
ing to its followers. This approach works well if the CPU clock on
each node does not differ very much.

In addition to the leader, followers can also respond to read re-
quests from clients, which is called follower read. After a follower
receives a read request, it asks the leader for the newest read index.
If the locally-applied index is equal to or greater than the read in-
dex, the follower can return the value to the client; otherwise, it has
to wait for the log to be applied. Follower read can alleviate the
pressure on the leader of a hot Region, thus improving read perfor-
mance. Read performance can then be further improved by adding
more followers.

4.1.3 Managing Massive Regions

Massive Regions are distributed on a cluster of servers. The
servers and data size are dynamically changing, and Regions may
cluster in some servers, especially leader replicas. This causes
some servers’ disks to become overused, while others are free. In
addition, servers may be added to or moved from the cluster.

To balance Regions across servers, the Plancement Driver (PD)
schedules Regions with constraints on the number and location of
replicas. One critical constraint is to place at least three replicas
of a Region on different TiKV instances to ensure high availabil-
ity. PD is initialized by collecting specific information from servers
through heartbeats. It also monitors the workloads of each server
and migrates hot Regions to different servers without impacting ap-
plications.

On the other hand, maintaining massive Regions involves send-
ing heartbeats and managing metadata, which can cause a lot of net-
work and storage overhead. However, if a Raft group does not have
any workloads, the heartbeat is unnecessary. Depending on how
busy the Regions’ the workloads are, we can adjust the frequency
of sending heartbeats. This reduces the likelihood of running into
issues like network latency or overloaded nodes.

4.1.4 Dynamic Region Split and Merge

A large Region may become too hot to be read or written in a
reasonable time. Hot or large Regions should be split into smaller
ones to better distribute workload. On the other hand, it is possible
that many Regions are small and seldom accessed; however, the
system still needs to maintain the heartbeat and metadata. In some
cases, maintaining these small Regions incurs significant network
and CPU overhead. Therefore, it is necessary to merge smaller Re-
gions. Note that to maintain the order between Regions, we only
merge adjacent Regions in the key space. Based on observed work-
loads, PD dynamically sends split and merge commands to TiKV.

A split operation divides a Region into several new, smaller Re-
gions, each of which covers a continuous range of keys in the orig-
inal Region. The Region that covers the rightmost range reuses the
Raft group of the original Region. Other Regions use new Raft
groups. The split process is similar to a normal update request in
the Raft process:

Table 1: Log replaying and decoding

{1}{insert}{prewritten@1}{k1— (al, bl)}
{2}{insert}{prewritten @2} {k2— (a2, b2)}
{3}{update}{prewritten@3} {k3— (a3, b3)}
{1}{insert}{rollbacked@1}
{2}{insert}{committed#4}
{3}{update}{committed#5}
{4}{delete}{prewritten @6} {k4}
{4}{delete }{ committed#7 }

{2}{insert}{prewritten @2} {k2— (a2, b2)}
{3}{update}{prewritten@3} {k3— (a3, b3)}
{2}{insert}{committed#4 }
{3}{update}{committed#5}
{4}{delete}{prewritten @6} {k4 }
{4}{delete } { committed#7 }

{insert}{#4}{k2— (a2, b2)}
{update} {#5}{k3— (a3, b3)}
{delete} {#7}{k4}

{insert,update,delete, }
{#4.#5 471}
{k2.k3.k4.}

{a2,a3,.}

{b2,b3..}

Raw logs

Compacted logs

Decoded tuples

Columnar data

(1) PD issues a split command to the leader of a Region.

(2) After receiving the split command, the leader transforms the
command into a log and replicates the log to all its follower
nodes. The log only includes a split command, instead of mod-
ifying actual data.

(3) Once a quorum replicates the log, the leader commits the split
command, and the command is applied to all the nodes in the
Raft group. The apply process involves updating the original
Region’s range and epoch metadata, and creating new Regions
to cover the remaining range. Note that the command is applied
atomically and synced to disk.

(4) For each replica of a split Region, a Raft state machine is cre-
ated and starts to work, forming a new Raft group. The leader
of the original Region reports the split result to PD. The split
process completes.

Note that the split process succeeds when a majority of nodes
commit the split log. Similar to committing other Raft logs, rather
than requiring all nodes to finish splitting the Region. After the
split, if the network is partitioned, the group of nodes with the most
recent epoch wins. The overhead of region split is low as only meta-
data change is needed. After a split command finishes, the newly
split Regions may be moved across servers due to PD’s regular load
balancing.

Merging two adjacent Regions is the opposite of splitting one.
PD moves replicas of the two Regions to colocate them on sepa-
rate servers. Then, the colocated replicas of the two Regions are
merged locally on each server through a two-phase operation; that
is, stopping the service of one Region and merging it with another
one. This approach is different from splitting a Region, because it
cannot use the log replication process between two Raft groups to
agree on merging them.

4.2 Column-based Storage (TiFlash)

Even though we optimize reading data from TiKV as described
above, the row-format data in TiKV is not well-suited for fast anal-
ysis. Therefore, we incorporate a column store (TiFlash) into TiDB.
TiFlash is composed of learner nodes, which just receive Raft logs
from Raft groups and transform row-format tuples into columnar
data. They do not participate in the Raft protocols to commit logs
or elect leaders so they induce little overhead on TiKV.

A user can set up a column-format replica for a table using an
SQL statement:

ALTER TABLE x SET TiFLASH REPLICA n;
where x is the name of the table and n is the number of replicas.
The default value is /. Adding a column replica resembles adding
an asynchronous columnar index to a table. Each table in TiFlash
is divided into many partitions, each of which covers a contigu-
ous range of tuples, in accordance with several continuous Regions
from TiKV. The larger partition facilitates range scan.

When initializing a TiFlash instance, the Raft leaders of the rel-
evant Regions begin to replicate their data to the new learners. If
there is too much data for fast synchronization, the leader sends a
snapshot of its data. Once initialization is complete, the TiFlash
instance begins listening for updates from the Raft groups. After
a learner node receives a package of logs, it applies the logs to the
local state machine, including replaying the logs, transforming the
data format, and updating the referred values in local storage.

In the following sections, we illustrate how TiFlash efficiently
applies logs and maintains a consistent view with TiKV. This meets
the second challenge we described in Section 2.

4.2.1 Log Replayer

In accordance with the Raft algorithm, the logs received by learner
nodes are linearizable. To keep the linearizable semantics of com-
mitted data, they are replayed according to a first-in, first-out (FIFO)
strategy. The log replay has three steps:

(1) Compacting logs: According to the transaction model described

in later Section 5.1, the transactional logs are classified into

three statuses: prewritten, committed, or rollbacked. The data
in the rollbacked logs does not need to be written to disks, so

a compact process deletes invalid prewritten logs according to

rollbacked logs and puts valid logs into a buffer.

Decoding tuples: The logs in the buffer are decoded into row-

format tuples, removing redundant information about transac-

tions. Then, the decoded tuples are put into a row buffer.

(3) Transforming data format: If the data size in the row buffer
exceeds a size limit or its time duration exceeds a time inter-
val limit, these row-format tuples are transformed to columnar
data and are written to a local partition data pool. Transfor-
mation refers to local cached schemas, which are periodically
synchronized with TiKV as described later.

Q@

~

To illustrate the details of the log replay process, consider the fol-
lowing example. We abstract each Raft log item as transaction ID-
operation type[transaction status][@start_ts][#commit_ts]operation
data. According to typical DMLs, the operation type includes in-
serting, updating, and deleting tuples. Transactional status may
be prewritten, committed, or rollbacked. Operation data may be a
specifically-inserted or updated tuple, or a deleted key.

In our example shown in Table 1, the raw logs contain eight
items which attempt to insert two tuples, update one tuple, and
delete one tuple. But inserting k1 is rolled back, so only six of
the eight raw log items are preserved, from which three tuples are
decoded. Finally, the three decoded tuples are transformed into
five columns: operation types, commit timestamps, keys, and two
columns of data. These columns are appended to the DeltaTree.

4.2.2 Schema Synchronization

To transform tuples into columnar format in real time, learner
nodes have to be aware of the newest schema. Such a schemaful
process is different from schemaless operations on TiKV which en-
code tuples as byte arrays. The newest schema information is stored
in TiKV. To reduce the number of times TiFlash asks TiKV for
the newest schema, each learner node maintains a schema cache.

3076

B+ tree

[Defa1] [Deiwo |

Delta space

[Chunk1 |
Stable space

L[]~

[Chunk 0 |

Figure 4: The columnar delta tree

1

The cache is synchronized with TiKV’s schema through a schema
syncer. If the cached schema is out of date, there is a mismatch
between data being decoded and the local schema, and data must
be retransformed. There is a trade-off between the frequency of
schema synchronization and the number of schema mismatches.
We take a two-stage strategy:

e Regular synchronization: the schema syncer fetches the newest
schema from TiKV periodically and applies changes to its local
cache. In most cases, this casual synchronization reduces the
frequency of synchronizing schemas.

Compulsive synchronization: if the schema syncer detects a mis-
matched schema, it proactively fetches the newest schema from
TiKV. This can be triggered when the column number differs
between tuples and schemas or a column value overflows.

4.2.3 Columnar Delta Tree

To efficiently write and read the columnar data with high through-
put, we design a new columnar storage engine, DeltaTree, which
appends delta updates immediately and later merges them with the
previously stable version for each partition. The delta updates and
the stable data are stored separately in the DeltaTree, as shown in
Figure 4. In the stable space, partition data is stored as chunks, and
each of them covers a smaller range of the partition’s tuples. More-
over, these row-format tuples are stored column by column. In con-
trast, deltas are directly appended into the delta space in the order
TiKV generates them. The store format of columnar data in TiFlash
is similar to Parquet [4]. It also stores row groups into columnar
chunks. Differently, TiFlash stores column data of a row group and
its metadata to different files to concurrently update files, instead
of only one file in Parquet. TiFlash just compresses data files using
the common LZ4 [2] compression to save their disk size.

New incoming deltas are an atomic batch of inserted data or a
deleted range. These deltas are cached into memory and material-
ized into disks. They are stored in order, so they achieve the func-
tion of a write-ahead log (WAL). These deltas are usually stored
in many small files and therefore induce large IO overhead when
read. To reduce cost, we periodically compact these small deltas
into a larger one, then flush the larger deltas to disks and replace
the previously materialized small deltas. The in-memory copy of
incoming deltas facilitates reading the latest data, and if the old
deltas reach a limited size, they are removed.

When reading the latest data of some specific tuples, it is neces-
sary to merge all delta files with their stable tuples (i.e., read ampli-
fication), because where the related deltas distribute is not known in
advance. Such a process is expensive due to reading a lot of files. In
addition, many delta files may contain useless data (i.e., space am-
plification) that wastes storage space and slows down merging them
with stable tuples. Therefore, we periodically merge the deltas into
the stable space. Each delta file and its related chunks are read
into memory and merged. Inserted tuples in deltas are added into
the stable, modified tuples replace the original tuples, and deleted
tuples are moved. The merged chunks atomically replace original
chunks in disks.

3077

Table 2: Read performance of DeltaTree and LSM tree

Tuple Storage Transactions per second
number engine 150 1300 8000 14000
Deltatree 0.49 0.48 0.5 0.45
100M LSMtree 101 097 0.94 0.95
Deltatree 0.71 074 0.72 0.75
200M LSMtree 1.59 1.63 1.67 1.64

Merging deltas is expensive because the related keys are disor-
dered in the delta space. Such disorder also slows down integrating
deltas with stable chunks to return the latest data for read requests.
Therefore, we build a B+ tree index on the top of the delta space.
Each delta item of updates is inserted into the B+ tree ordered by
its key and timestamp. This order priority helps to efficiently locate
updates for a range of keys or to look up a single key in the delta
space when responding to read requests. Also, the ordered data in
the B+ tree is easy to merge with stable chunks.

We conduct a micro-experiment to compare the DeltaTree’s per-
formance to the log-structured-merge (LSM) tree [28] in TiFlash,
where data is read as it is updated according to Raft logs. We set
three TiKV nodes and one TiFlash node, and the hardware con-
figurations are listed in the experimental section. We run the only
write workload of Sysbench [6] on TiKV and run “select count(id),
count(k) from sbtestI”” on TiFlash. To avoid the large write amplifi-
cation of data compaction, we implement the LSM storage engine
using a universal compaction, rather than a level style compaction.
This implementation is also adopted in ClickHouse [1], a column-
oriented OLAP database.

As shown in Table 2, reading from the delta tree is about two
times faster than the LSM tree, regardless of whether there are 100
or 200 million tuples, as well as the transactional workloads. This
is because in the delta tree each read accesses at most one level of
delta files that are indexed in a B+ tree, while it accesses more over-
lapped files in the LSM tree. The performance remains almost sta-
ble under different write workloads because the ratio of delta files
is nearly the same. Although the write amplification of DeltaTree
(16.11) is greater than the LSM tree (4.74), it is also acceptable.

4.2.4 Read Process

Like follower read, learner nodes provide snapshot isolation so
we can read data from TiFlash at a specific timestamp. After re-
ceiving a read request, the learner sends a read index request to its
leaders to get the newest data that covers the requested timestamp.
In response, the leaders send the referred logs to the learner, and the
learner replays and stores the logs. Once the logs are written into
DeltaTree, the specific data from the DeltaTree is read to respond
to the read request.

S. HTAP ENGINES

To solve the third challenge mentioned in Section 2, i.e., pro-
cessing large-scale transactions and analytical queries, we provide
an SQL engine to evaluate transactional and analytical queries. The
SQL engine adapts the Percolator model to implement optimistic
and pessimistic locking in a distributed cluster. The SQL engine
accelerates analytical queries by using a rule- and cost-based opti-
mizer, indexes, and pushing down computation to the storage layer.
We also implement TiSpark to connect with the Hadoop ecosystem
and enhance OLAP capability. HTAP requests can be processed
separately in isolated stores and engine servers. In particular, the
SQL engine and TiSpark benefit from using both row and column
stores at the same time to get optimal results.

Client Engine PD TiKV Client Engine PD TiKV
-Begin—»| Get I-Begin—»| Get
L DMLs—p| ~ SArtts LDMLs—p] ~ Srtts
Read data > Read data »
_____ | Get
Write =~ for_update_ts
locally _." | | | = ——__
-«——— Write =~
. locally)
-Commit-» L
- = -
)i\ Prewrite with — c o] Acquire locks
— ~Commi
i start_ts and lock A Prewrite with|
2PC | Get I start ts
I Commit_ts | 2PC | Get
i i Commit ts
. Commit with | ; Commit with |
[+Succeed-| Commit_ts [+Succeed Commit_ts
VvV V v V vV

(a) Optimistic transaction (b) Pessimistic transaction

Figure 5: The process of optimistic and pessimistic transaction

5.1 Transactional Processing

TiDB provides ACID transactions with snapshot-isolation (SI)
or repeatable read (RR) semantics. SI lets each request within a
transaction read a consistent version of the data. RR means that
different statements in a transaction might read different values for
the same key, but that repeating a read (i.e., two reads with the same
timestamp) will always read the same value. Our implementation,
based on multi-version concurrency control (MVCC), avoids read-
write locking and protects against write-write conflicts.

In TiDB, transactions are collaborative between the SQL engine,
TiKYV, and PD. The responsibility of each component during trans-
action is as follows:

e SQL engine: coordinates transactions. It receives the write and
read requests from clients, transforms data into a key-value for-
mat, and writes the transactions to TiKV using two-phase com-
mit (2PC).

e PD: manages logical Regions and physical locations; provides
global, strictly-increasing timestamps.

e TiKV: provides distributed transaction interfaces, implements
MVCC, and persists data to disk.

TiDB implements both optimistic and pessimistic locking. They
are adapted from the Percolator model, which selects one key as
the primary key and uses it to stand for the status of a transaction,
and base 2PC to conduct transactions. The process of an optimistic
transaction is illustrated on the left of Figure 5. (For simplicity, the
figure ignores exception handling.)

(1) After receiving a “begin” command from a client, the SQL en-
gine asks PD for a timestamp to use as the start timestamp
(start_ts) of the transaction.

(2) The SQL engine executes SQL DMLs by reading data from
TiKV and writing to local memory. TiKV supplies data with
the most recent commit timestamp (commit_ts) before the trans-
action’s start_ts.

(3) When the SQL engine receives a commit command from the
client, it starts the 2PC protocol. It randomly chooses a primary
key, locks all keys in parallel, and sends prewrites to TiKV
nodes.

(4) If all prewrites succeed, the SQL engine asks PD for a times-
tamp for the transaction’s commit_ts and sends a commit com-
mand to TiKV. TiKV commits the primary key and sends a
success response back to the SQL engine.

(5) The SQL engine returns success to the client.

(6) The SQL engine commits secondary keys and clears locks asyn-
chronously and in parallel by sending further commit com-
mands to TiKV.

The main difference between optimistic and pessimistic transac-
tions is when locks are acquired. In optimistic transactions, locks
are acquired incrementally in the prewrite phase (step 3 above). In
pessimistic transactions, locks are acquired as DMLs are executed
before prewrite (part of step 2). That means that once prewrite
starts, the transaction will not fail due to conflict with another trans-
action. (It can still fail due to network partition, or other issues.)

When locking keys in a pessimistic transaction, the SQL engine
acquires a new timestamp, called the for_update_ts. If the SQL
engine cannot acquire a lock, it can retry the transaction starting
at that lock, rather than rolling back and retrying the whole trans-
action. When reading data, TiKV uses for_update_ts rather than
start_ts to decide which values of a key can be read. In this manner,
pessimistic transactions maintain the RR isolation level, even with
partial retries of transactions.

With pessimistic transactions, users can also opt to require only
the read committed (RC) isolation level. This causes less conflict
between transactions and thus better performance, at the expense
of less isolated transactions. The difference in implementation is
that for RR TiKV must report a conflict if a read tries to access a
key locked by another transaction; for RC, locks can be ignored for
reading.

TiDB implements distributed transactions without a centralized
lock manager. Locks are stored in TiKV, giving high scalability and
availability. Moreover, the SQL engine and PD servers are scalable
to handle OLTP requests. Running many transactions simultane-
ously across servers achieves a high degree of parallelism.

Timestamps are requested from PD. Each timestamp includes
the physical time and logical time. The physical time refers to
the current time with millisecond accuracy, and the logical time
takes 18 bits. Therefore, in theory, PD can allocate 2'® timestamps
per millisecond. In practice, it can generate about 1 million times-
tamps per second as allocating timestamps only costs a few cycles.
Clients ask for timestamps once a batch to amortize overhead, es-
pecially network latency. At present, getting timestamps is not a
performance bottleneck in our experiments and in many productive
environments.

5.2 Analytical Processing

In this section, we describe our optimizations targeted at OLAP
queries, including an optimizer, indexes, and pushing down com-
putation in our tailored SQL engine and TiSpark.

5.2.1 Query Optimization in SQL Engine

TiDB implements a query optimizer with two phases of query
optimisation: rule-based optimization (RBO) of the query which
produces a logical plan, then cost-based optimization (CBO) which
transforms a logical plan to a physical plan. Our RBO has a rich
set of transformation rules, including cropping unneeded columns,
eliminating projection, pushing down predicates, deriving predi-
cates, constant folding, eliminating “group by” or outer joins, and
unnesting subqueries. Our CBO chooses the cheapest plan from
candidate plans according to execution costs. Note that TiDB pro-
vides two data stores, TiKV and TiFlash, so scanning tables typi-
cally has three options: scanning row-format tables in TiKV, scan-
ning tables with indexes in TiKV, and scanning columns in TiFlash.

Indexes are important to improve query performance in databases,
which are usually used in point-get or range queries, providing
more cheaper data scan paths for hash joins and merge joins. TiDB
implements scalable indexes to work in a distributed environment.
Because maintaining indexes consumes a significant amount of re-
sources and may affect online transactions and analysis, we asyn-
chronously build or drop indexes in the background. Indexes are

3078

TiSpark
{} Read/Write data

Multi-Raft storage

Figure 6: The interaction of TiSpark and TiDB

split by Regions in the same way as data and stored in TiKV as
key-values. An index item on a unique key index is encoded as:
Key: {table{tableID} _index{indexID} _indexedColValue}

Value: {rowID}

An index item on a nonunique index is decoded as:

Key: {table{tablelD} _index{indexID} _indexedColValue_rowID}
Value: {null}

Using an index requires a binary search to locate the Regions which
contain relevant parts of the index. To increase the stability of index
selection and reduce the overhead of physical optimization, we use
a skyline pruning algorithm to eliminate useless candidate indexes.
If there are multiple candidate indexes that match different query
conditions, we merge partial results (i.e., a set of qualified row IDs)
to get a precise results set.

Physical plans (the result of CBO) are executed by the SQL en-
gine layer using the pulling iterator model [17]. Execution can
be further optimized by pushing down some computation to the
storage layer. In the storage layer, the component that performs
the computation is called a coprocessor. The coprocessor executes
subtrees of an execution plan on different servers in parallel. This
reduces the number of tuples that must be sent from the storage
layer to the engine layer. For example, by evaluating filters in the
coprocessor, rejected tuples are filtered out in the storage layer, and
only the accepted tuples need to be sent to the engine layer. The
coprocessor can evaluate logical operations, arithmetic operations,
and other common functions. In some cases, it can execute ag-
gregations and TopN. The coprocessor can further improve perfor-
mance by vectorizing operations: instead of iterating over whole
rows, rows are batched and data is organized by column, resulting
in much more efficient iteration.

5.2.2 TiSpark

To help TiDB connect to the Hadoop ecosystem, TiDB adds
TiSpark on the multi-Raft storage. In addition to SQL, TiSpark
supports powerful computation such as machine learning libraries
and can process data from outside TiDB.

Figure 6 shows how TiSpark integrates with TiDB. In TiSpark,
the Spark driver reads metadata from TiKV to construct a Spark
catalog, including table schemas and index information. The Spark
driver asks PD for timestamps to read MVCC data from TiKV to
ensure it gets a consistent snapshot of the database. Like the SQL
engine, Spark Driver can push down computation to the coproces-
sor on the storage layer and use available indexes. This is done by
modifying the plans generated by the Spark optimizer. We also cus-
tomize some read operations to read data from TiKV and TiFlash,
and assemble them into rows for the Spark workers. For example,
TiSpark can simultaneously read from multiple TiDB Regions, and
it can get index data from the storage layer in parallel. To reduce
dependency on specific versions of Spark, most of these functions
are implemented in additional packages.

TiSpark differs from common connectors in two aspects. Not
only can it simultaneously read multiple data Regions, it can also
get index data from the storage layer in parallel. Reading indexes
can facilitate the optimizer in Spark to choose optimal plans to re-
duce execution cost. On the other hand, TiSpark modifies plans

3079

generated from the raw optimizer in Spark to push down parts of
execution to the coprocessor in the storage layer, which further re-
duces execution overhead. In addition to reading data from the
storage layer, TiSpark also supports loading large data in the stor-
age layer with transactions. To achieve this, TiSpark takes the two-
phase commit and locks tables.

5.3 Isolation and Coordination

Resource isolation is an effective way to guarantee the perfor-
mance of transactional queries. Analytical queries often consume
high levels of resources such as CPU, memory, and I/O bandwidth.
If these queries run together with transactional queries, the latter
can be seriously delayed. This general principle has been verified
in previous work [24, 34]. To avoid this problem in TiDB, we
schedule analytical and transactional queries on different engine
servers, and deploy TiKV and TiFlash on separate servers. Trans-
actional queries mainly access TiKV, whereas analytical queries
mainly access TiFlash. The overhead of maintaining data consis-
tency between TiKV and TiFlash via Raft is low, so running ana-
lytical queries with TiFlash has little impact on the performance of
transactional processing.

Data is consistent across TiKV and TiFlash, therefore queries
can be served by either reading from TiKV or TiFlash. As a result,
our query optimizer can choose from a larger physical plan space,
and the optimal plan can potentially read from both TiKV and Ti-
Flash. When TiKV accesses a table, it provides a row scan and an
index scan, and TiFlash supports a column scan.

These three access paths differ from each other in their execu-
tion costs and data order properties. Row scan and column scan
provide order by primary key; index scan offers several orderings
from the encoding of keys. The costs of different paths depend
on the average tuple/column/index size (Stupie/co1/index) and esti-
mated number of tuples/Regions (Neypie/reg). We express the 1/0
overhead of the data scan as fscan, and the file seeking cost as fseex.
The query optimizer chooses an optimal access path according to
Equation (1). As shown in Equation (2), the cost of the row scan
comes from scanning contiguous row data and seeking Region files.
The cost of the column scan (Equation (3)) is the sum of scanning m
columns. If the indexed columns do not satisfy the needed column
of the table scan, the index scan (Equation (4)) should consider the
cost of scanning index files and the cost of scanning data files (i.e.,
double read). Note that double read usually scans tuples randomly,
which involves seeking more files in Equation (5).

(O]
(@)

Copt,scan = mln(ccol,scany Crow_scan, Cindex,scan)

Crow.scan = stuple . Ntuple fscan + Nreg - fseek

m
Ccol.scan = Z (Scol,j ‘ Ntuple + fscan + Nreg,j : fseek) (3)

j=1
Cindex_scan = Sindex * Ntuple - fscan + Nreg - fseex + Cdouble read (4)

0

Stuple : Ntuple - fscan + Ntuple + fseek

(if without double read)

Cdouble read = { (5)

As an example of when the query optimizer will choose both
row- and column-format stores to access different tables in the
same query, consider “select T.* S.a from T join S on T.b=S.b
where T.a between 1 and 100”. This is a typical join query, where
T and S have indexes on column a in the row store, as well as col-
umn replicas. It is optimal to use the index to access T from the
row store, and access S from the column store. This is because the
query needs a range of complete tuples from T and accessing data
by tuple through the index is cheaper than the column store. On the
other hand, fetching two complete columns of S is cheaper when
using the column store.

g

|

@ 30004 9

= £ 30001

5 2000 5

2 2 2000-

g’ CRDB g’ |

£ 10001 TIDB (optimistic lock) £ 10001

= TiDB (pessimistic lock) =

0 . . . | 0 ; ; ;
64 128 256 512 1024 64 128 256 512 1024
Clients # Clients
(%10) Throughput on 50 W b) Throughput on 100 W
5

@ 4000 | G 4001

= =

= 30001 | 8 3001

2 5

S 2000 B 2001

<] =

£ 1ooow Z 1001 %

o | ol 32 P ANg
64 128 256 512 1024 128 256 512 1024

Clients # Clients

(c) Throughput on 200 W (d) Latency on 200 W
Figure 7: OLTP performance

The coordination of TiKV and TiFlash can still guarantee iso-
lated performance. For analytical queries, only a small range scan
or point-get scan may access TiKV through the follower read, which
makes little impact on leaders. We also limit the default access ta-
ble size on TiKV for analytical queries to at most 500 MB. Trans-
actional queries may access columnar data from TiFlash to check
some constraints, such as uniqueness. We set more than one colum-
nar replica for specific tables, and one table replica is dedicated to
transactional queries. Handling transactional queries on separate
servers avoids affecting analytical queries.

6. EXPERIMENTS

In this section, we first separately evaluate TiDB’s OLTP and
OLAP ability. For OLAP, we investigate the SQL engine’s ability
to choose TiKV and TiFlash, and compare TiSpark to other OLAP
systems. Then, we measure TiDB’s HTAP performance, including
the log replication delay between TiKV and TiFlash. Finally, we
compare TiDB to MemSQL in terms of isolation.

6.1 Experimental Setup

Cluster. We perform comprehensive experiments on a cluster
of six servers; each has 188 GB memory and two Intel® Xeon(®)
CPU ES5-2630 v4 processors, i.e., two NUMA nodes. Each pro-
cessor has 10 physical cores (20 threads) and a 25 MB shared L3
cache. The servers run Centos version 7.6.1810 and are connected
by a 10 Gbps Ethernet network.

Workload. Our experiments are conducted under a hybrid OLTP
and OLAP workload using CH-benCHmark. Source code is pub-
lished online [7]. The benchmark is composed of standard OLTP
and OLAP benchmarks: TPC-C and TPC-H. It is built from the
unmodified version of the TPC-C benchmark. The OLAP part con-
tains 22 analytical queries inspired by TPC-H, whose schema is
adapted from TPC-H to the CH-benCHmark schema, plus three
missing TPC-H relations. At run time, the two workloads are is-
sued simultaneously by multiple clients; the number of clients is
varied in the experiments. Throughput is measured in queries per
second (QPS) or transactions per second (TPS), respectively. The
unit of data in CH-benCHmark is called a warehouse, the same with
TPC-C. 100 warehouses take about 70 GB of memory.

6.2 OLTP Performance

We evaluate TiDB’s standalone OLTP performance with opti-
mistic locking or pessimistic locking under the OLTP part of CH-
benCHmark; i.e., the TPC-C benchmark. We compare TiDB’s per-

3080

Table 3: Performance of timestamp retrieval

Per-server statistics

Servers

Count Max (ms) >=1ms >=2ms
6 602594 1 248 0
12 319585 2 254 100
24 135278 2 322 15
6] TiKV only
XX TiFlash only
o 44 E—J TiKV & TiFlash|
@
[]
£
= 24
11 12 13 14 19
Querles

Figure 8: Choice of TiKV or TiFlash for analytical queries

formance to CockroachDB (CRDB), another distributed NewSQL
database. CRDB is deployed on six homogeneous servers. For
TiDB, the SQL engine and TiKV are deployed on six servers, and
their instances are bound to the two NUMA nodes separately on
each server. PD is deployed on three of the six servers. To balance
requests, both TiDB and CRDB are accessed through an HAProxy
load balancer. We measure the throughput and average latency on
50, 100, and 200 warehouses using various numbers of clients.

The plots of the throughput in Figures 7(b) and 7(c) differ from
Figure 7(a). In Figure 7(a), for less than 256 clients, the throughput
of TiDB increases with the number of clients for both optimistic
locking and pessimistic locking. For more than 256 clients, the
throughput with optimistic locking remains stable and then starts
to drop, whereas the throughput of pessimistic locking reaches its
maximum with 512 clients and then drops. The throughput of TiDB
in Figures 7(b) and 7(c) keeps increasing. This result is expected
as the resource contention is heaviest with high concurrency and
small data size.

In general, optimistic locking performs better than pessimistic
locking except for smaller data sizes and with high concurrency
(1024 clients on 50 or 100 warehouses) where resource contention
is heavy and causes many optimistic transactions to be retried. Since
resource contention is lighter with 200 warehouses, optimistic lock-
ing still produces better performance.

In most cases, the throughput of TiDB is higher than CRDB, es-
pecially when using optimistic locking on large warehouses. Even
taking pessimistic locking for fair comparison (CRDB always uses
pessimistic locking), TiDB’s performance is still higher. We be-
lieve that TiBD’s performance advantage is due to optimization of
transaction processing and the Raft algorithm.

Figure 7(d) shows that more clients cause more latency, espe-
cially after reaching maximum throughput, because more requests
have to wait for a longer time. This also accounts for the higher
latency with fewer warehouses. For certain clients, higher through-
put leads to less latency for TiDB and CRDB. Similar results exist
with 50 and 100 warehouses.

We evaluate the performance of requesting timestamps from PD
since this might be a potential bottleneck. We use 1200 clients to
continuously request timestamps. The clients are located on vary-
ing servers in a cluster. Emulating TiDB, each client sends times-
tamp requests to PD in batches. As Table 3 shows, each of the
six servers can receive 602594 timestamps per second, which is
more than 100 times the required rate when running the TPC-C
benchmark. When running TPC-C, TiDB requests at most 6000
timestamps per second per server. When increasing the number
of servers, the number of received timestamps decreases on each
server, but the total number of timestamps is almost the same. This

20

[Z2] Greenplum [RX] PrestoDB =] SparksQL B Tispark]

IX]
] k3
154 — o X
B & %
B b . K
B =9 £ & Kl
Y NES 1 B X
g 10 NE] =5 X
E N & s o
=] ~=:‘: k] M- & NEX
N N 55 g NES
51 NEX PINE B Bl B X
=i % PNES = =]
K> K> K S 1] I¥]
] % E&% NES & NS = B X
‘-u K i e e K
K K2 K K> x| X

0 e R A PR P o P EREEL VY R PR o o) e DAYV AR PR DR PR R ot

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Queries

Figure 9: Performance comparison of CH-benCHmark analytical queries

rate greatly exceeds any real-life demand. Regarding latency, only
a small proportion of requests cost 1 ms or 2 ms. We conclude
that getting timestamps from PD is not a performance bottleneck in
TiDB at present.

6.3 OLAP Performance

We evaluate the OLAP performance of TiDB from two perspec-
tives. First, we evaluate the capability of the SQL engine to opti-
mally choose either a row store or a column store under the OLAP
part of CH-benCHmark with 100 warehouses. We set up three
types of storage: TiKV only, TiFlash only, and both TiKV and
TiFlash. We run each query five times and compute the average
execution time. As shown in Figure 8, fetching data only from a
single kind of store, neither store is superior. Requesting data from
both TiKV and TiFlash always performs better.

Q8, Q12, and Q22 generate interesting results. The TiK'V-only
case costs less time than the TiFlash-only case in Q8 and Q12, but
it takes more time in Q22. The TiKV and TiFlash case performs
better than the TiKV-only and TiFlash-only cases.

Q12 mainly contains a two-table join, but it takes different phys-
ical implementations in each storage type. In the TiKV-only case,
it uses an index join, which scans several qualified tuples from
table ORDER_LINE and looks up table OORDER using indexes.
The index reader costs so much less that it is superior to taking
a hash join in the TiFlash-only case, which scans needed columns
from the two tables. The cost is further reduced when using both
TiKV and TiFlash because it uses the cheaper index join that scans
ORDER_LINE from TiFlash, and looks up OORDER using indexes
in TiKV. In the TiKV and TiFlash case, reading the column store
cuts the execution time of the TiKV-only case by half.

In Q22, its exists() subquery is converted to an anti-semi join.
It uses an index join in the TiK'V-only case and a hash join in the
TiFlash-only case. But unlike the execution in Q12, using the index
join is more expensive than the hash join. The cost of the index join
is reduced when fetching the inner table from TiFlash and looking
up the outer table using indexes from TiKV. Therefore, the TiKV
and TiFlash case again takes the least time.

Q8 is more complex. It contains a join with nine tables. In the
TiKV-only case, it takes two index merge joins and six hash joins,
and looks up two tables (CUSTOMER and OORDER) using indexes.
This plan takes 1.13 seconds and is superior to taking eight hash
joins in the TiFlash-only case, which costs 1.64 seconds. Its over-
head is further reduced in the TiKV and TiFlash case, where the
physical plan is almost unchanged except for scanning data from
TiFlash in six hash joins. This improvement reduces the execution
time to 0.55 seconds. In these three queries, using only TiKV or Ti-
Flash gets varying performance and combining them achieves the
best results.

For Q1, Q4, Q6, Q11, Q13, Q14, and Q19, the TiFlash-only case
performs better than the TiKV-only case, and the TiKV and TiFlash
case gets the same performance as the TiFlash-only case. The rea-

3081

sons differ for these seven queries. Q1 and Q6 are mainly com-
posed of aggregations on a single table, so running on the column
store in TiFlash costs less time, and is an optimal choice. These
results highlight the advantages of the columnar store described
in previous work. Q4 and Q11 are separately executed using an
identical physical plan in each case. However, scanning data from
TiFlash is cheaper than TiKYV, so the execution time in the TiFlash-
only case is less, and it is also an optimal choice. Q13, Q14, and
Q19 each contains a two-table join, which is implemented as a hash
join. Although the TiKV-only case adopts the index reader when
probing the hash table, it is also more expensive than scanning data
from TiFlash.

Q9 is a multi-join query. In the TiKV-only case, it takes index
merge joins on some tables using indexes. It is cheaper than do-
ing hash joins on TiFlash, so it becomes the optimal choice. Q7,
Q20, and Q21 produce similar results, however they are elided due
to limited space. The remaining eight of 22 TPC-H queries have
comparable performance in the three storage settings.

In addition, we compare TiSpark to SparkSQL, PrestoDB, and
Greenplum using the 22 analytical queries of CH-benCHmark with
500 warehouses. Each database is installed on six servers. For
SparkSQL and PrestoDB, data is stored as columnar parquet files
in Hive. Figure 9 compares the performance of these systems.
TiSpark’s performance is comparable to SparkSQL because they
use the same engine. The performance gap is rather small and
mainly comes from accessing different storage systems: scanning
compressed parquet files is cheaper, so SparkSQL usually outper-
forms TiSpark. However, in some cases that advantage is offset
where TiSpark can push more computation to the storage layer.
Comparing TiSpark to PrestoDB and Greenplum is a comparison
of SparkSQL (the underlying engine of TiSpark) to the other two
engines. This is out of the scope of this paper, however, and we
will not discuss it in detail.

6.4 HTAP Performance

As well as investigating transactional processing (TP) and an-
alytical processing (AP) performance, we evaluate TiDB with a
hybrid workload based on the entire CH-benCHmark, with sepa-
rate transaction clients (TC) and analysis clients (AC). These ex-
periments were conducted on 100 warehouses. The data is loaded
into TiKV and simultaneously replicated into TiFlash. TiKV is de-
ployed on three servers and is accessed by a TiDB SQL engine
instance. TiFlash is deployed on three other servers and collocates
with a TiSpark instance. This configuration services analytical and
transactional queries separately. Each run is 10 minutes with a 3-
minute warmup period. We measured the throughput and average
latency of TP and AP workloads.

Figures 10(a) and 10(b) show the throughput and average latency
(respectively) of transactions with various numbers of TP clients
and AP clients. The throughput increases with more TP clients but
reaches the maximum value at slightly less than 512 clients. With

3000 e RN T s B e B IS vl e Pl=Pl-w= 0 Bk R Yo (]

? | 7] _ AC=2,TC=1024

£ 2000 g 2 00l Ac=32TC=84

pu g‘ g —— AC=32,TC=1024)

£ 2 :

21000 % W 100

= < } W\/\/\/\W
}_ < m

0- : . o . 0+— . .
64 128 256 512 64 128 256 512 1024 0 100 200 300 400 500 60C
TP clients TP clients Time (s)
a) Throughput of OLTP b) Average latency of OLTP a) 10 warehouses
ghp g y
06 TC 27 64 RN 128] 256 (KXY 512 FEFH] 1024 150 TC [A 64 XN 128] 256 XXX 512 FEHHH] 1024 1500 AC=2,TC=64

[? _ AC=2,TC=1024
S 04 =] 2 1000 — AC=32.TC=64
5 _ 3 1001 = —— AC=32,TC=1024

2 H o 3
£ g] 2

5 0.2 H 9 50 E
: : < B

0.0 E Eil Y oo, e PR WAV Y i
8 16 32 64 2 4 16 0 100 200 300 400 500 60C
AP clients AP clients Time (s)

(c) Throughput of OLAP
Figure 10: HTAP performance of TiDB
Table 4: The count distribution of visibility delay

W Time AC=2 AC=2 AC=32 AC=32
(ms) TC=64 TC=1024 TC=64 TC=1024

10 <100 95.98% 96.22% 84.13% 90.96%
< 500 99.43% 99.36% 98.98% 98.45%
< 1000 99.62% 99.90% 99.74% 99.49%

100 < 100 82.98% 8631% 48.51% 48.77%
< 500 95.50% 97.69% 71.24% 72.06%
< 1000 98.64% 99.58% 84.82% 87.17%

the same number of TP clients, more analytical processing clients
degrade the TP throughput at most 10% compared to no AP clients.
This confirms that the log replication between TiKV and TiFlash
achieves high isolation, especially in contrast to the performance
of MemSQL in Section 6.6. This result is similar to that in [24].

The average latency of transactions increases without an upper
bound. This is because even though more clients issue more re-
quests, they cannot be completed immediately and have to wait.
The wait time accounts for the increasing latency.

Similar throughput and latency results shown in Figures 10(c)
and 10(d) demonstrate the impact of TP on AP requests. The AP
throughput soon reaches the maximum under 16 AP clients, be-
cause AP queries are expensive and compete for resources. Such
contention decreases the throughput with more AP clients. With
the same number of AP clients, the throughput remains almost the
same, with at most only a 5% drop. This indicates that TP does not
significantly affect AP execution. The increasing average latency of
analytical queries results from more waiting time with more clients.

6.5 Log Replication Delay

To achieve real-time analytical processing, transactional updates
should be immediately visible to TiFlash. Such data freshness is
determined by the log replication delay between TiKV and TiFlash.
We measure the log replication time while running CH-benCHmark
with different numbers of transaction clients and analysis clients.
We record that delay for every replication during 10 minutes of
running CH-benCHmark, and compute the average delay every 10
seconds. We also compute the distribution of the log replication
delay during the 10 minutes, shown in Table 4.

As shown in Figure 11(a), the log replication delay is always less
than 300 ms on 10 warehouses, and most delays are less than 100
ms. Figure 11(b) shows that the delay increases with 100 ware-
houses; most are less than 1000 ms. Table 4 gives more precise

(d) Average latency of OLAP

(b) 100 warehouses
Figure 11: Visibility delay of log replication

Mol > Fl=D-w bk Mw B > =By

2 | ?
g 24 Q 2
] =1
2 g]
[=2}
8 1 5 14
£ £ \
0 0
128
TPcIlents APcI|ents

(a) The throughput of OLTP (b) The throughput of OLAP
Figure 12: HTAP performance of MemSQL

details. With 10 warehouses, almost 99% of queries cost less than
500 ms, regardless of the client settings. With 100 warehouses,
about 99% and 85% queries took less than 1000 ms with 2 and 32
analysis clients, respectively. These metrics highlight that TiDB
can guarantee data freshness of about one second on HTAP work-
loads.

When comparing Figure 11(a) and Figure 11(b), we observe that
the delay time is related to data size. The more warehouses, the
larger the latency, because more data introduces more logs to be
synchronized. In addition, the delay also depends on the number
of analytical requests, but suffers less due to the number of transac-
tional clients. This can be clearly seen in Figure 11(b). Thirty-two
ACs cause more latency than two ACs. But with the same num-
ber of analytical clients, the latency does not differ a lot. We show
more precise results in Table 4. With 100 warehouses and two ACs,
more than 80% of queries take less than 100 ms, but with 32 ACs
less than 50% take less than 100 ms. This is because more analyti-
cal queries induce log replication with a higher frequency.

6.6 Comparison to MemSQL

We compare TiDB with MemSQL 7.0 using CH-benC -Hmark.
This experiment aims to highlight the isolation problem of state-of-
the-art HTAP systems, rather than OLTP and OLAP performance.
MemSQL is a distributed, relational database that handles both
transactions and real-time analytics at scale. MemSQL is deployed
on six servers: one master, one aggregator, and four leaves. We
loaded 100 warehouses into MemSQL and ran the benchmark with
various numbers of AP and TP clients. The benchmark ran for 10
minutes with a five-minute warm up period.

In contrast to Figure 10, Figure 12 illustrates that workload in-
terference has a significant effect on the performance of MemSQL.
In particular, as the number of AP clients increase, the transaction

3082

throughput significantly slows, dropping by more than five times.
The AP throughput also decreases with more TP clients, but such
an effect is not as marked, because transaction queries do not re-
quire the massive resources of analytical queries.

7. RELATED WORK

Common approaches for building HTAP systems are: evolving
from an existing database, extending an open source analytical sys-
tem, or building from scratch. TiDB is built from scratch and differs
from other systems in architecture, data origination, computation
engines, and consistency guarantees.

Evolving from an existing database. Mature databases can pro-
vide HTAP solutions based on existing products, and they espe-
cially focus on accelerating analytical queries. They take custom
approaches to separately achieve data consistency and high avail-
ability. In contrast, TiDB naturally benefits from the log replication
in the Raft to achieve data consistency and high availability.

Oracle [19] introduced the Database In-Memory option in 2014
as the industry’s first dual-format, in-memory RDBMS. This op-
tion aims to break performance barriers in analytic query work-
loads without compromising (or even improving) performance of
regular transactional workloads. The columnar storage is a read-
only snapshot, consistent at a point in time, and it is updated using
a fully-online repopulation mechanism. Oracle’s later work [27]
presents the high availability aspects of its distributed architecture
and provides fault-tolerant analytical query execution.

SQL Server [21] integrates two specialized storage engines into
its core: the Apollo column storage engine for analytical work-
loads and the Hekaton in-memory engine for transactional work-
loads. Data migration tasks periodically copy data from the tail
of Hekaton tables into the compressed column store. SQL Server
uses column store indexes and batch processing to efficiently pro-
cess analytical queries, utilizing SIMD [15] for data scans.

SAP HANA supports efficiently evaluating separate OLAP and
OLTP queries, and uses different data organizations for each. To
scale OLAP performance, it asynchronously copies row-store data
to a columnar store distributed on a cluster of servers [22]. This ap-
proach provides MVCC data with sub-second visibility. However,
it requires a lot of effort to handle errors and keep data consis-
tent. Importantly, the transactional engine lacks high availability
because it is only deployed on a single node.

Transforming an open-source system. Apache Spark is an
open-source framework for data analysis. It needs a transactional
module to achieve HTAP. Many systems listed below follow this
idea. TiDB does not deeply depend on Spark, as TiSpark is an ex-
tension. TiDB is an independent HTAP database without TiSpark.

Wildfire [10, 9] builds an HTAP engine based on Spark. It pro-
cesses both analytical and transactional requests on the same colum-
nar data organization, i.e., Parquet. It adopts last-write-wins se-
mantics for concurrent updates and snapshot isolation for reads.
For high availability, shard logs are replicated to multiple nodes
without help from consensus algorithms. Analytical queries and
transactional queries can be processed on separate nodes; however,
there is a noticeable delay in processing the newest updates. Wild-
fire uses a unified multi-version and multi-zone indexing method
for large-scale HTAP workloads [23].

SnappyData [25] presents a unified platform for OLTP, OLAP,
and stream analytics. It integrates a computational engine for high
throughput analytics (Spark) with a scale-out, in-memory transac-
tional store (GemFire). Recent updates are stored in row format,
and then age into a columnar format for analytical queries. Trans-
actions follow a 2PC protocol using GemFire’s Paxos implementa-
tion to ensure consensus and a consistent view across the cluster.

3083

Building from scratch. Many new HTAP systems have investi-
gated different aspects of hybrid workloads, which include utilizing
in-memory computing to improve performance, optimal data stor-
age, and availability. Unlike TiDB, they cannot provide high avail-
ability, data consistency, scalability, data freshness, and isolation at
the same time.

MemSQL [3] has an engine for both scalable in-memory OLTP
and fast analytical queries. MemSQL can store database tables ei-
ther in row or column format. It can keep some portion of data in
row format and convert it to columnar format for fast analysis when
writing data to disks. It compiles repeat queries into low-level ma-
chine code to accelerate analytic queries, and it uses many lock-
free structures to aid transactional processing. However, it cannot
provide isolated performance for OLAP and OLTP when running
HTAP workloads.

HyPer [18] used the operating system’s fork system call to pro-
vide snapshot isolation for analytical workloads. Its newer versions
adopt an MVCC implementation to offer serializability, fast trans-
action processing, and fast scans. ScyPer [26] extends HyPer to
evaluate analytical queries at scale on remote replicas by propagat-
ing updates either using a logical or physical redo log.

BatchDB [24] is an in-memory database engine designed for
HTAP workloads. It relies on primary-secondary replication with
dedicated replicas, each optimized for a particular workload type
(i.e., OLTP or OLAP). It minimizes load interaction between the
transactional and analytical engines, thus enabling real-time anal-
ysis over fresh data under tight SLAs for HTAP workloads. Note
that it executes analytical queries on row-format replicas and does
not promise high availability.

Lineage-based data store (L-Store) [35] combines real-time an-
alytical and transactional query processing within a single unified
engine by introducing an update-friendly, lineage-based storage ar-
chitecture. The storage enables a contention-free update mecha-
nism over a native, multi-version columnar storage model in order
to lazily and independently stage stable data from a write-optimized
columnar format into a read-optimized columnar layout.

Peloton [31] is a self-driving SQL database management system.
It attempts to adapt data origination [8] for HTAP workloads at run
time. It uses lock-free, multi-version concurrency control to sup-
port real-time analytics. However, it is a single-node, in-memory
database by design.

Cockroach DB [38] is a distributed SQL database which offers
high availability, data consistency, scalability, and isolation. Like
TiDB it is built on top of the Raft algorithm and supports distributed
transactions. It offers a stronger isolation property: serializability,
rather than snapshot isolation. However, it does not support dedi-
cated OLAP or HTAP functionality.

8. CONCLUSION

We have presented a production-ready, HTAP database: TiDB.
TiDB is built on top of TiKV, a distributed, row-based store, which
uses the Raft algorithm. We introduce columnar learners for real-
time analysis, which asynchronously replicate logs from TiKV, and
transform row-format data into column format. Such log replica-
tion between TiKV and TiFlash provides real-time data consistency
with little overhead. TiKV and TiFlash can be deployed on sepa-
rate physical resources to efficiently process both transactional and
analytical queries. They can be optimally chosen by TiDB to be
accessed when scanning tables for both transactional and analyti-
cal queries. Experimental results show TiDB performs well under
an HTAP benchmark, CH-benCHmark. TiDB provides a generic
solution to evolve NewSQL systems into HTAP systems.

9. REFERENCES

[1] Clickhouse. https://clickhouse.tech.

[2] LZ4. https://github.com/1z4/1z4.

[3] MemSQL. https://www.memsqgl.com.

[4] Parquet. https://parquet.apache.org.

[5] RocksDB. https://rocksdb.org.

[6] Sysbench.
https://github.com/akopytov/sysbench.

[7] TiDB. https://github.com/pingcap/tidb.

[8] J. Arulraj, A. Pavlo, and P. Menon. Bridging the Archipelago
between Row-Stores and Column-Stores for Hybrid
Workloads. In SIGMOD, pages 583-598. ACM, 2016.

[9] R. Barber, C. Garcia-Arellano, R. Grosman, R. Miiller, et al.
Evolving Databases for New-Gen Big Data Applications. In
CIDR. www.cidrdb.org, 2017.

[10] R. Barber, M. Huras, G. M. Lohman, C. Mohan, et al.
Wildfire: Concurrent Blazing Data Ingest and Analytics. In
SIGMOD, pages 2077-2080. ACM, 2016.

[11] R. Cattell. Scalable SQL and NoSQL data stores. SIGMOD
Rec., 39(4):12-27, 2010.

[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach, M. Burrows, T. Chandra, A. Fikes, and R. Gruber.

Bigtable: A Distributed Storage System for Structured Data.

In OSDI, pages 205-218. USENIX Association, 2006.

R. L. Cole, F. Funke, L. Giakoumakis, W. Guy, et al. The

mixed workload CH-benCHmark. In DB7est 2011, page 8.

ACM, 2011.

J. C. Corbett, J. Dean, M. Epstein, A. Fikes, et al. Spanner:

Google’s Globally Distributed Database. ACM Trans.

Comput. Syst., 31(3):8:1-8:22, 2013.

Z. Fang, B. Zheng, and C. Weng. Interleaved

Multi-Vectorizing. PVLDB, 13(3):226-238, 2019.

A. Floratou, U. F. Minhas, and F. Ozcan. SQL-on-Hadoop:

Full Circle Back to Shared-Nothing Database Architectures.

PVLDB, 7(12):1295-1306, 2014.

G. Graefe. Volcano - An Extensible and Parallel Query

Evaluation System. /EEE Trans. Knowl. Data Eng.,

6(1):120-135, 1994.

A. Kemper and T. Neumann. HyPer: A hybrid OLTP&OLAP

main memory database system based on virtual memory

snapshots. In ICDE, pages 195-206. IEEE Computer

Society, 2011.

T. Lahiri, S. Chavan, M. Colgan, D. Das, A. Ganesh, et al.

Oracle Database In-Memory: A dual format in-memory

database. In ICDE, pages 1253-1258. IEEE Computer

Society, 2015.

L. Lamport. The Part-Time Parliament. ACM Trans. Comput.

Syst., 16(2):133-169, 1998.

P. Larson, A. Birka, E. N. Hanson, W. Huang,

M. Nowakiewicz, and V. Papadimos. Real-Time Analytical

Processing with SQL Server. PVLDB, 8(12):1740-1751,

2015.

J. Lee, S. Moon, K. H. Kim, D. H. Kim, S. K. Cha, W. Han,

C. G. Park, H. J. Na, and J. Lee. Parallel Replication across

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

3084

Formats in SAP HANA for Scaling Out Mixed OLTP/OLAP
Workloads. PVLDB, 10(12):1598-1609, 2017.

C. Luo, P. Toziin, Y. Tian, R. Barber, et al. Umzi: Unified
Multi-Zone Indexing for Large-Scale HTAP. In EDBT, pages
1-12. OpenProceedings.org, 2019.

D. Makreshanski, J. Giceva, C. Barthels, and G. Alonso.

BatchDB: Efficient Isolated Execution of Hybrid
OLTP+OLAP Workloads for Interactive Applications. In

SIGMOD, pages 37-50. ACM, 2017.

B. Mozafari, J. Ramnarayan, S. Menon, Y. Mahajan,

S. Chakraborty, H. Bhanawat, and K. Bachhav. SnappyData:
A Unified Cluster for Streaming, Transactions and
Interactive Analytics. In CIDR. www.cidrdb.org, 2017.

T. Miihlbauer, W. Rodiger, A. Reiser, A. Kemper, and

T. Neumann. ScyPer: A Hybrid OLTP&OLAP Distributed
Main Memory Database System for Scalable Real-Time
Analytics. In DBIS, volume P-214 of LNI, pages 499-502.
GI, 2013.

N. Mukherjee, S. Chavan, M. Colgan, M. Gleeson, X. He,
et al. Fault-tolerant real-time analytics with distributed
Oracle Database In-memory. In /CDE, pages 1298-1309.
IEEE Computer Society, 2016.

P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil. The
Log-Structured Merge-Tree (LSM-Tree). Acta Inf.,
33(4):351-385, 1996.

D. Ongaro and J. K. Ousterhout. In Search of an
Understandable Consensus Algorithm. In USENIX ATC,
pages 305-319. USENIX Association, 2014.

[30] E Ozcan, Y. Tian, and P. T6ziin. Hybrid
Transactional/Analytical Processing: A Survey. In SIGMOD,
pages 1771-1775. ACM, 2017.

A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, et al.
Self-Driving Database Management Systems. In CIDR.
www.cidrdb.org, 2017.

A. Pavlo and M. Aslett. What’s Really New with NewSQL?
SIGMOD, 45(2):45-55, 2016.

D. Peng and F. Dabek. Large-scale Incremental Processing
Using Distributed Transactions and Notifications. In OSDI,
pages 251-264. USENIX Association, 2010.

I. Psaroudakis, F. Wolf, N. May, T. Neumann, A. Béhm,

A. Ailamaki, and K. Sattler. Scaling Up Mixed Workloads:
A Battle of Data Freshness, Flexibility, and Scheduling. In
TPCTC, volume 8904, pages 97-112. Springer, 2014.

M. Sadoghi, S. Bhattacherjee, B. Bhattacharjee, and

M. Canim. L-Store: A Real-time OLTP and OLAP System.
In EDBT, pages 540-551. OpenProceedings.org, 2018.

S. Sivasubramanian. Amazon dynamoDB: a seamlessly
scalable non-relational database service. In SIGMOD, pages
729-730. ACM, 2012.

M. Stonebraker and U. Cetintemel. “One Size Fits All”: An
Idea Whose Time Has Come and Gone (Abstract). In ICDE,
pages 2—11. IEEE Computer Society, 2005.

R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis,

et al. CockroachDB: The Resilient Geo-Distributed SQL
Database. In SIGMOD, pages 1493-1509. ACM, 2020.

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(31]

(32]

[33]

[34]

(35]

(36]

[37]

[38]

