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ABSTRACT
Much like on-premises systems, the natural choice for run-
ning database analytics workloads in the cloud is to provision
a cluster of nodes to run a database instance. However, an-
alytics workloads are often bursty or low volume, leaving
clusters idle much of the time, meaning customers pay for
compute resources even when underutilized. The ability of
cloud function services, such as AWS Lambda or Azure Func-
tions, to run small, fine granularity tasks make them appear
to be a natural choice for query processing in such settings.
But implementing an analytics system on cloud functions
comes with its own set of challenges. These include manag-
ing hundreds of tiny stateless resource-constrained workers,
handling stragglers, and shuffling data through opaque cloud
services. In this paper we present Starling, a query execu-
tion engine built on cloud function services that employs
a number of techniques to mitigate these challenges, pro-
viding interactive query latency at a lower total cost than
provisioned systems with low-to-moderate utilization. In
particular, on a 1TB TPC-H dataset in cloud storage, Starling
is less expensive than the best provisioned systems for work-
loads when queries arrive 1 minute apart or more. Starling
also has lower latency than competing systems reading from
cloud object stores and can scale to larger datasets.

CCS CONCEPTS
• Information systems→ Relational parallel and distributed
DBMSs; Online analytical processing engines; • Computer
systems organization→ Cloud computing;
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1 INTRODUCTION
Modern organizations are increasingly turning to cloud pro-
viders to run their data services, including database analytics
workloads with services like Amazon Redshift or Azure SQL
Data Warehouse. These cloud systems are more elastic than
on-premises alternatives and avoid their upfront costs. Yet
these systems still require users to make complex provision-
ing decisions. But because many analytics workloads are
unpredictable and ad-hoc, provisioning well is difficult, re-
sulting in over-provisioned hardware. Although some cloud
services provide “elastic” features that allow compute nodes
to be added or removed dynamically, this scaling can take
minutes, making it impractical on a per-query basis. Further,
many cloud database systems require data to be explicitly
loaded into proprietary formats on local disks to perform
well. For workloads composed of one-off queries or ETL
queries, loading data results in an unacceptable increase in
query latency. Furthermore, cloud storage tends to be an
order of magnitude cheaper than other storage services. As a
result, several systems, including Presto [25] and Athena [1],
are purpose built for executing queries directly on cloud stor-
age. Other systems like Redshift [7] have special mechanisms
for reading from cloud storage.
In contrast to current offerings, an ideal system would

avoid pre-provisioning, charge users query-by-query, and
be performance competitive. It would also avoid loading
data into proprietary formats, and let users tune to cost and
performance needs on a query-by-query basis. Although
achieving all of these goals perfectly and simultaneously is
not possible, so called “serverless” cloud function services,
like AWS Lambda [13] and Azure Functions [14], offer a
tantalizing promise that suggests they may be able to get
close. In particular, these services allow arbitrary numbers
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System Does not Pay by Tunable
require loading query performance

Amazon Athena ✓ ✓ ✗

Snowflake ✗ ✓* ✓

Presto ✓ ✗ ✓

Amazon Redshift ✗ ✗ ✓

Redshift Spectrum ✓ ✗ ✓

Google BigQuery ✓ ✓ ✗

Azure SQL DW ✓ ✗ ✓

Starling ✓ ✓ ✓

Table 1: Comparison of cloud analytics databases

of small tasks to be invoked with very low startup times
(typically a few milliseconds) and offer virtually unlimited
parallelism. Users are charged only for the execution time
used, typically at the granularity of 1 second or less. Using
such tasks, one could invoke many small parallel jobs to scan,
join, and aggregate tables in raw cloud storage using well
known techniques from parallel databases to implement a
SQL query processing system.
However, using function services to support ad-hoc an-

alytical workloads comes with its own set of hurdles. First,
workers or functions have limited memory, execution time
limits, and networking restrictions that prevent sending data
directly from one instance to another. Thus, in order to sup-
port shuffles, function services require other methods of
moving data between instances. In addition, instances are
typically stateless, which is at odds with stateful analytical
queries that need to shuffle or aggregate data. Finally, la-
tency of individual workers can be unpredictable, leading to
stragglers taking much longer to run than other workers on
data of similar scale; this is particularly true when workers
use proprietary, closed-source, and otherwise opaque cloud
storage services to exchange state, as these services often
yield variable and unpredictable latencies.
To explore the promise of function services for database

analytics, we built Starling, a query execution engine that
runs on serverless platforms. Starling leverages the bene-
fits of cloud services while mitigating the above challenges.
To achieve high resource utilization, Starling maps tasks to
function invocations so users pay for only the compute re-
sources their query actually uses. The number of invocations
can grow and shrink as needed during each query execution.
Starling takes advantage of the on-demand elasticity of cloud
object storage services, such as Amazon S3[9] to shuffle data.
It materializes intermediate results in a format optimized
to reduce cost while achieving high aggregate throughput.
To mitigate stragglers, Starling uses a tuned model to detect
straggling requests and mitigates their impact on query la-
tency. Finally, Starling provides opportunities to optimize

queries for cost or latency by adjusting the number of invo-
cations at each stage. Tuning queries to cost or performance
is desirable for users who run ad-hoc workloads.

With these optimizations, Starling achieves query latency
comparable to provisioned systems while decreasing cost for
workloads with moderate query volume.

We begin by exploring the properties of available tools for
analytical workloads, and show that Starling fits a point in
the design space that has so far remained unaddressed.

2 MOTIVATION AND DESIGN
Starling seeks to provide a balance of performance, flexibility,
and low cost-per-query that current systems do not provide
for some important classes of workloads. Below we describe
the current landscape of systems and describe the promise
and challenges of cloud functions for query processing. We
follow with a brief description of the architecture of Starling,
and conclude by discussing why we chose Amazon AWS to
for our Starling implementation.

2.1 Landscape of Cloud Analytic Databases
The proliferation of cloud analytic databases has led to a rich
ecosystem of offerings with varying features and pricing
models. Table 1 shows an overview of the design space. The
rows in the table correspond to some of the most popular
analytic databases. The columns are as follows:

• Does not require loading Some systems need to load
data from its original format, e.g. CSV, ORC, Parquet, etc.,
to an internal format that permits executing queries with
high performance. This loading step is a barrier to users
who want to run ad-hoc queries on raw files in cheap cloud
object storage. With the rise of enterprise data lakes, having
analytic data stored in raw formats in inexpensive cloud
object stores is increasingly the norm. While many systems
have methods of reading data from external sources like
cloud storage, this is typically a tacked-on option that results
in significant performance degradation compared to data
stored on local disks in native formats.

• Pay-per-Query Provisioned systems start a cluster that
sits in the cloud waiting for queries to process. Whether the
system is idle or not, the cloud vendor charges for the un-
derlying virtual machines (plus some fixed cost for the data
analytics service). In a pay-per-query model, users are only
charged based on the queries they run. Such a model can
be dramatically cheaper if queries are issued sporadically
or unpredictably. We evaluate specifically when pay-per-
query is more cost-efficient than Starling in our experiments.
While Snowflake does not have a pay-per-query model per
se (hence the asterisk in the table), it allows users to automat-
ically shut down clusters during periods of inactivity, and
resume processing when new queries arrive.
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Figure 1: Query Execution in Starling. Opaque cloud components in blue, Starling components in yellow
• Tunable Performance In cloud settings, both the re-

sponse time and cost of executing a query depends on the
amount of resources that are provisioned. When systems
permit scaling resources to tune performance and cost in
response to data volumes, then we say these systems are
elastic. When systems are inelastic or do not allow tuning,
queries may fail to execute or take longer than users require.
Starling is a system for analytic users who run a low to

moderate query volumes on data in cloud object storage. It
i) does not require loading; ii) charges only for the queries
that are executed; and iii) permits users to trade off cost and
performance, and adjust parallelism on a per-query basis.

No existing system offers all three options. Cloud functions
are the building block allowing us to achieve these goals.

2.2 Cloud Functions
Cloud function services allow users to run applications with-
out managing or provisioning servers. Users upload applica-
tion code or executables to the service. In response to events
or direct user invocation, the function service provisions an
execution environment and runs the user-provided code. For
our purposes, the key advantage of cloud functions are i)
they can read directly from cloud storage, ii) they have a very
low startup time and are billed on a per-invocation basis and
iii) many of them can be invoked in parallel. These properties
translate directly to the desired features in Starling (no load-
ing, pay-per-query, and tunable parallelism/performance.)
Despite their high-level appeal, analytical workloads are

not a natural fit for cloud functions for several reasons. First,
analytic queries can run for hours, but cloud function execu-
tion is limited to a few minutes. Moreover, cloud functions
execute in resource-constrained containers; e.g., 1 core per
function and at most 3 GB RAM is typical. Second, analytic
queries require shuffling data to compute joins, but cloud
functions do not allow communication between invocations.
A string of recent research has shown cloud functions are
useful for a number of data parallel workloads [11, 17, 18, 21],
but for workloads with more complex communication pat-
terns like analytical workloads, the limitations of cloud func-
tions have been identified as show-stoppers [20, 26]. In this

paper we develop mechanisms to work around these short-
comings and deliver a performance and price-competitive
data analytics system built on cloud functions.

2.3 Starling Architecture
Starling is a query execution engine. Users submit planned
queries to the system and receive back query results. Fig-
ure 1 shows Starling’s architecture. As seen in the figure,
users submit queries to a small coordinator that compiles the
query and uploads it to a cloud function service. The coor-
dinator then schedules the tasks by invoking them through
the function service. The function service is responsible for
provisioning execution environments for workers that per-
form the task of query execution. Workers read base table
data from inexpensive cloud object storage services. Because
functions are stateless, they exchange state through a com-
munication medium, e.g., shared storage. When all tasks
complete the worker reads the result from the function com-
munication medium and returns it to the user.
Starling’s design requires a few properties of underlying

cloud services. First, Starling needs to launch hundreds of
function invocations at once and in parallel from cold start.
Second, Starling relies on relatively inexpensive and high
throughput methods of exchanging data between tasks, such
as object storage services. Its performance depends on in-
dividual parallel workers being able to each achieve high
throughput despite other workers executing concurrently.

2.4 Choosing a Cloud Function Service
Google Cloud Functions [19], Azure Functions [14], and
AWS Lambda [13], each provides a function service. Star-
ling’s architecture can be implemented in any of these plat-
forms, however, certain platforms offer features that aremore
amenable to the kind of workloads Starling is designed to
support. In particular, Google Cloud Functions and Azure
functions have restrictions on the languages that can be used,
or the rate at which functions can be invoked, or both, that
will impact parallel query processing performance, while
AWS Lambda does not have such restrictions.
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For these reasons we chose to build Starling on AWS
Lambda. This restricted us to usingAWS services to exchange
intermediate data. In the next section we discuss why we
chose S3 [9], AWS’s cloud object storage offering, for both
base table storage and as the communication medium.

3 MANAGING DATA IN STARLING
Storage is an important component of any data management
system. Starling provides interactive query performance on
raw data stored in cloud object storage. Starling does not
manage base table data, but must interact with it efficiently,
as we describe below in Section 3.1. Because cloud functions
are stateless, Starling must also manage intermediate state
during query execution as described in Section 3.2.

3.1 Base Table Storage
Starling executes queries over data sitting in S3. Starling’s
design is agnostic to base table formats, but common choices
are CSV, ORC, and Parquet. Starling requires only that rows
of a specified schema can be parsed from the source objects
in S3; however, for the best performance base table data
should be stored as objects of a few hundred MB.

Open source columnar formats like ORC [12] help Starling
to achieve good performance as they allow reading a subset
of columns rather than the whole row. Skipping unneeded
columns decreases latency of tasks and the cost of running
workers. ORC also includes indexes and basic statistics that
allow users to skip portions of the input increasing perfor-
mance. Therefore, in our evaluation in Section 6 we use raw
data stored in ORC.

3.2 Intermediate State
As cloud functions are stateless and have no method of com-
municating directly, Starling relies on AWS services to shuffle
data. A medium for exchanging data between function invo-
cations should have low cost, high throughput, low latency,
and scale transparently. We considered several options for
exchanging intermediate state before choosing Amazon’s
cloud object storage service, S3. Using virtual machines or
a streaming system like Amazon Kinesis [6] both require
users to provision capacity ahead of time and thus are not a
suitable choice. We also considered using queue services like
Amazon SQS [10], but these limit message sizes (to 256KB in
the case of SQS) and require encoding data as text, making
it cumbersome and computationally costly for large shuffles.
NoSQL services like DynamoDB [3] have very low latency
but unacceptably high cost for large shuffles. While S3 has
high latency compared to some of these alternatives, this
can be mitigated as we describe in Section 3.3. We describe
the most important properties of S3 for Starling below.

S3 Properties: S3 [9] is an AWS’s object storage service.
Users write binary objects of arbitrary size to the service
into “buckets” with a named “key”. S3 is a write-once system,
meaning that no appends or updates to objects are allowed,
only replacement. Users can scale read and write throughput
by ensuring keys are spread across “prefixes”, defined as the
first few characters in the key [15]. Users interact with the
service through a REST interface. Reads from S3 can fetch
the entire object or a range of bytes. S3 charges users by
the amount of data stored at a rate $0.23 per GB per month,
and a cost of $0.0004 per thousand GET requests of any
size, and $0.005 per thousand PUTs (prices as of July 2019).
Unlike standard file systems, S3 does not guarantee read-
after-write consistency, which complicates query processing
as we describe in Section 3.3.1. S3 provides atomic reads
and writes, ensuring that readers never see data from two
separate writes in the same read.

Sharing intermediates: Starling uses S3 to pass interme-
diate data between function invocations. Workers write their
outputs as a single object in S3 with a predetermined key. Be-
cause the object is written at a known location, readers can
poll the object key until the object appears. For query pro-
cessing, S3 has the additional advantage of being persistent,
meaning workers can begin sending data before destina-
tion workers have started executing. This saves a significant
amount of execution time in AWS Lambda.
Using S3, one-to-many communication is both inexpen-

sive and straightforward. Producer tasks write an object to
S3, making it visible to all readers that need it. All-to-all com-
munication, as in a shuffle, is more difficult to achieve at low
cost. As recent work has demonstrated, writing an object per
partition for large shuffle incurs unacceptably high cost [26].
Starling ameliorates this problem by writing a single parti-
tioned file to S3 and having consumer tasks read only the
relevant portion of each object output by the producers. We
describe this process in more detail in Section 4.2. More de-
tails of the on-disk format of Starling’s intermediate state
may be found in the extended paper [24].

3.3 Mitigating High Storage Latency
While S3 has very high aggregate throughput, it has much
higher latency than other shuffling options. A 256KB read has
median latency of 14ms. If workers perform single-threaded
blocking reads to S3, they may sit idle while waiting for
responses, increasing query latency and thus increasing in-
vocation runtime costs. In order to mitigate this latency each
task performs several reads in parallel from S3. Fortunately,
most tasks in Starling must perform many reads, making
this trivial to parallelize. Columnar formats like ORC are
broken into column segments, and in shuffles, tasks must
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make many reads to fetch partition data from objects writ-
ten by input tasks. Parallelizing reads helps keep tasks busy,
spending less time idle and more time on query processing.
As we increase the number of parallel reads that the invoca-
tion performs, we achieve higher effective throughput until
we achieve 160MBps at 16 parallel reads, after which adding
more parallelism does not improve throughput.

3.3.1 Mitigating Object Visibility Latency. As noted above,
S3 does not guarantee read-after-write consistency in some
cases. As a result, an object recently written to S3 may not
become visible to tasks in a subsequent stage for several
seconds or more. Although infrequent, any delay in object
visibility slows down all reading workers and can have detri-
mental impact on query latency because a shuffle is an all-
to-all communication. Furthermore, tasks reading the object
continue to incur delays waiting for it to become readable.
Starling mitigates this risk by writing the same object to two
different keys in S3. We call this optimization “doublewrite”.
Consumers attempt to read the first key, and if it is not
available, try the second one. This strategy makes query per-
formance more predictable by reducing the risk that a single
visibility issue slows down all consumers.

4 QUERY EXECUTION
The goal of Starling’s query execution engine is to achieve
interactive performance at low cost. To run queries on AWS
Lambda, Starling’s coordinator uses a single JSON file de-
scribing a physical query plan as input. The plan contains
dependencies between stages, and the number of taskswithin
each stage. The coordinator monitors task completion and
starts new stages once dependencies are completed. The
coordinator generates C++ source code for the query, and
compiles it into a single executable that is then packagedwith
necessary dependencies, compressed in an archive and up-
loaded to AWS Lambda. Each task’s input and output object
names are determined before each stage begins execution.
Each task executes as much of the query as possible without
communicating with other workers. For instance, Starling’s
workers may perform multiple joins if tables are partitioned
on the same key. The coordinator then invokes query tasks
until query completion. Below we describe how relational
operators are implemented, how shuffles are performed, and
how tasks are scheduled to balance performance and cost.

4.1 Relational Operator Implementation
After reading data from S3, workers in Starling execute using
data-centric operations, where operators are implemented as
a series of nested loops, rather than executing an operator-
at-a-time. Query compilation allows for type specialization
and achieves very good performance for analytics use cases
systems [22]. Essentially each task contains a set of nested
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Figure 2: Starling multistage shuffle, function execu-
tions in blue, S3 Objects in shades of red showing par-
titions. Lines are reads and arrows are writes
loops each performing necessary relational operations. This
pipelining of operations within workers contributes to Star-
ling’s low query latency. The tasks write the materialized
output of its operations as a single object to S3.
Below we describe how relational operators are imple-

mented in Starling.
Base Table Scans. While Starling does not manage base
table data directly, it still must be able to scan data from base
tables quickly. It does this by reading portions of input files
in parallel. If there is a projection, Starling reads only the
necessary columns from the base table, if possible given the
file format (e.g., in ORC or Parquet).
Joins. Starling supports both broadcast joins and partitioned
hash joins. In the case of broadcast joins, each input task for
the inner relation writes a single object to S3. On the outer
relation, tasks read all data from inner relation and their own
subset of the outer relation to perform the join.
Partitioned hash joins require a shuffle. Tasks scan both

relations and partition their data on the join key and write
partitioned files. If possible, this partitioning is pipelined in
a single task with other operations. Afterwards, a set of join
tasks is started to perform the join. These join tasks create a
hash table for their partition of one relation and then scan
the other relation, probing into the hash table. As shuffling
efficiently is critical for performing partitioned joins, we
describe in detail how shuffles are performed in Section 4.2.
Aggregation. Starling performs aggregation in two steps.
Tasks that perform the final operation before aggregation
each generate a set of partial aggregates and output an object
to S3. To complete the query, a final task reduces these partial
aggregates into a final aggregate. When necessary, Starling
first performs a shuffle, partitioning on the group by key
before generating partial aggregates.
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4.2 Shuffling
Starling uses a partitioned intermediate format allowing
tasks performing a shuffle to read only relevant partitions
from input files. In a standard shuffle, each consumer must
read from every output, an all-to-all communication. Since
the workers in Starling are small, each task must read a large
number of small objects from the storage service. In addi-
tion to impacting query latency, many reads may incur an
unacceptably high cost since object storage services charge
by request. For example, with 512 producer tasks and 128
consumer tasks, the S3 cost for this shuffle is only 5.7 cents at
current S3 pricing, but for a larger shuffle of 5120 producers
and 1280 consumers, the cost increases to more than $5.
To address this issue, we use 2 strategies for partitioned

hash joins. For small joins we use a standard shuffle as de-
scribed above where every consumer reads output from ev-
ery producer task. The number of reads is 2sr where s is the
number of producers and r is the number of consumers.
Since request costs become unacceptably high for joins

with many input tasks, we can trade off compute time for
object storage request costs by implementing a multi-stage
shuffle. We introduce a stage of combining tasks between
the producers and consumers. Each task in the combining
stage reads a contiguous subset of partitions from a subset of
input objects and produces a single combined output, with
the same partitioned file format. Because these combining
tasks read contiguous partitions, they still perform only two
reads per input. Finally, the consumer tasks read outputs
written by relevant combiners. Because each combining task
reads a subset of partitions, read outputs need only read a
subset of the outputs of these combining tasks. A diagram of
this approach is shown in Figure 2. The number of S3 reads
in a multistage shuffle is 2(s/p + r/f ) where p is the fraction
of partitions each combiner reads and f is the fraction of
files each combiner reads. The number of combining tasks
is 1/(p f ). Figure 2 shows a multi stage shuffle with p = 1/2
and f = 1/2, where each combining task reads half of the
partitions from half of the input files. With 5120 and 1280
consumer tasks and p = 1/20 and f = 1/64, the S3 read
cost is just $0.073 compared to more than $5 with a stan-
dard shuffle. The additional write cost of these combiners is
negligible. Each of the 1280 combiners makes two additional
writes, costing an additional $0.00128.

In a multistage shuffle, we can create any number of com-
bining tasks, but we typically choose the same number of
combining tasks as receiving tasks.

4.3 Assigning Tasks to Workers
The primary way that cost and performance is managed in
Starling is by controlling the number of tasks per stage. Typ-
ically having more tasks per stage results in lower latency

but higher cost because of the overhead of exchanging inter-
mediate state between workers. However, this is a delicate
balancing act. With too many workers overheads may over-
whelm any potential performance gains. But with too few
tasks, resource constrained workers may run out of mem-
ory. The space in between these two extremes allows users
of Starling to trade off cost and performance by tuning the
number of workers per stage.
For large queries, we sometimes need to execute more

tasks than the maximum available parallel function invo-
cations, as Amazon imposes a limit on the total tasks that
can be executed at once. In July 2019 the limit on parallel
AWS Lambda function invocations was 1,000. This can be
increased by contacting Amazon. For our experiments we
set maximum number of parallel invocations to 5,000. The
coordinator sets a maximum limit on the number of parallel
tasks per stage, Once the limit is reached, Starling waits for
a task to finish before scheduling a new task, until all stages
are complete.
Because Starling does not currently have a query opti-

mizer, we expose user-configured parameters necessary to
tune for cost and performance, including the shuffling strat-
egy and the number of tasks per stage.

4.4 Pipelining
Instead of waiting for all tasks in a stage to be complete be-
fore starting consuming stages, a strategy for decreasing the
latency of queries is to start consuming stages when a large
fraction of producer inputs is available. This allows workers
to start reading the available inputs and decreases overall
query latency by mitigating the impact of some stragglers.
However, this comes with additional risks and costs. If a task
in the producer stage straggles during a standard shuffle, it
causes all reading tasks to sit idle, significantly increasing
the cost of executing this stage. Thus, turning on pipelining
typically results in lower query latencies, but comes with
additional cost. Users who desire the least expensive query
execution possible should disable pipelining. One way to
reducing this cost is by eliminating as many stragglers as
possible with straggler mitigation techniques.

5 STRAGGLERS
Starling relies on S3 for both reading base table data as well
as for exchanging intermediate state between function invo-
cations. As stages must wait for their inputs to be available
before doing the computational work of query processing,
stragglers in any of these requests can have significant im-
pact on query latency. Unfortunately, S3 requests often suffer
from poor tail latency, with a small fraction of reads and
writes taking much longer to complete. Thus, straggler miti-
gation is critical in making Starling performance competitive

Research 2: Serverless and Cloud Data Management  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

136



50 90 95 99 99.9 99.99
Read Latency Percentiles

0.0

0.5

1.0

Ti
m

e(
s)

RSM off
RSM on
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S3 from AWS Lambda. Comparing RSM off and on
with provisioned systems. One of the chief challenges of miti-
gating stragglers is that these services are outside the control
of Starling, are closed source, and have opaque operation.
Therefore, we base our optimizations on the power of two
choices. [23], a well-known theoretical framework for using
randomization and duplicate tasks to improve performance
in unpredictable distributed systems, which systems like
MapReduce and Spark also employ to good effect.

5.1 Read Straggler Mitigation
A single query in Starling may perform hundreds of thou-
sands of S3 GET requests. Some of these requests experience
significant delays, as we show in Figure 3. We mitigate these
stragglers by observing how long a request takes compared to
its expected completion time. Workers detect when a request
is taking longer than expected, open a new connection to S3,
and retry the request. Workers use a simple model to deter-
mine when queries should arrive based on observed latency
and throughput of S3 requests as well as the throughput
of AWS Lambda Invocations. Starling’s model for expected
query response time is given by: r = l + (b/tc), where r is the
expected response time, b is the number of bytes requested,
and c is the number of concurrent readers. The tunable pa-
rameters of the model l and t , correspond to latency and
throughput of AWS Lambda invocations reading from S3.
We measure these as 15ms and 150MBps respectively.

If S3 fails to respond to a request within a fixed factor of
the expected time, Starling sends a duplicate request, accepts
whichever response returns first, and closes the other con-
nection. While we do not have insight into the design of S3
and thus cannot determine the source of these stragglers,
we find that this strategy mitigates most read stragglers and
significantly improves query latency.

To show this, we evaluate Starling’s read mitigation strat-
egy using a microbenchmark, performing thousands of reads
to S3 from Lambda. In Figure 3 we show the tail latencies of
the request time for a set of 256KB reads with and without
read straggler mitigation (RSM) enabled. While the strag-
gler mitigation mechanism is not perfect and sometimes
requests take as long as 2.5 seconds, the long tail of requests
seen without this mitigation is cut short, helping queries to
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Figure 4: Write latency percentiles for 100MB writes
to S3 from AWS Lambda. Comparing WSM off, with a
single timeout, and fully on
run faster. At the 99.99th percentile, latency is more than a
second without RSM and .25 seconds with RSM.
Although duplicate requests result in an additional ex-

pense, this pays off in saved function invocation time. An
additional read request needs to save just 8 milliseconds of
invocation time to pay for itself. While the read straggler
mitigation mechanism is only triggered in 0.3% of cases (160
times for 52,000 reads), in this experiment the mitigation
saves nearly 95 seconds of compute time at an additional
read cost the equivalent of only 1.3 seconds, making read
straggler mitigation a cost saving measure as well.

5.2 Write Straggler Mitigation
While most queries perform several orders of magnitude
fewer writes to S3 than reads, usually two per function invo-
cation, write requests tend to be much larger, up to several
hundred MB. Median latency for these large write requests
may be several seconds. Write stragglers must be handled
differently. While read requests are small and their responses
are large, the inverse is true for writes. Furthermore, we ob-
served that most stragglers on write are not due to slow data
transmission rates to S3, but in the S3 service processing re-
quests and sending responses. That is, write requests are sent
to the S3 service quickly, but replies from S3 may be delayed
for unknown reasons. By using a strategy similar to RSM,
Starling may react slowly to cases where data is written to S3
quickly but S3 is sluggish in its response. Therefore, we use
an additional model to predict response times for writes once
the request has completed sending. The expected response
time is the same as the RSM model but requires a different
set of parameters since the internal throughput of the S3
service appears to be much higher than the throughput from
a single function invocation. When either of these models
for response time indicate that a straggler has occurred, a
second write request is started on a new connection.
We determine how well the write straggler mitigation

(WSM) mechanism works by running another microbench-
mark. Figure 4 shows a comparison of the tail latency of
many 100MB writes to S3. We compare the tail latency of
response times without write straggler mitigation, with only
a single timeout (the same as read straggler mitigation) and

Research 2: Serverless and Cloud Data Management  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

137



with the full write straggler mitigation including a second
timeout set after the client finishes sending its request. With-
out write straggler mitigation, the longest writes take more
than 20 seconds. While the single timeout, reduces these
worst performing reads to about 18 seconds, the full write
straggler mitigation brings the tail latency down to about
ten seconds. As writes are much less frequent than reads in
Starling, this long tail is encountered much less frequently.
At the 99th percentile writes take almost 9 seconds without
WSM, 5 seconds with only one timeout, and 3.8 seconds with
full write straggler mitigation.

To pay for itself, each additional write would need to save
102 milliseconds of compute time. In this experiment, the
full write straggler mitigation is invoked in 31% of writes,
3138 of 10240 writes, costing the equivalent of 314 seconds
of compute, while saving the equivalent of 2100 seconds.
Since all writes have to complete for following stages to

read them, WSM is a critical part of Starling achieving low
latency while also saving compute time.

6 EVALUATION
In our evaluation we seek to answer the following questions
in corresponding sections:

• How does Starling’s operational cost compare to alterna-
tives as query workloads change? (Section 6.2)

• How performant is Starling compared to alternatives? (Sec-
tion 6.3)

• Howwell does Starling scale to larger datasets? (Section 6.4)
• How does Starling compare to current cloud interactive
pay-by-query services? (Section 6.5)

Additional experiments can be found in the extended pa-
per [24].

6.1 Experimental Setup
We execute our experiments on a scale factor 1,000 (1TB)
TPC-H [16] dataset for most experiments, and scale factor
10,000 (10TB) for the scaling experiment. Each uncompressed
table is broken into files of size at most 1GB, then encoded
using Apache ORC [12], a standard columnar format. The
ORC files use Snappy compression [27] to compress columns.
The resulting ORC files are uploaded to a single Amazon
S3 [9] bucket. The size before compression is about 1TB and
the size after conversion to ORC is 317GB. This dataset has
no skew. We compare to other systems on a subset of TPC-H
queries: all queries except 11, 21, and 22. We exclude these
queries as Starling is not yet support features required to
execute them. We do not have reason to suspect that the
addition of these queries would substantially change our
results. For each configuration we execute each query se-
quentially, and report the median latency of three executions.

We describe each of the systems and configurations that we
compare against below.
Amazon Redshift. Amazon Redshift [7] is a data ware-
house product sold by Amazon Web Services(AWS). Users
provision a cluster with a fixed number of nodes, though
nodes can be added later. Users must first pre-load data be-
fore it can be queried. Redshift offers two large node types:
A “dense compute” node type dc2.8xlarge with 32 threads,
244GB of DRAM and 2.56TB of SSD storage, and a “dense
storage” node type ds2.8xlarge with the same CPU and
memory, but with 16TB of HDD storage. Redshift also al-
lows users to read data from external tables in S3 with a
feature called Spectrum. Instead of performing reads directly
from the user’s cluster, Spectrum spawns short lived workers,
much like AWS Lambda invocations, to filter base table data
from S3 and send it to the cluster to complete the query.
Redshift allows users to divide tables among nodes on a

distribution key and sort on a key by defining these keys in
the schema. Doing so significantly decreases query latency
when tables are distributed on join keys and sorted, as nodes
can perform local merge joins without shuffling data.

We compare against four configurations of Redshift read-
ing from local data, and one reading from S3 using Spectrum.
With local data we have two clusters, one with “Dense com-
pute” nodes with local SSDs and one with “Dense Storage”
with 16TB of HDD storage each, abbreviated dc and ds re-
spectively. We also compare two different schemas, one with
distribution keys and sorting keys defined, and one without
where data is equally partitioned among nodes without re-
spect to their join key and sort order. The configurations
on the dense compute cluster with distribution keys we call
redshift-dc-dk and with a without distribution keys we
call redshift-dc-dd. Likewise the dense storage configu-
rations we call redshift-ds-dk and redshift-ds-dd for
distribution keys and default distribution, respectively.
In addition, we compare with a four node dc2.8xlarge

cluster using the Spectrum feature to read all base table from
S3. We call this configuration spectrum.
We report the cost of running Redshift’s nodes using on-

demand pricing [8] for all configurations and add S3 scans
costs for the Spectrum configuration.
Presto. Like Starling, Presto is a SQL execution engine de-
signed to execute on data on “in situ”, on raw storage, rather
than having users load data into specialized formats.We use a
cluster of r4.8xlarge nodes to execute queries query. Each
node has 32 threads and 244GB of DRAM. We used Amazon
EMR [5] 5.24.1 to set up Presto [25] 0.219. Since we could
have set this cluster up ourselves without using EMR we re-
port only the cost of running EC2 [4] virtual machines, and
not the additional cost of Amazon EMR. We enable spilling
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Figure 5: Daily cost with increasing queries of Starling
and configurations with data stored in S3
to disk and query optimization. Before running queries, we
collect statistics on all tables to assist the query optimizer.
We report performance and cost numbers on both a 5-

node cluster (4 workers and 1 master) and a 17-node cluster,
with 16 workers. We call these configurations presto-4 and
presto-16 respectively.
Amazon Athena. Amazon Athena [1] is a managed query
service based on Presto Version 0.172 [2]. Users define a
schema for data sitting in S3 buckets, then execute queries
against this data without provisioning hardware. Users ex-
ecute queries on Athena with a REST interface, when the
query completes, results are written to an S3 object. For
our results below, we report the run-time of each query as
measured by the Athena Service.

Users are charged for the number of bytes in S3 that their
query scans. Like Starling, Athena has near zero cost when
idle, with the exception of S3 costs for data storage. Unlike
Starling, however, Athena provides users with no control
over the degree of parallelism used in executing queries, and,
as we will show, occasionally is unable to allocate sufficient
resources to execute queries over large data files at all.
Starling.Unless otherwise noted, we configure Starling with
all performance optimizations enabled including doublewrite
(see Section 3.3.1) and pipelining (Section 4.4). Because Star-
ling does not have a query optimizer, we set the number of
tasks per stage manually as follows. First each input object
is assigned a task. We then choose the number of tasks for
join stages by sweeping over several options. We choose a
configuration that is neither the fastest nor least expensive,
but offers a good tradeoff of cost and performance. For the
scale factor 1,000 dataset we disable multi-stage shuffling,
but enable it for large joins in the scale factor 10,000 ex-
periment. Starling’s query plans use join orders generated
from the Redshift optimizer with the redshift-dc-dd con-
figuration, e.g. without partitioned data. Unless indicated,
configurations are fixed over experiments.
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Figure 6: Geometric mean of latency on 1TB dataset
6.2 Cost of Operation
We conduct experiments to demonstrate that at moderate
query rates, Starling is less expensive than alternatives.

We compare against systems that, like Starling, read data
directly from cloud object storage. A comparison against
systems that load data into local storage may be found in the
extended paper [24]. Figure 5 compares two Presto clusters of
differing size, Redshift Spectrum, reading from S3, and Star-
ling. Each of these systems incurs more cost as more queries
are executed. In the case of Starling this cost comes from
reading base table and intermediate data from S3, as well as
AWS Lambda costs. At about 120 queries per hour Starling’s
cost increases beyond presto-16. However, as presto-16
is not as performant as Starling, with more than 153 queries
per hour Starling is the only system able to keep up. No con-
figuration reading base tables from S3 can execute more than
189 queries per hour back-to-back. While presto-4 is cost
competitive with Starling at about 33 queries per hour, this
is its maximum query throughput when executing queries
back-to-back.
In summary, Starling is the least expensive system of all

configurations when query volumes are moderate.

6.3 Query Latency
While low cost is a benefit, users with ad-hoc query work-
loads also want interactive performance. Figure 6 compares
the geometric mean of the latency of queries in the workload.
Athena did not complete four of the queries, 2, 8, 9, and 15 re-
porting either a resource exhausted error, or because Athena
was missing some SQL functionality Therefore, we also in-
clude a separate plot of the geometric mean of the subset of
queries Athena completed. A full comparison of Starling to
Athena follows in Section 6.5. These four queries are slower
than average and thus removing them decreases the geo-
metric mean for most systems. While Starling is just over
four times slower than redshift-dc-dk, it does not have
the advantage of pre-partitioned base tables nor sorted data.
When compared to a configuration without this advantage
redshift-dc-dd on the same cluster without pre-sorting or
pre-partitioning, Starling’s latency is less than 50% slower
than Redshift after loading data into its local disks. Starling
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Figure 7: Geometric mean of latency on 10TB dataset
does not preclude sorting or pre-partitioning. For queries
that do simple scans and aggregations like Q1 and Q6, Spec-
trum, which uses stateless workers like Starling for base table
scans, achieves very low latency, even compared to Redshift
configurations with local data. For queries with expensive
joins like Q9 Starling has latency similar to Redshift config-
urations with default distribution (configurations with dd).
This is likely because of extra cost of shuffling data when
base tables are not partitioned on the join key.

For users with repeated workloads that require low query
latency and are cost insensitive, a provisioned system with
pre-loaded local data and tuned schema is still the best choice.
But for ad-hoc analytics on data in cloud object storage,
Starling has the lowest query latency. Against systems with
tables pre-loaded, sorted, and stored locally, it has the lowest
cost for query inter arrival times more than 60 seconds, and
against systems data in S3, Starling is less expensive when
query inter-arrival times are more than 30 seconds.

6.4 Scalability
In this section we show that Starling scales better than provi-
sioned systems, without requiring an expensive reprovision-
ing step.We generated a scale factor 10,000 TPC-H dataset(10
TB before compression) and executed a subset of 12 queries
from our query set, chosen for their range in the size of
input data and the number of joins . To scale to the 10TB
dataset, Starling increases the number of workers perform-
ing large joins, and uses multi-stage shuffles to mitigate large
S3 read costs. We kept the configuration of other systems
the same. We summarize the results in Figure 7. In this case,
each provisioned system has query latency at least 2.7 times
larger than Starling. Starling has the lowest latency of any
compared system in 8 of 12 queries. The next fastest config-
uration, redshift-ds-dk has lower latency than Starling’s
for 1 of the 12 queries. redshift-dc-dk, the best perform-
ing config on the 1TB dataset, runs out of disk space when
loading the 10TB dataset because of the additional indices
it builds during the data loading stage. Thus, we could not
compare against redshift-dc-dk for this experiment. Of
course, adding more resources to the provisioned systems
for this larger dataset could allow them to execute with
lower latency. This experiment demonstrates the challenges

of provisioning a system for an ad-hoc query workload with
arbitrary amounts of data. For workloads where the size of
data inputs varies widely or is unknown ahead of time, the
rapid elasticity of Starling gives it an advantage over provi-
sioned systems. While provisioned systems would have to
provision additional resources to handle more load, Starling
scales on a query-by-query basis and thus is able to be more
flexible to changes in input data size.

A discussion of the cost per query in the 10TB dataset can
be found in the extended paper [24].

6.5 Pay-per-query Services
Fully managed query services, like Amazon Athena [1], come
closest to realizing the goals of Starling. Users simply submit
queries and charged on a query-by-query basis. Unfortu-
nately, Athena is not a panacea for ad-hoc query workloads.
Of the 19 queries on the 1TB dataset experiment Athena
could not complete four. As seen in Figure 6, for the queries
that were completed by Athena, query latency was more
than 50% longer than with Starling.

Despite these challenges, Athena has cost per query com-
petitive with Starling. Excluding the queries Athena was
unable to execute, Athena has slightly higher cost per query
than Starling at the highest query rates, $0.287 compared
to Starling’s $0.0256. Because Starling has a small cost for
the coordinator and Athena does not, Athena is cheaper at
query rates lower than one query every 350 seconds.
Athena does not scale to larger datasets. On the larger

dataset, Athena completed only 5 out of 12 queries. On those
completed, query latency was 5 times higher than Starling’s.
Finally, Athena costs more than twice as much per query.
For users who need interactive performance, the inability to
tune for performance in Athena makes it a nonstarter.

7 CONCLUSION
In this paper we presented Starling, a query execution engine
for data analytics built on cloud function services. Starling
fills a gap in user’s desire for an analytics system that pro-
vides interactive query latency at low cost per query for
ad-hoc workloads while being tunable to performance and
cost objectives. Starling achieves these goals by harnessing
the rapid scaling and fine granularity that cloud function
services provide. Starling overcomes the challenges of man-
aging hundreds of stateless workers that must exchange
data through opaque cloud storage. Starling’s optimizations
make it cost and performance competitive even with pro-
visioned systems, and allow it to easily scale from small to
large datasets and back without making explicit provisioning
decisions. An extended version of this paper may be found
on Arxiv. [24]
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