
STeP: Scalable Tenant Placement for
Managing Database-as-a-Service Deployments

Rebecca Taft
MIT CSAIL

rytaft@csail.mit.edu

Willis Lang
Microsoft Gray Systems Lab

wilang@microsoft.com

Jennie Duggan
Northwestern University

jennie.duggan@northwestern.edu

Aaron J. Elmore
University of Chicago

aelmore@cs.uchicago.edu

Michael Stonebraker
MIT CSAIL

stonebraker@csail.mit.edu

David DeWitt
Microsoft Gray Systems Lab

dewitt@microsoft.com

Abstract
Public cloud providers with Database-as-a-Service offerings
must efficiently allocate computing resources to each of their
customers. An effective assignment of tenants both reduces
the number of physical servers in use and meets customer
expectations at a price point that is competitive in the cloud
market. For public cloud vendors like Microsoft and Ama-
zon, this means packing millions of users’ databases onto
hundreds or thousands of servers.

This paper studies tenant placement by examining a pub-
licly released dataset of anonymized customer resource us-
age statistics from Microsoft’s Azure SQL Database produc-
tion system over a three-month period. We implemented the
STeP framework to ingest and analyze this large dataset.
STeP allowed us to use this production dataset to evaluate
several new algorithms for packing database tenants onto
servers. These techniques produce highly efficient packings
by collocating tenants with compatible resource usage pat-
terns. The evaluation shows that under a production-sourced
customer workload, these techniques are robust to variations
in the number of nodes, keeping performance objective vio-
lations to a minimum even for high-density tenant packings.
In comparison to the algorithm used in production at the time
of data collection, our algorithms produce up to 90% fewer
performance objective violations and save up to 32% of total
operational costs for the cloud provider.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SoCC ’16, October 05 - 07, 2016, Santa Clara, CA, USA.
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4525-5/16/10. . . $15.00.
DOI: http://dx.doi.org/10.1145/2987550.2987575

Keywords Database-as-a-Service, Cloud database, Multi-
tenancy

1. Introduction
As many companies and organizations move their services
to the cloud, cloud providers must manage computing re-
sources at a larger scale than ever before. Several cloud
providers, including Microsoft and Amazon, got their start
by offering application-independent computing resources,
or Infrastructure as a Service (IaaS). The same providers
have also moved to the Platform as a Service (PaaS) model,
wherein specific applications are rented rather than raw com-
puting resources. This paper addresses an important sub-
set of PaaS offerings: the Database-as-a-Service (DBaaS)
model [19]. More specifically, this paper addresses the ques-
tion of how to assign DBaaS workloads to hardware re-
sources, and we examine this issue in the context of Mi-
crosoft’s Azure SQL Database (ASD) product.

There has been a great deal of industrial and academic
interest in cloud database systems. From a user’s perspec-
tive, these systems are appealing because they support sim-
ple deployment, elastic scaling, and transparent administra-
tion [4]. Providers seek to maintain an economically viable
service by making use of multitenancy, or serving multiple
customers from a single server. A significant amount of re-
search examines the problem of multitenant packing (or al-
location), but the prior work focuses on relatively small scale
problems containing hundreds of tenants and tens of servers.
These scenarios are well known in private clouds, but they
are not representative of multitenancy at scale.

In this paper we examine “where the rubber meets the
road” for DBaaS offerings. Our focus is large-scale public
cloud offerings, where millions of tenants are the norm and
tenant density per machine is multiple orders of magnitude
higher than studied in prior research. Here, the opportunities
for cost savings are enormous. For example, James Hamilton

388

ASD	Customer	

Resource	

Traces	

Training	Data	 Tes,ng	Data	

Train	

Predic,ve	

Model	

Assign	

Tenants	to	

Machines	

Count	

Viola,ons	

Calculate	

Cost	of	

Placement	

Run	Tenant	Placement	

Algorithm	

Evaluate	Algorithm	

Performance	

Figure 1: The STeP Framework

said that Amazon serves tenants for 2-5 times lower cost
than conventional in-house operations [20]. Microsoft boasts
similar economic efficiencies from working at scale; there
are currently more than one and a half million customer
databases deployed on Microsoft’s ASD service [21]. While
large-scale cloud providers drive down their hardware and
infrastructure costs by bulk acquisition and cheap energy
sources [18], the actual software system running the service
has a huge impact on how well those physical resources are
used. In this work, we focus on the tenant allocation strategy,
examining how well different strategies work when they are
applied to real-world customer traces from ASD.

As part of this analysis we present STeP (Scalable Ten-
ant Placement), a framework for increasing the efficiency
of large-scale, public DBaaSs by maintaining a healthy user
density in the cluster through intelligent collocation of ten-
ants. As we discuss in Section 2, the multitenancy trade-off
between low density of users on a machine (providing a
higher likelihood of good performance) versus cost is well
understood. However, none of these prior studies have an-
alyzed placement algorithms in the context of real-world,
production-scale user behavior.

In the STeP framework, we evaluate several approaches to
tenant packing using recently released, production-sourced
resource traces from ASD over a three month period in late
2014 [21]. Our study is the first to use these real-world,
production-scale resource traces with hundreds of thousands
of databases in the evaluation of tenant placement algo-
rithms. This aspect of STeP sets us apart from the vast
majority of prior tenant packing studies which relied on
well-defined benchmarks to simulate cloud workloads. The
real-world traces reveal that, in contrast to synthetic bench-
mark workloads, individual user workloads are dramatically
diverse and exhibit extreme swings in resource consumption.

A placement algorithm is successful if it is able to pro-
duce high quality tenant packings. In this study, our mea-
sure of quality is defined by the number of performance

objective violations per tenant based on the ASD resource
traces. In addition, we evaluate the business costs associated
with a tenant placement decision using two different metrics:
“MSFT” and “PMAX”. These metrics capture the provider’s
cost of operation (e.g., hardware prices), as well as the mon-
etary penalty associated with violations of a user’s perfor-
mance objectives. All of our quality measures are described
in detail in Section 4.

As part of the STeP framework, we test four scalable ten-
ant placement algorithms: Scalar Static, Summed Time Se-
ries, FFT Covariance, and Dynamic. These four algorithms
leverage predictive models to project per-tenant resource
usage, and they collocate Azure databases that are likely
to exhibit compatible access patterns. Features used by the
predictive models include summary statistics, time-series
shapelets, FFT coefficients, and dynamicity. The algorithms
consist of variations on classic greedy bin packing ap-
proaches and hierarchical clustering techniques. Many of
these ideas have been applied in other domains, but we com-
bine them in novel ways. To the best of our knowledge,
we are the first to apply several of these ideas to the tenant
placement problem. The algorithms are described in detail
in Section 5.

Fig. 1 summarizes the STeP framework. As depicted,
STeP uses a subset of the ASD data to train a predictive
model and run one of several tenant placement algorithms to
assign tenants to servers. Then it uses the remainder of the
ASD data to evaluate the performance of the algorithm by
counting performance objective violations and calculating
the overall cost of the placement.

Using the quality measures mentioned above, our results
in Section 6 demonstrate that all of our placement algorithms
improve over Microsoft’s basic algorithm. First, we show
that the configuration produced by our simplest algorithm,
the Scalar Static algorithm, costs up to 26% less than the best
configuration produced by the basic algorithm. As our algo-
rithms increase in the number of parameters and complexity,
we show that further cost reductions are possible. Specifi-
cally, the Summed Time Series and Dynamic algorithms cost
up to 11% less than the Scalar Static algorithm, and the FFT
Covariance algorithm costs up to 8% less than the Scalar
Static algorithm. All of these algorithms achieve their cost
savings by reducing performance objective violations–they
improve by up to 90% in comparison to the basic algorithm.
Lastly, we also show that a classic approach to tenant pack-
ing, the “Best Fit” greedy algorithm, does not perform well
on this real-world dataset. Our evaluation shows that this ap-
proach performs over an order of magnitude worse than Mi-
crosoft’s basic algorithm.

The contributions of this paper are:

• The first study on characterizing tenants for multitenant
placement by employing a framework that analyzes a
real production-scale trace of user behavior in a cloud
database service.

389

• Four scalable tenant placement algorithms that look at
different aspects of the workload time-series: summary
statistics, time-series shapelets, FFT coefficients, and dy-
namicity.

• Two comprehensive DBaaS cost models based on the
cloud provider’s operational costs and penalties for per-
formance objective violations.

• Extensive experimental results demonstrating that our
techniques cause up to 90% fewer performance objective
violations and save up to 32% of operational cost in
comparison to existing approaches.

2. Related Work
There is broad research on database multitenancy, including
tenant scheduling and placement [9, 25], live migration of
tenants [11, 14], and even the architecture that will best
facilitate multitenancy [10, 23]. In this paper we focus on
a subset of this space, namely the modeling and placement
of tenants on a shared-nothing cluster of database servers at
scale.

2.1 Multitenancy Models
There are many architectures to enable database multite-
nancy, but three have proved dominant in practice. The
shared hardware model enables multitenancy through the
use of virtual machines (VMs) to isolate tenants from each
other, providing manageability at the expense of poor ten-
ant density and uncoordinated resource utilization [7, 31].
The shared table model is another approach where all of
the tenants’ data is collocated in the same database and ta-
bles [1, 30]. This model provides a higher level of consol-
idation due to minimal redundancy and catalog metadata
per tenant, but at the cost of complexity and poor resource
isolation. Striking a balance between these models, and the
focus of this paper, is the shared process model. Here many
tenants run in a single database process and share resources
such as a log writer or buffer pool space.

With this shared process model, there are two common
techniques to ensure tenants meet their performance ob-
jectives: resource allocation through throttling and schedul-
ing [27], and soft isolation through smart workload coloca-
tion [26]. The main risk with soft isolation is that tenants
may be starved for resources if given a poor initial place-
ment or if the database workloads change. The benefit is that
tenants can opportunistically use resources as needed.

2.2 Tenant Placement Strategies
There has been considerable interest in modeling DBaaS
workloads and translating these approximations into tenant
placement plans. Each of the prior solutions differs in key
ways from our approach.

Kairos seeks to minimize the number of servers required
to host a static number of tenants by smart memory man-
agement [8]. This strategy is expensive for large datasets, so

they target deployments with hundreds of tenants on tens of
servers. Our research addresses a setting that is much larger
in scale.

Pythia uses a complex set of features to classify database
tenants and to determine which combination of tenant classes
will result in a performance violation [15]. Similar to Kairos,
Pythia is evaluated at a smaller scale, with hundreds of ten-
ants on tens of servers. It uses a randomized set of synthetic
benchmarks for its workload.

PMAX addresses tenant placement with the optimization
of cost-driven performance objectives [24]. Their technique
differs from ours in that it uses an expensive dynamic pro-
gramming algorithm and is evaluated using a single syn-
thetic workload.

RTP [28] focuses on read-mostly and main-memory
workloads, allowing tenants to be load-balanced between
several servers and resilient to node failures. While their
workloads are based on real data from SAP, the unsampled
Azure dataset we use contains three orders of magnitude
(> 100K) more tenants.

Lang et al. present a study that looks to simultaneously
address tenant placement concurrently with server configu-
ration [22]. Their study relies on the TPC-C benchmark as
a workload, while our research focuses on finding solutions
that can handle the real-world variability in the Microsoft
production traces.

Quasar [13] and its predecessor Paragon [12] focus on
general cloud workloads, not database-specific workloads.
They classify workloads by scale-out, scale-up, and hetero-
geneity, and identify which server configurations will per-
form best on the class.

Floratou and Patel present RkC to address replica place-
ment in a multitenant environment using a limited random
subset of the cluster and the TPC-C benchmark [17]. While
they demonstrate that randomized placement strategies can
perform well under these constraints, we show in Section 6
that predictive modeling approaches can outperform ran-
domized placement when evaluated on real workloads.

3. Microsoft Azure SQL Database
In this paper, we analyze a publicly available telemetry
dataset from Microsoft’s Azure SQL Database (ASD) [21].
An in-depth description of the ASD system is available
in [2, 3]. We now highlight the features of the ASD dataset
that are most salient to this study.

Microsoft’s ASD allows users the pay-as-you-go capa-
bility to scale up or out depending on their relational data
processing needs. Microsoft operates ASD clusters in 20 re-
gions around the world and each is of varying size, network,
and server capacity. We studied two cluster telemetry traces
from North America and Europe spanning three months in
2014. Each data center provided a trace for a single clus-
ter of 100–150 hosts serving hundreds of thousands of ASD
instances. There are many ASD clusters hosted in a data

390

center, but customer databases rarely move across clusters.
Therefore to study long-term behavior, we deemed a single
cluster’s trace (in each data center) sufficient. In ASD, multi-
ple tenants are housed in one physical SQL Server database
in a single process instance. Our techniques use soft isola-
tion–collocating tenants with complementary resource usage
patterns–to manage resource allocation.

Finding an efficient assignment of tenants to servers is
complex because tenants are heterogeneous in both their
service level objectives and their observed resource usage.
The ASD subscription model consists of three tiers (Ba-
sic, Standard, and Premium) offering varying performance,
availability and reliability objectives, among other differ-
ences [2, 21]. The data shows, however, that a tenant’s ob-
served resource usage does not always correspond to the ex-
pected usage for their subscription class. Further complicat-
ing this issue, the physical needs of individual tenants evolve
over time. In this study, we examined the resource usage of
all of the tenant databases to propose a multitenant place-
ment strategy based on the actual resource utilization pat-
terns instead of the conservative minimum resource guaran-
tees.

In the two clusters we studied, to satisfy availability ob-
jectives, a customer database has a k-way replication fac-
tor with k = 3 by default. In ASD, one replica is deemed
the “primary” replica and the other replicas are marked as
“secondary” replicas. In lieu of migrating tenants for load
balancing, ASD replicas may be promoted to primary sta-
tus through a “swap” operation whereby the old primary be-
comes a replica.

In addition to swaps, the ASD service may also physi-
cally migrate a replica from one server to another. This is
an expensive, but sometimes unavoidable, operation. When
replicas are moved (or initially placed), the placement ad-
heres to a set of upgrade and fault domain placement (server
grouping) policies. Essentially, replicas must be distributed
over different hosts in different upgrade and fault domains.
These policies add another layer of complexity to this ap-
plied tenant placement problem.

We analyze the ASD traces to understand and character-
ize the resource utilization of tenants in a public cloud set-
ting. By identifying differences between the behavior of user
databases, such as variations in the number of logical page
reads, we hope to identify strategies for efficiently packing
tenants on hosts. Our hypothesis is that training predictive
models on these production traces will result in tenant as-
signments that are more efficient and robust to load spikes
than those produced by ASD’s basic algorithm.

3.1 Telemetry Dataset
The traces contain a set of anonymized time series read-
ings that capture the resource utilization of each customer
database, including its replicas. ASD records the utiliza-
tion rates across a wide range of resources. We focus
on four resources: cpu_time, logical_reads_pages, logi-

Attribute Description
timestamp The time when this window ends.
interval_seconds The duration of this time window (when

the window starts).
dbuid The anonymized unique database id.
replica_type The type of the replica: primary,

secondary, or transitioning.
machine_id An id denoting the machine that this

replica resides on during the window.
max_worker_count The maximum number of worker

threads available to this database.
cpu_time The CPU time spent by this database

on this machine in a time window (in
microseconds).

logical_reads_pages The number of logical pages accessed in
a given time window.

logical_writes_pages The number of logical pages written in
this time window.

log_operations The number of log operations performed
in this time window. i.e., transaction
appends to the write-ahead log

Table 1: Schema of the ASD Performance Telemetry Dataset [21]

cal_writes_pages, and log_operations. The values of these
record fields represent the summed observed resource uti-
lization for a time window. The schema of the data is shown
in Table 1.

Each record in the time series represents the resource
utilization of a database replica for a time interval defined
by the end time of the window (timestamp) and the length
of the window (interval_seconds). The target length of the
telemetry records is 300 seconds, but in practice the length of
these recordings varies significantly. The subscription class
of the database (e.g., Basic, Standard, Premium, etc.) can
be inferred by the max_worker_count field as this lists the
maximum number of worker threads available for query
processing. A large max_worker_count indicates that the
database belongs to a premium-tier customer. In this 2014
dataset, 92% of customers have a max_worker_count of 180.
The remaining 8% range from 0 to 1600.

3.2 STeP Data Pre-Processing
As described in the previous section, each record in the
dataset represents a single replica’s activity during a time
interval defined by the timestamp and interval_seconds
fields. Ideally, this time interval would correspond to a
five-minute window perfectly aligned to one of the twelve
non-overlapping five-minute slots per hour. If this were the
case, we could easily determine how much load was on a
given machine at any given time (a necessary calculation
for evaluating the performance of a tenant placement algo-
rithm).

In this study we transform the raw dataset to align its
records with evenly spaced five-minute windows. To do so,
we split each record at the boundaries between time win-
dows, and expand the time interval of each resulting record
to fill a full window. For simplicity, we assume that re-
source utilization is uniform throughout each record’s dura-

391

timestamp interval_seconds cpu_time
10:08:00 300 10000
10:14:50 350 20000

↓
timestamp interval_seconds cpu_time
10:05:00 300 4000
10:10:00 300 6000
10:10:00 300 3428.57
10:15:00 300 16571.43

↓
timestamp interval_seconds cpu_time
10:05:00 300 4000
10:10:00 300 9428.57
10:15:00 300 16571.43

Figure 2: Example STeP pre-processing pipeline for a single
database replica on one machine. For simplicity we show only three
of the ten fields in each record.

tion. Therefore, if a measurement spans multiple windows,
each window gets the fraction of the measurement for which
it has coverage.

This transformation has the potential to double or triple
the size of the dataset by splitting each record into two or
more records. So for the final step, we aggregate all rows
for each replica for each time window into a single row.
See Fig. 2 for a simple example of the data pre-processing
pipeline.

4. Tenant Placement
We set out to analyze several different algorithms to pack
databases onto machines. Tenant placement must be effi-
cient, but also ensure that users’ resource requirements are
met. We define a “violation” of these requirements as a mo-
ment in time when a machine is consuming a particular re-
source in aggregate (either logical reads, logical writes, CPU
usage, or write-ahead log operations) above some threshold
consumption level. Each time a machine has a violation, we
assume that each of the active tenants on that machine may
have a service-level agreement (SLA) violation.

Microsoft pays a penalty for service outages to its cus-
tomers (both immediate monetary penalties and long-term
reputation penalties), so the company has a clear interest in
minimizing these incidents. Additionally, each server costs
some amount of money per minute to operate (including
hardware, power, and administration costs), so all cloud
providers have an interest in minimizing the number of ma-
chines deployed to serve their customers. Our algorithms are
designed to minimize the sum of a cloud provider’s operat-
ing expenses and penalties paid for service-level violations.

A secondary goal of our study is to find a stable packing
of database tenants onto machines so that migration of ten-
ants is rarely necessary. Migrations can increase server uti-

Symbol Definition
MAX_READ Maximum summed logical reads ever seen

on a single machine in the dataset
MAX_WRITE Maximum summed logical writes ever seen

on a single machine in the dataset
MAX_CPU Maximum summed CPU utilization ever seen

on a single machine in the dataset
MAX_LOG Maximum summed log operations ever seen

on a single machine in the dataset
P Percentage of the observed maximum for any

resource above which a machine is considered
to be in violation (either 0.65 or 0.85)

in_violation(m, t) Returns a binary variable indicating whether
or not server m is in violation at time t

READd,t Logical reads of database d at time t
WRITEd,t Logical writes of database d at time t
CPUd,t CPU usage of database d at time t
LOGd,t Log operations of database d at time t
is_active(d, t) Returns a binary variable indicating whether

or not database d is active (has a non-zero
value for some resource) at time t

D The set of all databases in the dataset
Dm,t The set of active databases assigned to

machine m at time t
SP Constant scale factor to give “PMAX” violation

penalty a proper weight relative to the server cost
SM Constant scale factor to give “MSFT” violation

penalty a proper weight relative to the server cost
y Number of servers available for tenant

placement
G The cost per server per month
wd The max_worker_count of database d
N Number of time slices in the testing period
Q Number of months in the testing period
Nq Number of time slices in month q
md,t The machine hosting database d at time t
vd,q The % downtime for database d in month q
p(vd,q) The penalty for downtime vd,q for “MSFT”

Table 2: Symbols used in tenant placement evaluation.

lization and have the potential to disrupt the tenant’s work-
load, so it is best to avoid this overhead whenever possible.

For convenience, we provide a glossary of all the symbols
used throughout Section 4 in Table 2.

4.1 Service-Level Agreement Violations
In order to evaluate the efficacy of our tenant placement
algorithms, we must first define the conditions under which
a service-level violation may arise. Our dataset does not
record whether a particular tenant actually experienced a
SLA violation under some configuration of the system, so
instead, we take the pessimistic view that any tenant with
activity on a machine that has high total utilization of any
resource is experiencing a violation.

So how do we define “high utilization”? Internally, a
DBaaS provider typically aims to keep total resource usage
(e.g., summed CPU time) of a machine’s customer databases
under 65% (and 85%) of the maximum possible value.1 We

1 We use 65% and 85% thresholds to allow us to account for the additional
load of secondary replicas, background service load, and essential system
load. The latter two load parameters are proprietary.

392

do not know Azure’s real hardware specifications (they are
proprietary). For CPU time, we instead bound this value by
the maximum summed CPU utilization ever seen on a single
machine in the dataset (we will call this MAX_CPU). We do
the same for the other three resources (defining the values
MAX_READ, MAX_WRITE, and MAX_LOG) since we also
do not know the true maximum for these resources.

As MAX_READ, MAX_WRITE, MAX_CPU, and MAX_LOG
are lower bounds on the true maximum, we decided to ex-
amine two different thresholds: 65% and 85% of the ob-
served maximum for each resource. Given a percentage P
of the observed maximum (either 0.65 or 0.85 depending
on the chosen threshold), a violation, or set of violations,
will occur on machine m at time t with databases Dm,t if the
following is true:

in_violation(m, t) =

(
∑

d∈Dm,t

READd,t

)
> P∗MAX_READ ∨(

∑
d∈Dm,t

WRITEd,t

)
> P∗MAX_WRITE ∨(

∑
d∈Dm,t

CPUd,t

)
> P∗MAX_CPU ∨(

∑
d∈Dm,t

LOGd,t

)
> P∗MAX_LOG

(1)
where READd,t , WRITEd,t , CPUd,t and LOGd,t represent the
logical reads, logical writes, CPU usage, and log operations
of tenant d at time t. A violation is recorded if any one of
these resources exceeds its threshold.

4.2 Tenant Placement Efficacy
Given this definition of a violation, we now define three
metrics to quantify the effectiveness of a tenant placement
strategy:

1. Violations: Minimize the total number of tenants expe-
riencing violations per hour, given y available machines.

2. “PMAX”: Minimize the total cost of system operation
per month, using a cost model inspired by the work of
Liu, et al. [24]. Details below.

3. “MSFT”: Minimize the total cost of system operation
per month, using a cost model based on Azure’s real
penalty model [2]. Details below.

“PMAX”: The second metric attempts to capture the
trade-off between high customer satisfaction and low cost
of ownership for the cloud provider. Similar to Liu, et al.,
we define the total cost of an allocation with y machines
as the operating expense of running y servers plus the sum
of any penalties arising from SLA violations. In keeping
with the PMAX approach, we weight our penalties by the
customer’s expected level of service. We approximate this
figure using the tenant’s max_worker_count, because it is

a proxy for the customer’s subscription class as described
in Section 3.1. Our model presumes that violations for
high-paying customers are more costly. The SLA penalty
in Liu, et al. is between 2 and 20 units by default [24], so
to create a similar penalty we divide the max_worker_count
by 10 (as described in Section 3.1, most customers have a
max_worker_count of 180). We also multiply the total SLA
penalty by a constant scale factor SP in order to give it a
proper weight relative to the server cost. As detailed in Sec-
tion 6.1, we define SP based on the scale factor used by [24].
Therefore, the cost per month is:

cost = y×G+
SP

Q

N

∑
t=1

y

∑
m=1

(in_violation(m, t)∗ ∑
d∈Dm,t

wd

10
)

(“PMAX”)
where y is the number of servers, G is the cost per server
per month, Q is the number of months in the testing pe-
riod, N is the number of time slices in the testing pe-
riod, in_violation(m, t) returns a binary variable indicating
whether or not server m is in violation at time t in accordance
with Eq. (1), Dm,t is the set of active databases (databases
with a non-zero value for some resource) assigned to ma-
chine m at time t, and wd is the max_worker_count of
database d.

“MSFT”: The third metric is another attempt to navigate
the trade-off between reducing SLA violations and minimiz-
ing operating expenses, but the SLA violation cost varies de-
pending on the total number of violations each tenant expe-
riences in a month. Specifically, Microsoft incurs a penalty
each month for each customer experiencing an availability
outage more than 0.1% of the time. Furthermore, the penalty
is 2.5 times higher if the customer experiences an outage
more than 1% of the time. Thus, the cost per month for the
“MSFT” metric is:

cost = y×G+
SM

Q

Q

∑
q=1

∑
d∈D

p(vd,q) (“MSFT”)

given the percentage downtime for database d in month q is:

vd,q =
1

Nq

Nq

∑
t=1

(in_violation(md,t , t)∗ is_active(d, t))

and the penalty for downtime is:

p(vd,q) =


0 if 0≤ vd,q < 0.1%
1 if 0.1%≤ vd,q < 1%
2.5 if vd,q ≥ 1%

where D is the set of all databases, Nq is the number of time
slices in month q, SM is the scale factor (to be defined in Sec-
tion 6.1), is_active(d, t) returns a binary variable indicating
whether or not database d is active (has a non-zero value for

393

some resource) at time t, and md,t is the machine hosting
database d at time t. All of the other variables reflect their
definitions from the “PMAX” metric.

The main difference between the last two metrics is that
the “PMAX” penalty varies linearly with violations per ten-
ant, while the “MSFT” penalty varies according to a step
function; it places an upper bound on the penalty per tenant
and allows small numbers of violations per tenant with no
penalty. Additionally, “PMAX” charges a higher penalty
for SLA violations to high-paying customers. Although
“MSFT” more accurately models the real penalty used by
Microsoft, we include “PMAX” as well since this is the
model used by [24], and other cloud providers may prefer
this linear cost model.

5. Tenant Placement Algorithms
Our first set of algorithms generate a static allocation of
databases to machines. By static, we mean that once a
database is assigned to a machine, it will not change for
the remainder of the three-month period. We also examine
dynamic algorithms that adjust database placement in an
effort to react to unforeseen changes in behavior.

5.1 Static Allocation
Our baseline allocation algorithm randomly assigns databases
to machines. In this algorithm, each database is assigned to
one machine, chosen uniformly at random from the set of
available machines. This strategy is similar to the one used
by Azure in production clusters in late 2014. We use our
Random placement algorithm as the baseline approach.

As we will show in Section 6.2, the random placement ap-
proach actually performs quite well compared to other more
complex allocation strategies, due in part to the extremely
high database density on the machines. The question is: can
we do better?

An alternative approach is to use some portion of the data
(e.g., the first n weeks of our dataset) to train a model. Then
we can use this model to assign databases to machines and
test the performance of our algorithm on the rest of the data.
All of the algorithms that follow use this approach.

For convenience, we provide a glossary of the symbols
used throughout Section 5 in Table 3. Table 2 defines the
symbols that also appear in Section 4.

5.1.1 Predictive Greedy Algorithms
The following set of algorithms use a greedy approach in
which we assign databases to machines one at a time based
on one of two cost models: a Scalar model or a Summed
Time Series model. In each case, we train the model by
assigning a cost to each database based on its CPU usage
data during the training period. We also define how placing
a database on a machine affects the load on that machine.

Scalar Cost Model: For our first greedy algorithm, we
use a simple cost model based on the average CPU usage

Symbol Definition
costd,z The cost of each database d in the Scalar model during

the training period z
based,z The base cost of each database d during the training

period z (for the Scalar model)
a(wd ,z) The additional cost of each database d during the

training period z based on max_worker_count wd
(for the Scalar model)

Nd,z Number of time slices in the training period z
in which database d exists

Dz The set of all databases with activity during the
training period z

Dm The set of all databases currently assigned to machine m
Lm,z Load on machine m during the training period z
{z1..zk} The k segments of the training period z (for the

Summed Time Series model)
x The number of “large” databases (the top 10% of

databases based on Eq. (2))

Table 3: Symbols used in placement algorithms. Contains symbols
carried over from Table 2.

for each database during the training period. Given the CPU
training data, we define the “cost” of each database d during
the training period z as:

costd,z = based,z +λ ∗a(wd ,z) (2)

with a base cost, based,z of:

based,z =
1

Nd,z

Nd,z

∑
t=1

(CPUd,t)

and an additional cost, a(wd ,z) of:

a(wd ,z) =


avg

s∈Dz,ws=wd

(bases,z) if ∃s ∈ Dz s.t. ws = wd

avg
s∈Dz

(bases,z) otherwise

where Nd,z is the number of time slices in the training pe-
riod in which database d exists2, CPUd,t represents the
CPU usage of database d at time t, Dz is the set of all
databases with activity during the training period, and wd
is the max_worker_count of database d (see Section 3.1).
We add some additional cost a(wd ,z) to each database’s
base cost in order to account for the fact that some databases
have no telemetry data or very little telemetry data during
the training period due to a lack of activity. The additional
cost is a function of the max_worker_count since customers
who have paid for the same level of service are more likely
to have similar resource needs than two unrelated customers.
We empirically found that λ = 0.5 appropriately weighted
the additional cost relative to the base cost.

For simplicity, we only use the CPU data to train our
models. The cost model for testing the allocation continues
to use all four resources, as described in Eq. (1).

2 The dataset does not include information about when each
database was created or dropped, so we make the conservative as-
sumption that each database only exists between the first and last
time slices in which it has activity during the three month period.

394

Using a simple greedy bin packer algorithm, we at-
tempted to evenly distribute the summed cost of the databases
across the machines. This algorithm works by repeatedly
placing the largest (highest cost) database replica not yet
allocated onto the current emptiest (least loaded) machine
that satisfies the upgrade and fault domain constraints (i.e.,
the machine is not part of any upgrade or fault domains al-
ready containing previously allocated replicas of the given
database; see Section 3). We assume that CPU cost is addi-
tive [8, 28], so the load on a machine is defined to be the
sum of the cost of all databases assigned to it so far.

There is an element of randomness in this greedy algo-
rithm because if two databases have the same cost, either
one may be allocated first, resulting in two different alloca-
tions of databases to machines. The number of possible allo-
cations explodes if there are many databases without train-
ing data, since all of these databases that have the same
max_worker_count will have the same cost, and can there-
fore be allocated in any order.

This greedy algorithm is different from the “Best Fit”
greedy algorithm and Integer Linear Programing (ILP) bin
packing algorithms used in other work [8, 24]. While a “Best
Fit” or ILP approach tends to group the largest databases
together on a few machines, our algorithm (unfortunately
known as “Worst Fit” in other applications [6]) ensures that
the large databases are as dispersed as possible across all
available machines. To show the benefit of our approach,
we implemented a “Best Fit” algorithm that sorts databases
by decreasing cost and iteratively places each database on
the most loaded machine that it fits on (satisfying upgrade
and fault domain constraints). In Section 6.2, we show that
this “Best Fit” approach creates an allocation that performs
significantly worse than random.

Summed Time Series Cost Model: As described above
(and as we will show in Section 6.2), it is possible to create a
very good allocation of databases to machines using a simple
cost model with a scalar value for each database. But can we
do even better by taking advantage of the training data at a
finer granularity?

To answer this question, we extended our greedy model
to consider the time series of resource usage rather than
scalar aggregates. This approach is optimized to collo-
cate databases only if their resource usage time series are
anti-correlated. For example, if one tenant is especially ac-
tive during the day, it would be wise to place that database
on a machine with another tenant that is active at night to
avoid concurrent spikes in resource usage.

The Summed Time Series model builds upon the Scalar
model described above, but it makes allocations using a
time series of resource usage. As in the Scalar model, the
Summed Time Series model iterates over the databases in
order of decreasing size (as defined by Eq. (2)), assigning
them to machines one at a time. Instead of placing each
database on the currently least loaded machine, however, this

algorithm examines how the database’s time series of CPU
usage would affect the summed resource utilization at each
time slice on each available machine. Then it chooses the
machine on which the maximum value of the summed time
series is the smallest (satisfying upgrade and fault domain
constraints).

To avoid overfitting and to make this problem tractable,
we aggregated each time series into larger segments (e.g.,
6 hours or more) and found the cost from Eq. (2) over
each segment. This gives us a new definition of the load
per machine for the Summed Time Series cost model. If
the training period z is split into k segments {z1..zk} (each
segment may have multiple time slices), the load on machine
m during training period z is:

Lm,z =
k

max
i=1

(∑
d∈Dm

(costd,zi)) (3)

where costd,zi is as defined in Eq. (2), and Dm is the set of all
databases currently assigned to machine m.

5.1.2 FFT Covariance Cost Model and Algorithm
In this approach, we compute the fast Fourier transform
(FFT) of the CPU usage time series for each of the highly
active “large” databases (the top 10% of databases based
on Eq. (2)). To avoid overfitting and to make this solution
scalable, we then eliminate all but a fraction of the FFT
coefficients for each large database; this ability to model a
time series with only a few coefficients is a key advantage of
using the FFT.

In order to determine which databases to place together
on a machine, we perform agglomerative hierarchical clus-
tering with complete linkage [16]. Hierarchical clustering
works by iteratively combining items with minimum “dis-
tance” into a hierarchy. Here, we define the “distance” be-
tween databases as the pairwise covariance of the truncated
FFT. This results in a hierarchy in which anti-correlated
databases will likely be near each other, since anti-correlated
databases have a low pairwise covariance value and thus a
smaller “distance” between them.

Once we have our hierarchy, we use it to perform hierar-
chically structured bin packing [5] in order to create clusters
of the desired size. Ideally we will have one cluster per ma-
chine, so we try to have clusters of size x/y, where x is the
number of large databases and y is the number of machines.

This algorithm is summarized in Alg. 1. Note that we
only perform this analysis on the highly active primary
database replicas, as pairwise covariance and clustering of
all databases would be extremely computationally intensive.
We allocate the remaining “small” databases using the Scalar
greedy algorithm from Section 5.1.1.

5.2 Dynamic Allocation
In the Azure cloud environment, workloads change over
time and databases are constantly being created and dropped
due to customer churn. These changes and additions could

395

Algorithm 1: The FFT Covariance Cost Model Algo-
rithm

Input: time series of CPU usage for each of the x large
databases; cost for each of the large databases from
Eq. (2); F size of truncated FFT; list of y available
machines

Output: unique assignment of large databases to machines

Let max_cost be
(

1
y

x
∑

i=1
costdi

)
+ ε;

/* Calculate the truncated FFT of CPU usage for

all databases */

for i=1 to x do
Calculate FFT of the time series for database di;
Create array fi of size 2F ;
Set fi to the first F real coefficients of the FFT followed

by the first F imaginary coefficients;

/* Find the covariance of the truncated FFT for

all pairs of databases */

for i=1 to x-1 do
for j=i+1 to x do

Set covi, j to the covariance of fi and f j;

/* Perform agglomerative hierarchical clustering
with complete linkage; use hierarchy to
perform hierarchically structured bin packing
*/

Set cluster group ci to {{di}}, where i ∈ {1..x};
while number of cluster groups > 1 do

Find cluster groups ci and c j with minimum distance,
given that distance(ci,c j) = max

da∈ci,rb∈c j

(cova,b);

Merge cluster groups ci and c j;
foreach cluster a in cluster group ci do

foreach cluster b in cluster group c j do
if costa + costb < max_cost then

combine clusters a and b;

Consolidate clusters in the merged group so each cluster
c satisfies costc < max_cost;

Assign each cluster c in the final cluster group to a different
machine;

cause some machines to become overloaded and increase
the risk of SLA violations. Thus, it is desirable to have a
dynamic solution in which the allocation of databases to
machines is resilient to changing workloads. Furthermore,
when a new database joins the cluster, it must be initially
placed without historical workload data and therefore may
be assigned sub-optimally. After sufficient data is collected
on the new database, a placement algorithm should be able
to move it to a more permanent location.

In a live production system, it is not practical to shuffle
all database tenants into new locations each time there is a
risk of SLA violations. For this reason, we created a dynamic

version of our algorithms in which we limit the number of
databases that are allowed to move each cycle.

Starting with a static allocation (see Section 5.1), we
roll forward the clock on our dataset and monitor the load
on each machine. If any machine becomes overloaded, we
could balance the load by: (1) swapping primary replicas
on that machine with their corresponding secondary repli-
cas on other under-loaded machines [25], or (2) migrating
replicas off that machine to other machines with available
resources [14]. The ASD traces do not include data on sec-
ondary replicas, so unfortunately, we could only study op-
tion (2) dynamic algorithms.

Our dynamic algorithm implements migration (option 2
above), and it limits the number of databases that may move
between machines. Starting with a complete allocation of
databases to machines and an updated set of training data, we
move databases one at a time from the most overloaded ma-
chine to the most underloaded machine (satisfying upgrade
and fault domain constraints) until either the load is balanced
or we have moved the maximum number of databases. We
move the most active databases first (as defined by Eq. (2))
in order to balance the load with as few moves as possible.

6. Evaluation
In this section we evaluate our algorithms on real-world
ASD traces. We start by detailing our experimental setup.
Next we examine the efficacy of our static allocations in
comparison to random assignments. After that, we show
additional cost reductions with the use of dynamic, adaptive
tenant placement.

Because there is an element of randomness in all of the
algorithms (e.g., not all databases are active during the train-
ing period; see Section 5.1.1), we ran each algorithm many
times in order to evaluate its effectiveness (the details will
be provided as we discuss the results). The metrics used for
evaluation are described in Section 4.2.

6.1 Experimental Setup
To calculate the cost of each allocation, we assume that each
machine costs 4320000 units per 30-day month, based on
the default of 100 units per minute in Liu, et al. [24]. Addi-
tionally, to make the ratio between server cost and violation
penalty comparable to Liu, et al., we need to calculate the
scale factors SP and SM in Eqs. (“PMAX”) and (“MSFT”).

In our “PMAX” model, we count violations at a granu-
larity of 5 minutes, while Liu, et al. count violations on a
per-query basis. The tenants in their study submit queries
on average every 10 seconds, so each of our violations is
equivalent to 30 of theirs (6 queries per minute * 5 minutes
per time slice). Thus, the scale factor for SLA penalties in
Eq. (“PMAX”), SP, is set to 30.

In Eq. (“MSFT”), the penalty is not a linear function of
the number of violations. But for the purpose of compari-
son, we choose a scale factor based on the penalty for 1%

396

Allocation Type Scalar Random "Best Fit" algorithm

10000

20000

30000

100
200

75 50 25
Cluster Size (Nodes)

T
e
n
a
n
t
V

io
la

ti
o
n
s

p
e
r

H
o
u
r

(a) Violations with Threshold
at 65% of Max

5000
10000

0
100
200
300
400
500

75 50 25
Cluster Size (Nodes)

A

v
g
.
C

o
s
t
p
e
r

M
o
n
th

(i
n
 m

il
li
o
n
s
)

(b) “PMAX” Cost with Threshold
at 65% of Max

1750
3000

0
100
200
300
400
500

75 50 25
Cluster Size (Nodes)

A

v
g
.
C

o
s
t
p
e
r

M
o
n
th

(i
n
 m

il
li
o
n
s
)

(c) “MSFT” Cost with Threshold
at 65% of Max

4000

8000

12000

16000

100
200

75 50 25
Cluster Size (Nodes)

T
e
n
a
n
t
V

io
la

ti
o
n
s

p
e
r

H
o
u
r

(d) Violations with Threshold
at 85% of Max

3000

6000

0
100
200
300
400
500

75 50 25
Cluster Size (Nodes)

A

v
g
.
C

o
s
t
p
e
r

M
o
n
th

(i
n
 m

il
li
o
n
s
)

(e) “PMAX” Cost with Threshold
at 85% of Max

1000
1500

0
100
200
300
400
500

75 50 25
Cluster Size (Nodes)

A

v
g
.
C

o
s
t
p
e
r

M
o
n
th

(i
n
 m

il
li
o
n
s
)

(f) “MSFT” Cost with Threshold
at 85% of Max

Figure 3: Tenant violations and operational cost of the Random allocation scheme compared to the Scalar Static allocation scheme and the
“Best Fit” algorithm as a function of cluster size in the North American cluster

downtime. This is equivalent to approximately 86 timeslices
per month, or 2592 missed query deadlines in Liu, et al.
(0.01 * 8640 time slices per 30-day month * 30 queries per
time slice). We also multiply the SLA penalty for “MSFT”
by 18 in order to match the “PMAX” penalty described
in Section 4.2. Thus, the scale factor for SLA penalties in
Eq. (“MSFT”), SM , is set to 46656 (2592 * 18).

Due to space limitations, we omit the results from the
European clusters, but they can be found in an earlier version
of this paper [29].

6.2 Static Algorithms
In this section we evaluate the efficacy of several algorithms
that produce a static assignment of databases to machines.

6.2.1 Scalar Cost Model
To see if using a simple predictive model creates an efficient
assignment of databases to machines, we compare the Ran-
dom algorithm to the Scalar cost model greedy algorithms in
Fig. 3. These charts show tenant violations and operational
cost of the algorithms as a function of cluster size, using the
metrics described in Section 4.2. The cluster sizes of 75, 50,
and 25 correspond to one half, one third, and one sixth of the
original North American cluster of 151 nodes. In these ex-
periments, we train the model on two months and test on the
third month of the dataset. We perform cross-validation by
testing each of the three months an equal number of times
(i.e., train on September and October, test on November;
train on September and November, test on October; train on
October and November, test on September). Note the ran-
dom algorithm does not actually use the training data, but

we still test each run on one month for a fair comparison
with the predictive algorithms. In these charts, any machine
with resources exceeding 65% (for Figs. 3a to 3c) or 85%
(for Figs. 3d to 3f) of the maximum for any resource is con-
sidered to be “in violation” (see Section 4.2). Each data point
represents the average of 30 independent runs of the algo-
rithm; 10 runs for each of the three months. Error bars show
the standard error of the mean.

Fig. 3 shows that it is possible to beat Random by a
significant margin with a scalar cost model. In the best case,
when using 50 machines, the Scalar cost model produces
90% fewer violations at the 65% threshold than a purely
random allocation.

Figs. 3b, 3c, 3e and 3f also show that the Scalar cost
model performs better than Random when we consider to-
tal operational cost. For the 85% threshold, the Scalar model
costs 18% less than Random with the “PMAX” model and
26% less with the “MSFT” model (cost reduction is calcu-
lated based on the lowest value for each algorithm, corre-
sponding to 25 machines in each case).

We also tested the performance of the “Best Fit” algo-
rithm with the Scalar cost model from Eq. (2). As shown in
Figs. 3a and 3d, the “Best Fit” approach produces over an or-
der of magnitude more violations than a random allocation,
especially at reduced cluster sizes. This large number of vio-
lations for “Best Fit” translates to a higher penalty cost than
Random, and therefore a higher total cost, as shown in the
other four charts in Fig. 3. Clearly, the “Best Fit” approach
of grouping large databases together does not work given
real-world workloads.

397

Allocation Type Scalar Summed Time Series FFT

500

1000

1500

25
50

75 50 25
Cluster Size (Nodes)

T
e
n
a
n
t
V

io
la

ti
o
n
s

p
e
r

H
o
u
r

(a) Violations with Threshold
at 65% of Max

0

200

400

600

75 50 25
Cluster Size (Nodes)

A
v
g
.
C

o
s
t
p
e
r

M
o
n
th

(i
n
 m

il
li
o
n
s
)

(b) “PMAX” Cost with Threshold
at 65% of Max

0

200

400

600

75 50 25
Cluster Size (Nodes)

A
v
g
.
C

o
s
t
p
e
r

M
o
n
th

(i
n
 m

il
li
o
n
s
)

(c) “MSFT” Cost with Threshold
at 65% of Max

25
50
75

100
125

1
2

75 50 25
Cluster Size (Nodes)

T
e
n
a
n
t
V

io
la

ti
o
n
s

p
e
r

H
o
u
r

(d) Violations with Threshold
at 85% of Max

0

100

200

300

75 50 25
Cluster Size (Nodes)

A
v
g
.
C

o
s
t
p
e
r

M
o
n
th

(i
n
 m

il
li
o
n
s
)

(e) “PMAX” Cost with Threshold
at 85% of Max

0

100

200

300

75 50 25
Cluster Size (Nodes)

A
v
g
.
C

o
s
t
p
e
r

M
o
n
th

(i
n
 m

il
li
o
n
s
)

(f) “MSFT” Cost with Threshold
at 85% of Max

Figure 4: Operational cost of the FFT and Summed Time Series allocation schemes compared to the Scalar allocation scheme as a function
of cluster size

6.2.2 Summed Time Series Cost Model and FFT
Covariance Model

To see if there is any benefit to using a time series instead
of a scalar value for the cost of each database, we ran our
Summed Time Series algorithm (see Section 5.1.1) with a
segment length of one day. We also tested variations on the
Summed Time Series model using segment lengths of one
week and six hours, but did not find significant differences
in performance.

Additionally, we tested our FFT Covariance model (see
Section 5.1.2) with the first 62 FFT coefficients correspond-
ing to a minimum wavelength of one day. We also tested
variations on the FFT Covariance model in which we trun-
cated the FFT after 10 or 245 coefficients, corresponding to
minimum wavelengths of one week and six hours. We did
not notice significant differences between these variations.

As with our evaluation of the Scalar cost model, we
trained our models on two months of data and tested on the
third month, cross-validating across all three months. Fig. 4
shows the performance of these algorithms. As in Fig. 3,
each data point represents the average of 30 independent
runs of the algorithm; 10 runs for each of the three months.

Interestingly, the Summed Time Series and FFT Covari-
ance models do not show significant improvement over the
simple Scalar model on this dataset when using 75 and
50 machines. Both algorithms perform as well as or better
than Scalar with 25 machines, however, indicating that these
methods may have applications for creating denser tenant
packings. In particular, the Summed Time Series algorithm
caused 47% fewer violations than Scalar and 73% fewer vi-

olations than Random (not pictured) at the 85% threshold,
leading to 11% lower cost than Scalar and 27% lower cost
than Random with the “PMAX” model. The FFT Covari-
ance algorithm showed similar performance at this setting,
with 38% fewer violations than Scalar and 69% fewer vio-
lations than Random, leading to 8% lower cost than Scalar
and 25% lower cost than Random. This sort of dense pack-
ing may be especially desirable for a system with expensive
hardware or lower penalties for violations. More research is
needed to further identify and refine the ideal conditions for
each algorithm.

6.3 Dynamic Algorithm
As shown in the previous section, a simple scalar model
for static allocation of databases to machines performs very
well given our cost model. But if we allow movement of
databases, can we do better than a static allocation?

Starting with a static allocation generated with the Scalar
model, we evaluated our ability to keep the allocation “up to
date” based on changes in the patterns of each database ten-
ant’s resource usage. In this experiment, we ran the dynamic
algorithm for every week in the dataset, moving a limited
number of databases between machines each time.

For the baseline static algorithm, we trained the Scalar
model (see Eq. (2)) on the first week of data (September
1 - 7), and tested the resulting allocation on the remaining
12 weeks. Using this allocation as a starting point, we also
tested the dynamic model. In this model, we ran the dynamic
algorithm once for each week in the dataset. Each time
we started with the previous week’s allocation and moved

398

Allocation Type Scalar Static Dynamic

500

1000

1500

50
100

75 50 25
Cluster Size (Nodes)

T
e
n
a
n
t
V

io
la

ti
o
n
s

p
e
r

H
o
u
r

(a) Violations with Threshold
at 65% of Max

0

200

400

600

75 50 25
Cluster Size (Nodes)

A
v
g
.
C

o
s
t
p
e
r

M
o
n
th

(i
n
 m

il
li
o
n
s
)

(b) “PMAX” Cost with Threshold
at 65% of Max

0

200

400

600

75 50 25
Cluster Size (Nodes)

A
v
g
.
C

o
s
t
p
e
r

M
o
n
th

(i
n
 m

il
li
o
n
s
)

(c) “MSFT” Cost with Threshold
at 65% of Max

50

100

5
10

75 50 25
Cluster Size (Nodes)

T
e
n
a
n
t
V

io
la

ti
o
n
s

p
e
r

H
o
u
r

(d) Violations with Threshold
at 85% of Max

0

100

200

300

75 50 25
Cluster Size (Nodes)

A
v
g
.
C

o
s
t
p
e
r

M
o
n
th

(i
n
 m

il
li
o
n
s
)

(e) “PMAX” Cost with Threshold
at 85% of Max

0

100

200

300

75 50 25
Cluster Size (Nodes)

A
v
g
.
C

o
s
t
p
e
r

M
o
n
th

(i
n
 m

il
li
o
n
s
)

(f) “MSFT” Cost with Threshold
at 85% of Max

Figure 5: Tenant violations and operational cost of the Dynamic allocation scheme compared to the Scalar Static allocation as a function of
cluster size

at most one database onto or off of each machine. Then
we tested the performance of the new allocation on the
following week. We also tested variations on the dynamic
algorithm in which we allowed five or ten databases to move
onto or off of each machine during each cycle instead of only
one. We did not find a noticeable change in performance by
allowing more databases to move per cycle.

Fig. 5 shows the performance of the dynamic algorithm
compared to the static algorithm. Each bar is the result of 30
runs of the algorithm. The different metrics are as described
in previous sections. In all cases, the dynamic algorithm per-
forms at least as well as the static algorithm, and in most
cases outperforms the static algorithm. When using 25 ma-
chines, the dynamic algorithm causes 42% fewer violations
at the 85% threshold than the static algorithm. Additionally,
the dynamic algorithm costs 11% less at the 85% thresh-
old than the static algorithm using the “PMAX” model. Fur-
thermore, both algorithms show significant gains over Ran-
dom in this experiment (not pictured). At the 85% thresh-
old, Scalar Static costs 23% less than Random and Dynamic
costs 32% less than Random using the “PMAX” model. In
summary, assuming one migration per machine per week has
a negligible impact on cost, our dynamic algorithm provides
a significant benefit over the static approaches. We leave for
future work an analysis of the costs and benefits of more fre-
quent migrations.

7. Conclusions
In this paper we studied a large, publicly available produc-
tion dataset from Microsoft’s Azure SQL Database. We used

this dataset to compare the effectiveness of several tenant
placement algorithms, including the algorithm used by Mi-
crosoft in production. We analyzed two cost models that take
into account server costs and SLA penalties, and used these
models to evaluate the tenant placement algorithms. Fur-
thermore, we introduced a predictive greedy algorithm (the
Scalar algorithm) to create a static allocation of databases
to machines and showed that it can reduce total operational
cost by up to 26% compared to a random allocation. We de-
scribed a dynamic version of this algorithm that enables pe-
riodic tenant migration, and showed that it reduces cost by
up to 11% compared to the static algorithm.

We also introduced a couple of more complex algo-
rithms that take the time series of CPU usage into ac-
count to collocate databases with anti-correlated usage
patterns. We showed that these algorithms do not consis-
tently improve upon the Scalar greedy algorithm for low- to
medium-density tenant packings, but they show some im-
provement at high density, causing up to 47% fewer viola-
tions for 11% lower cost. In future work we hope to refine
these models and identify the ideal conditions for each algo-
rithm.

8. Acknowledgments
The authors would like to thank the reviewers for help-
ing to improve the paper, Nigel Ellis for his support, Frans
Kaashoek for providing valuable feedback, James Hamilton
for his real-world advice, and Manasi Vartak and Tucker
Taft for helpful discussions on modeling the behavior of
databases.

399

References
[1] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rit-

tinger. Multi-tenant databases for software as a service:
schema-mapping techniques. In SIGMOD, pages 1195–1206,
2008.

[2] Microsoft Corporation. http://azure.microsoft.com/
en-us/documentation/services/sql-database/, 2015.

[3] P. Bernstein, I. Cseri, N. Dani, N. Ellis, A. Kalhan, G. Kaki-
vaya, D. Lomet, R. Manne, L. Novik, and T. Talius. Adapting
Microsoft SQL Server for cloud computing. In ICDE, pages
1255–1263, April 2011.

[4] B. Brynko. NuoDB: Reinventing the database. Information
Today, 29(9):9–9, 2012.

[5] B. Codenotti, G. D. Marco, M. Leoncini, M. Montangero,
and M. Santini. Approximation algorithms for a hierarchi-
cally structured bin packing problem. Inf. Process. Lett.,
89(5):215–221, 2004.

[6] J. Coffman, E.G., M. Garey, and D. Johnson. Approxima-
tion Algorithms for Bin-Packing - An Updated Survey. In Al-
gorithm Design for Computer System Design, pages 49–106.
Springer Vienna, 1984.

[7] C. Curino, E. Jones, R. Popa, N. Malviya, E. Wu, S. Madden,
H. Balakrishnan, and N. Zeldovich. Relational Cloud: A
Database Service for the Cloud. In CIDR, 2011.

[8] C. Curino, E. P. Jones, S. Madden, and H. Balakrishnan.
Workload-aware Database Monitoring and Consolidation. In
SIGMOD, pages 313–324, New York, NY, USA, 2011. ACM.

[9] C. Curino, Y. Zhang, E. P. C. Jones, and S. Madden. Schism:
a Workload-Driven Approach to Database Replication and
Partitioning. PVLDB, 3(1):48–57, 2010.

[10] S. Das, D. Agrawal, and A. E. Abbadi. ElasTraS: An elas-
tic, scalable, and self-managing transactional database for the
cloud. ACM Transactions on Database Systems (TODS),
38(1):5, 2013.

[11] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi. Alba-
tross: Lightweight Elasticity in Shared Storage Databases for
the Cloud using Live Data Migration. PVLDB, 4(8):494–505,
May 2011.

[12] C. Delimitrou and C. Kozyrakis. Paragon: QoS-aware
Scheduling for Heterogeneous Datacenters. In ASPLOS,
pages 77–88, New York, NY, USA, 2013. ACM.

[13] C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient
and QoS-aware Cluster Management. In ASPLOS, pages
127–144, New York, NY, USA, 2014. ACM.

[14] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi. Zephyr:
Live Migration in Shared Nothing Databases for Elastic Cloud
Platforms. In SIGMOD, pages 301–312, 2011.

[15] A. J. Elmore, S. Das, A. Pucher, D. Agrawal, A. El Abbadi,
and X. Yan. Characterizing Tenant Behavior for Placement
and Crisis Mitigation in Multitenant DBMSs. In Proceedings
of the 2013 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD ’13, pages 517–528, New York,
NY, USA, 2013. ACM.

[16] B. S. Everitt, S. Landau, and M. Leese. Cluster Analysis.
Wiley Publishing, 4th edition, 2009.

[17] A. Floratou and J. M. Patel. Replica Placement in Multi-tenant
Database Environments. In International Congress on Big
Data, pages 246–253, 2015.

[18] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The
cost of a cloud: research problems in data center networks.
SIGCOMM, 39(1):68–73, 2008.

[19] H. Hacigümüş, B. Iyer, and S. Mehrotra. Providing database
as a service. In ICDE, pages 29–38. IEEE, 2002.

[20] J. Hamilton. private communication.

[21] W. Lang, F. Bertsch, D. J. DeWitt, and N. Ellis. Microsoft
Azure SQL Database Telemetry. In Proceedings of the Sixth
ACM Symposium on Cloud Computing, SoCC ’15, pages
189–194, 2015.

[22] W. Lang, S. Shankar, J. Patel, and A. Kalhan. Towards
Multi-Tenant Performance SLOs. In ICDE, pages 702–713,
2012.

[23] R. Liu, A. Aboulnaga, and K. Salem. DAX: A Widely Dis-
tributed Multi-tenant Storage Service for DBMS Hosting.
PVLDB, 6(4):253–264, 2013.

[24] Z. Liu, H. Hacigümüş, H. J. Moon, Y. Chi, and W.-P. Hsiung.
PMAX: Tenant Placement in Multitenant Databases for Profit
Maximization. EDBT, pages 442–453, New York, NY, USA,
2013. ACM.

[25] H. J. Moon, H. Hacigümüş, Y. Chi, and W.-P. Hsiung.
SWAT: a lightweight load balancing method for multitenant
databases. In EDBT, pages 65–76, 2013.

[26] B. Mozafari, C. Curino, and S. Madden. DBSeer: Resource
and Performance Prediction for Building a Next Generation
Database Cloud. In CIDR, 2013.

[27] V. R. Narasayya, S. Das, M. Syamala, B. Chandramouli,
and S. Chaudhuri. SQLVM: Performance Isolation in
Multi-Tenant Relational Database-as-a-Service. In CIDR,
2013.

[28] J. Schaffner, T. Januschowski, M. Kercher, T. Kraska, H. Plat-
tner, M. J. Franklin, and D. Jacobs. RTP: Robust Tenant Place-
ment for Elastic In-memory Database Clusters. SIGMOD,
pages 773–784, New York, NY, USA, 2013. ACM.

[29] R. Taft. Predictive Modeling for Management of Database
Resources in the Cloud. Master’s thesis, MIT, Cambridge,
2015.

[30] C. D. Weissman and S. Bobrowski. The design of the
force.com multitenant internet application development plat-
form. In SIGMOD, pages 889–896, 2009.

[31] P. Xiong, Y. Chi, S. Zhu, H. J. Moon, C. Pu, and
H. Hacigümüş. SmartSLA: Cost-Sensitive Management of
Virtualized Resources for CPU-Bound Database Services.
Parallel and Distributed Systems, IEEE Transactions on,
26(5):1441–1451, May 2015.

400

http://azure.microsoft.com/en-us/documentation/services/sql-database/
http://azure.microsoft.com/en-us/documentation/services/sql-database/

	Introduction
	Related Work
	Multitenancy Models
	Tenant Placement Strategies

	Microsoft Azure SQL Database
	Telemetry Dataset
	STeP Data Pre-Processing

	Tenant Placement
	Service-Level Agreement Violations
	Tenant Placement Efficacy

	Tenant Placement Algorithms
	Static Allocation
	Predictive Greedy Algorithms
	FFT Covariance Cost Model and Algorithm

	Dynamic Allocation

	Evaluation
	Experimental Setup
	Static Algorithms
	Scalar Cost Model
	Summed Time Series Cost Model and FFT Covariance Model

	Dynamic Algorithm

	Conclusions
	Acknowledgments

