
SMARTER:
Experiences with Cloud Native on the Edge

Alexandre Ferreira
Arm Research

Eric Van Hensbergen
Arm Research

Chris Adeniyi-Jones
Arm Research

Edmund Grimely-Evans
Arm Research

Josh Minor
Arm Research

Mark Nutter
Arm Research

Luis E. Peña
Arm Research

Kanak Agarwal
Arm Research

Jon Hermes
Arm Research

Abstract
The decreasing cost and power consumption of intelligent,
interconnected, and interactive devices at the edge of the inter-
net are creating massive opportunities to instrument our cities,
factories, farms, and environment to improve efficiency, safety
and productivity. Developing, debugging, deploying and se-
curing software for the estimated trillion connected devices
present substantial challenges. As part of the SMARTER
(Secure Municipal, Agricultural, Rural, and Telco Edge Re-
search) project, Arm has been exploring the use of cloud-
native technology and methodologies in edge environments
to evaluate their effectiveness at addressing these problems at
scale.

1 Introduction

As the number of internet of things (IoT) endpoints grow, it
will be less practical to send all data produced to the cloud
for real-time decision making and/or control functions. Edge
computing has emerged as a dominant industry trend due
to practical constraints such as latency, bandwidth, privacy,
security, and robustness to intermittent connectivity. For the
purposes of this paper, we define edge computing as oper-
ations on IoT device endpoints and the gateways [11] that
connect those devices to the broader internet. In many cases,
edge computing of this form will reside on constrained hard-
ware [20], but, increasingly, even constrained hardware is
interconnected, intelligent, and capable of doing more than
one task. The industry is starting to converge on a model
where this general purpose compute capability is leveraged
by performing filtering, analytics, and aggregation closer to
the source of the data. These devices range in compute
power from low-end systems like the Raspberry Pi [9], to
systems with integrated ML acceleration such as Google’s
Coral-Dev [5], to embedded cores coupled with GPUs like
Nvidia’s Xavier [8].

At the same time, the management and orchestration of
the applications become daunting challenges as applications

get spread over a highly distributed and heterogeneous infras-
tructure. In this paper, we introduce the SMARTER project,
which attempts to establish an edge computing platform that
brings cloud-native application development, deployment and
management technologies to the intelligent IoT edge. In
the next section, we will go into more detail on differences
between the edge and cloud environments. Section 3 will
describe the basic design principles and architecture of our
solution. Our approach to managing application network con-
nectivity is described in section 4, with section 5 describing
how we manage access to other peripherals such as sensors.
Section 6 will describe our approach to monitoring and debug
of applications. Finally, we conclude by summarizing related
work in section 7 and discussing key issues and trade-offs in
section 8.

2 Edge versus Cloud

Beyond hardware constraints, there are a number of key dif-
ferences between edge and cloud as operational environments.
Edge nodes and devices are purpose-built with different cost
constraints, resulting in many different configurations de-
ployed over multiple generations of underlying hardware com-
ponents. Nodes will differ in hardware resources such as CPU
architecture, micro-architecture, core count, memory, stor-
age, connectivity (latency and bandwidth), peripherals, and
accelerators. Additionally, edge nodes and gateways are more
likely to have dynamic frequency scaling (either because of
battery conservation or thermal throttling). This high degree
of hardware heterogeneity has implications on deployment,
where multiple versions of an application may be required to
support device differences.

The edge has a higher data storage and transmission cost
compared to the data center. Few edge devices are likely to
have high-bandwidth network connections, and transferring
data to and from thousands of edge gateways will be expen-
sive. Virtual machine and container images magnify the data
movement cost, amounting to close to a complete distribution
download per application due to packaging. While layered



Figure 1: Edge Gateway Use Case

container images are intended to reduce this overhead, third-
party packaging of applications makes underlying layer reuse
unlikely. For example, we had a prototype health-care appli-
cation which used a total of 17 Docker images, occupying
approximately 2.3GB of storage. Deploying this application
to thousands of nodes over metered cellular networking would
not have been practical.

The cloud-native model, characterized by continuous in-
tegration and deployment, has become the preferred devel-
opment and deployment model for modern applications. It
leverages the uniform and seemingly unlimited resources of
the cloud to speed application life cycle while improving
test coverage and operational efficiency. The aforementioned
heterogeneous nature of edge deployment makes this some-
what trickier to manage, although layering emulation envi-
ronments and target-specific test beds can address many of
the differences between cloud and edge application life cycle.
Further, recent advances in multi-architecture targeting of
container build environments [12] can improve application
reach across different classes of devices. Edge deployment
has its own quirks (such as bandwidth conservation, lack of
location independence and scale-out limitations), but many
of the same cloud-native deployment benefits such as canary
updates, rolling updates, and fast rollback on failure are still
possible.

3 Architecture

Applications in edge environments will have components that
run either on the cloud, the intelligent gateway, or the embed-
ded device. SMARTER is primarily responsible for the pieces
running on the intelligent gateway. The gateway is intended
to support multiple endpoint embedded devices, multiple ap-
plications, and, potentially, multiple users or tenants. As such,
we use containerization as a fundamental element both to
provide user isolation and to meet application dependencies.
Containerization also enables some the benefits around cloud-
native development and deployment environments mentioned
in the previous section.

We leverage Kubernetes [4] (k8s) as the control plane [2],
composed of a k8s master running in the cloud with each gate-
way node running the kubelet node agent with Docker [16]
as the container runtime engine. Instead of a cluster of ho-
mogeneous nodes able to run any service as is typical in a
cloud k8s environment, each gateway node is treated as an
independent entity. Gateway nodes are not able to communi-
cate directly with each other except through interactions with
cloud-based resources. All communication originates from
the gateway node to the cloud, reducing the potential attack
surface for security intrusions on the endpoints. The nature
of the k8s protocol provides an open-standard, authenticated
and encrypted interface, and the declarative model employed
by k8s provisioning is resilient to intermittent connectivity
and node restart.

Our design philosophy for SMARTER was based on a few
principles. The first principle, which we borrow from k8s
itself, is that all functionality should run as containers and be
remotely deployable. This requirement enables easy upgrades
from within the platform and the selective deployment of only
the containers that are needed to support the applications on
that node. The second principle is to enhance k8s functionality
instead of replacing it; reuse existing k8s features, if possible,
instead of creating new ones. The third principle is simplicity:
do not create or require concepts if they do not apply to IoT:
the edge is different from the cloud and some differences are
inevitable.

Three components from k8s are used to create the low level
SMARTER application deployment model: DaemonSets, La-
bels and LabelSelectors. An application in SMARTER is
composed of a set of containers. Depending on the environ-
ment, some containers may not always be required or two
different types may be mutually exclusive (accelerated and
not accelerated for example). Each container is described by a
single DaemonSet, where the DaemonSet contains a template
for the container including the location of the image, resource
requirements, security and a LabelSelector for that container.
The DaemonSet also provides features like rolling updates,
restarts in case of container failures, and statistics collection.

Labels are key/value pairs associated with many objects
in k8s and can also be associated with nodes. They can be



created by the user or automatically created. Kubelet, for
instance, creates labels that contain the node’s architecture
and operating system. The LabelSelector is a set of logical op-
erations that, when applied to the Labels on a object, returns
true or false. In the case of DaemonSets, the LabelSelector de-
ploys a container if the result is true for the Labels on a given
node. These three concepts allow SMARTER to decouple
the application definition (creation of the templates, version-
ing) and management (statistics from the node deployment
and management) from deployment, since the deployment of
the application in a node can be gated by the use of one or
more Labels. As more nodes are added to a cluster, they will
automatically pick up the appropriate application template.

Security is a very important aspect of edge computing [15].
SMARTER splits security into infrastructure security and
application security. Infrastructure security preserves the in-
tegrity of the computing platform and the communications
with the managing platform in the cloud. It encompasses
all the aspects of hardware security, firmware and OS in-
tegrity up to node management (kubelet and container run-
time). SMARTER assumes that this security is provided by
the underlining platform. However, other projects at Arm
Research have been focusing on providing standard, high-
security foundations for IoT devices and gateways. Secure
node identity and attestation to the cloud are essential features
to enable resilient and security aware deployments of IoT in-
frastructure. This is also part of the path for establishing data
provenance, which is emerging as a fundamental requirement
for applications that can have large social or financial impact.

Application security encompasses provenance, isolation,
identity, resource management, privacy, identification, autho-
rization, configuration and secret management. SMARTER
provides capabilities that address some of these requirements
in a limited way, but there still are a lot of opportunities for
further improvement. Container isolation is not considered
secure enough for certain use cases; resource partitioning is
not provided for some resources (e.g. memory bandwidth and
cache partitioning). GPU and other accelerators provide inter-
esting challenges: since they were not designed to be shared
or partitioned, they exhibit limitations when used in an infras-
tructure that is oriented towards multi-tenancy of applications.
SMARTER is intended to support mixed secure environments
and to scale the security requirements according to the use
case as well as regional policy.

4 Connectivity

SMARTER sees each gateway as independent. By not requir-
ing each gateway to be accessible to each other, SMARTER
can provide a network configuration that is independent of
the external network configuration. The only requirement is
that the gateway is able to connect to the k8s master on the
cloud. This approach facilitates AI-at-edge and edge-to-cloud
analytics. Each gateway can produce local actionable insights,

Figure 2: SMARTER-CNI network

or share metadata with the cloud for larger multi node appli-
cations [17]. In order for applications running on the same
gateway to be able to communicate with each other, we imple-
ment a custom edge container network interface (CNI) [18].
The CNI is used to manage the allocation and deallocation
of network resources to containers as they are created and
deleted.

The design of the edge CNI was dictated by a few high-
level requirements. The internal communication of the gate-
way should not be affected by the external connectivity. The
applications in a gateway are not directly visible to other gate-
ways, so discovery (DNS naming policies primarily) can be
restricted to a single gateway, keeping the internal configu-
ration of the gateway not externally visible. The networking
configuration for a gateway using an edge CNI can be viewed
in two ways:

External Each physical network interface (Ethernet, Wi-Fi,
cellular, etc.) on the gateway is managed by the network
that it is connected to. The system makes no assumptions
about the IP addresses or DNS names provided. It is
expected that at least one interface provides access to the
Internet so that the node can connect to the cloud-based
k8s master. We assume that the external interfaces of
the node will be externally configured and secured by
boot-time platform configuration in the firmware.

Internal SMARTER uses a Docker user-defined network to
which all applications are connected via virtual inter-
faces (only applications that use host networking do not
have a virtual interface). Each deployed application has
an interface allocated from this user-defined network,
receiving an allocated address from within the range of
the internal subnet.

A local DNS is used as the service discovery element on
our CNI and removes the need of using k8s Service objects [3].



Figure 3: Application Deployment Latency

Docker provides an automatically enabled, embedded DNS
resolver (127.0.0.11) for user-defined networks. When an
application is started on the gateway, our CNI captures the
k8s pod name and creates a DNS record in the embedded
DNS server. It is this mechanism that enables applications
running on the same node to discover each other’s IP ad-
dresses via DNS lookups using their application names. Each
gateway also runs a containerized dnsmasq connected to the
user-defined network with a static address. Applications using
host networking are configured to look up DNS entries via
this dnsmasq and can, therefore, also discover IP addresses
via DNS lookups of application names (which would not nor-
mally be possible as host-networked pods cannot access the
embedded DNS resolver directly).

With our current connectivity model, application deploy-
ment involves a party requesting the creation or deletion of
k8s resources via the cluster master’s API. Once the action is
registered, the updated state is broadcast to the entire cluster,
where appropriate actions are taken by each node’s kubelet to
achieve the desired state (e.g. by creating or destroying pods).
Because the k8s master resides in the cloud, not co-located
with the edge gateways, there are concerns over system re-
sponse latency in these widely-distributed systems. To inves-
tigate response latency, we measured the time taken from a
user on a home network requesting to run a new application
on an edge node to when the application is deployed and has
transmitted data to the cloud. In our test, the k8s master ran
on an AWS EC2 instance with 2 vCPUs and 4GB of RAM.

The test results are broken into 3 different k8s application
deployment scenarios: one where the Docker image of the
target application is not available to the node and it must
be pulled (NoImage), one where the image is present and
there is no attempt made to pull the image (IfNotPresent),
and another where the image is present but there still is an
attempt made to pull the image (Always). We observed that,
for a roughly 50MB application image, both the Raspberry
Pi 4 and Nvidia Xavier tested take around 10 seconds when
having to pull the image from a remote image repository. On
the other hand, it takes between 4 and 6 seconds to bring
the application up if the application image is resident on the

device (IfNotPresent and Always pull policies). As the
size of the application image grows, the time spent pulling
new images on the edge device will grow larger, however this
is generally is only a one time cost.

5 Device Manager

Being designed for the cloud, k8s only manages CPU, mem-
ory, storage and network as virtual resources. IoT systems
have a much broader range of peripherals, built for moni-
toring and interacting with the physical environment, with
complexity ranging from a simple thermostat to very intricate
industrial process control (e.g. chemical plants). This is ac-
complished via a variety of sensors and actuators, which are
either connected to the gateway physically (e.g.GPIO, USB,
I2C, SPI) or wirelessly (e.g. Bluetooth, Wi-Fi). Regardless of
the way the sensor or actuator is connected, it is typically rep-
resented as a device which applications interact with through
the operating system.

Even though container runtimes allow direct access to de-
vice drivers, containers running under k8s are not expected
to do so. Existing IoT applications directly interface to sen-
sors through the Linux kernel via device drivers (for serial
ports and USB devices), synthetic file systems (like sysfs or
procfs), multimedia services (such as V4L or PulseAudio),
or through one of the system bus methodologies. Controlled
access to these devices is essential to secure a container-based
IoT solution. We built the SMARTER device-manager to
govern direct access and sharing to devices on the host in a
secure way.

The SMARTER device-manager leverages the device plu-
gin API [6] provided by k8s. This API allows the kubelet to
be informed of which resources are available on the node and
to execute the necessary operations to make that resource us-
able by a container. In its current incarnation, the SMARTER
device-manager scans the /dev/ directory of the host and
uses a set of rules to determine which devices to advertise
as resources and how those resources should be accounted.
Some resources are not shareable, so only a single container
can have access to each of them, others can be shared, but may
have a limitation on how many simultaneous applications are
allowed to access it concurrently.

The SMARTER device-manager is a container by itself,
and it is deployed by k8s in the same fashion as the applica-
tions, allowing easy upgrade and configuration management.
Of course, any devices would already need to be supported
by the kernel running on the device, unless using user-space
drivers.

Some devices, particularly those normally associated with
client devices, do not provide strong isolation between de-
vices. For example, under Linux, access can be controlled
to a Bluetooth wireless controller, but does not provide fine
grained control over the devices it connects. So far, we have
managed this with separate DaemonSet containers managing



fine grained access to such buses and exposing interfaces over
the internal private network. This approach works for multi-
plexing access to devices which are not capable of virtualizing
themselves such as microphones or cameras, but comes with
some performance overhead that must be considered as part
of the trade-offs of the system.

6 Monitoring and Debug

There are many pre-existing solutions for logging and perfor-
mance monitoring of cloud-native applications. The limita-
tions of the edge impact the applicability of many of these
solutions to either being used in a limited form or requir-
ing certain modifications. For example, many methods rely
on the cloud being able to contact and pull data from the
node, but communication on the edge must always push data
from the gateway to the cloud. Similarly, the aforementioned
constraints on bandwidth and storage may suggest different
configurations and optimizations in a cloud environment. In
our deployments, we have focused on anomaly detection on
the edge prior to pushing telemetry to the cloud versus a
constant stream of metrics and logs.

While cloud-native development often precludes physical
access to the actual system the application is deployed to, de-
velopers are usually able to ssh directly to development, test,
and production systems. SMARTER’s expected deployment
model prevents direct connection to edge nodes, and we need
to accommodate situations which may require remote field
debugging of the application

A special application, a privileged debug container, can
be deployed to the edge device. This container connects to a
comms service deployed on an accessible cloud server. The
developer can then indirectly access the edge device through
the cloud service. The result is to provide the developer with
something that closely resembles ssh or docker exec to the
edge device, but that works despite firewalls not allowing a
direct connection.

It seems to be easier and more secure to use three ssh
connections: one from the edge device to the comms service,
one from the developer’s machine to the comms service, and a
third one that goes from the developer’s machine through a
tunnel created by the other two connections all the way to the
edge device. The use of ssh and public key authentication
allows a robust security model: all the communication is
encrypted and access can be given per node and per developer.

The comms service may be shared by multiple developers
and multiple connections and the only requirement is that is
has to be accessible by the node and developer. The current
version has a REST API for setting up accounts and uploading
SSH keys.

There are facilities to make an account on the comms service
expire at a particular time in the future, and the developer can
run a particular command remotely by specifying it on the
command line versus always using an interactive session.

Unfortunately, the current debug and monitoring solutions are
not multi-tenant-safe as they give access to the entire gateway
and not to a specific application. This is something we hope
to address in future versions of the infrastructure.

7 Related Work

The current status of the IoT edge computing oriented frame-
works can be split into three main classes:

k8s-based frameworks that enhance k8s with additional ca-
pabilities either by creating architectural blueprints or
by adding additional components.

k8s-derived frameworks that use either portions of k8s, pro-
vide a compatible API either at server level (k8s API
server) or slave (Kubelet API).

non-k8s frameworks that utilize other abstractions (Docker
compose) or are proprietary.

Akraino [24] falls into the k8s-based class and provides
blueprints for specific uses cases, the common thread is sup-
porting network functions in a telecommunications environ-
ment. The closest to SMARTER is the ELIoT blueprint [21]
which has similar requirements, usage model and components
and a k8s deployment model. ELIoT supports containers and
uses k8s, split into k8s master on the cloud and and k8s slave
(kubelet) on the remote nodes.

KubeEdge [23] is in the k8s-derived class. It is an open
source project that uses the k8s API but replaces the cloud and
edge portions with derived code and communicates between
them using a proprietary protocol. It is prescriptive in the
addressing of the device management for industrial IoT use
cases (specifically supporting ModBUS and Bluetooth) but
does not provide a generic interface to Linux device drivers,
and its interface is very oriented to set/get/status devices. The
CNI and networking is oriented towards using the internal
communication channels of KubeEdge (MQTT and go chan-
nels) where our CNI is oriented towards keeping the flexibility
of cloud-style microservices communication - not enforcing
a single model (like MQTT).

AWS IoT Greengrass [14] provides support for containers
at the edge but uses a Docker compose model and it is not k8s
API compatible. It is not open-source and uses a proprietary
API for orchestration. It is designed to manage embedded
AWS IoT Greengrass devices. Docker compose provide simi-
lar capabilities as our CNI and device management without
explicit management (resource management for devices as
an example). Microsoft Azure IoT [13] provides support for
containers at the edge and a k8s API at the cloud. It uses the
virtual kubelet concept so it can be managed by a k8s master.
The solution is partially open source.

K3s [22] is a k8s derived framework oriented towards effi-
ciency and ease of installation. It has similar capabilities as



the standard k8s and similar limitations for IoT, the enhance-
ments provided by SMARTER for CNI and device manage-
ment are compatible and can be applied to K3s.

Resources

The cloud-side management components of the SMARTER
project are being productized by Arm as part of its Pelion
Edge Compute service [19]. All SMARTER client-side com-
ponents are available as open-source, with a K3s-based ex-
ample provided on our GitLab site at https://gitlab.com/
arm-research/smarter and can be used with a generic k8s
master.

8 Discussion

Kubernetes provides a rich set of abstractions supporting var-
ious aspects of application deployment. Our restricted use of
these abstractions to only accommodate those which make
sense for edge deployments (e.g DaemonSets) allowed us to
use vanilla implementations of k8s, but came at the cost of
some of the benefits of the more advanced features. It also
prevents us from easily using tools and standard recipes for
more complex application deployments such as Helm [7]. An
alternative is to provide different semantics for these abstrac-
tions in edge deployments. While our edge deployment model
is somewhat flat, it is becoming apparent that having small
clusters at the edge is desirable for reliability or alternatively
having hierarchical offload mechanisms and deployments may
be beneficial – these may suggest a different set of design
decisions. It is unclear to us the best trade-off here or what
the best approach to augmenting k8s for different deployment
models is so we would value the opinion of others in the
community.

We use containers as a base application unit of isolation
and deployment. In our experience, many applications at the
edge are simple ingest, minimal processing, and up-link to
the cloud. These tend to be written as simple scripts that
do not require complex dependencies in terms of support
software. The high overhead of containers for such simple
scripts led us to look at function-as-a-service (FaaS), such as
AWS IoT Greengrass [14]. However, FaaS models share many
of the similarities and differences that cloud-native and edge-
native deployments share. We have started implementing
FaaS services on top of k8s and have been looking at FaaS
runtime isolation models using WebAssembly [10], but are
interested in others’ experience with FaaS models on the
Edge.

Microcontroller-based devices (sensors) are not directly
managed by SMARTER because they provide very limited
or no support for dynamic deployable code and for the main
requirement of updating firmware and security credentials.
These devices are part of the data plane of SMARTER serving

as data sources and control elements with SMARTER pro-
viding larger computing capabilities (ML), data aggregation,
databases, gateway services and other functions. A number of
companies including Arm [1], Microsoft [13], Amazon [14],
and others provide commercial or open source solutions for
managing microcontroller-based devices that are compatible
with SMARTER. Another possibility, if we go further down
the FaaS path, is to find a way to extend FaaS to microcon-
troller devices from the gateway.

Most existing models of edge compute focus on an appli-
ance view of the resource, where it is dedicated to a single
purpose (or set of purposes), essentially predetermined and
loaded onto the device at manufacture time. In several of
the use cases and market segments we have discussed with
partners, it is actually desirable to build edge compute as
distributed infrastructure and allow multiple applications and
even multiple tenants utilize the resources. Our use of k8s
facilitated multiple applications and even dynamic deploy-
ment, but it fell short of actually providing a true multi-tenant
infrastructure. Similarly, given the distributed nature of edge
compute, one could easily envision a distributed environment
with multiple operators of edge infrastructure which could
publish portions of their resources for shared use by multiple
consumers. Providing this capability would require a broker
which would facilitate the publishing, discovery, and subscrip-
tion of resources. It would require better isolation primitives
and better monitoring of system resources to facilitate fine
grained metering. We are interested in hearing about resource
and data brokerage infrastructures being developed by others.

References

[1] Arm. Arm Pelion.
https://blog.pelion.com/post/gateway-to-unified-iot.

[2] Sujoy Basu, Sven Graupner, Jim Pruyne, and Sharad
Singhal. Control plane integration for cloud services. In
Proceedings of the 11th International Middleware Con-
ference Industrial Track, Middleware Industrial Track
’10, page 29–34, New York, NY, USA, 2010. Associa-
tion for Computing Machinery.

[3] Eric A Brewer. Kubernetes and the path to cloud native.
In Proceedings of the Sixth ACM Symposium on Cloud
Computing, pages 167–167, 2015.

[4] Brendan Burns, Brian Grant, David Oppenheimer, Eric
Brewer, and John Wilkes. Borg, Omega, and Kuber-
netes. Queue, 14(1):70–93, 2016.

[5] Stephen Cass. Taking AI to the edge: Google’s TPU
now comes in a maker-friendly package. IEEE Spec-
trum, 56(5):16–17, 2019.

https://gitlab.com/arm-research/smarter
https://gitlab.com/arm-research/smarter
https://blog.pelion.com/post/gateway-to-unified-iot
https://blog.pelion.com/post/gateway-to-unified-iot


[6] CNCF. Kubernetes device plugin.
https://kubernetes.io/docs/concepts/extend-
kubernetes/compute-storage-net/device-plugins/.

[7] Jessica Deen. DevOps with Kubernetes and Helm.
2018.

[8] Michael Ditty, Ashish Karandikar, and David Reed.
Nvidia’s Xavier SoC. In Hot Chips: A Symposium
on High Performance Chips, 2018.

[9] Sheikh Ferdoush and Xinrong Li. Wireless sensor net-
work system design using Raspberry Pi and Arduino
for environmental monitoring applications. Procedia
Computer Science, 34:103–110, 2014.

[10] Phani Kishore Gadepalli, Gregor Peach, Ludmila
Cherkasova, Rob Aitken, and Gabriel Parmer. Chal-
lenges and opportunities for efficient serverless comput-
ing at the edge. SRDS, 2019.

[11] S. Guoqiang, C. Yanming, Z. Chao, and Z. Yanxu. De-
sign and implementation of a smart IoT gateway. In
2013 IEEE International Conference on Green Comput-
ing and Communications and IEEE Internet of Things
and IEEE Cyber, Physical and Social Computing, pages
720–723, Aug 2013.

[12] Eric Van Hensbergen. Continuous cross-architecture
integration with GitLab.
https://community.arm.com/developer/research/b/
articles/posts/continuous-cross-architecture-
integration-with-gitlab.

[13] Scott Klein. IoT Solutions in Microsoft’s Azure IoT
Suite. Springer, 2017.

[14] Agus Kurniawan. Learning AWS IoT: Effectively man-
age connected devices on the AWS cloud using services
such as AWS Greengrass, AWS button, predictive an-
alytics and machine learning. Packt Publishing Ltd,
2018.

[15] Milosch Meriac. Security manifesto.
https://pages.arm.com/iot-security-manifesto.html,
2017.

[16] Dirk Merkel. Docker: Lightweight Linux containers for
consistent development and deployment. Linux journal,
2014(239):2, 2014.

[17] Nvidia. Multi-camera large-scale intelligent video
analytics with DeepStream SDK.
https://devblogs.nvidia.com/multi-camera-large-scale-
iva-deepstream-sdk/.

[18] Youngki Park, Hyunsik Yang, and Younghan Kim. Per-
formance analysis of CNI (container networking inter-
face) based container network. In 2018 International
Conference on Information and Communication Tech-
nology Convergence (ICTC), pages 248–250. IEEE,
2018.

[19] Deepak Poornachandra. The gateway to unified IoT.
https://blog.mbed.com/post/gateway-to-unified-iot,
2019.

[20] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge
computing: Vision and challenges. IEEE Internet of
Things Journal, 3(5):637–646, Oct 2016.

[21] Alessandro Sivieri, Luca Mottola, and Gianpaolo Cu-
gola. Building internet of things software with ELIoT.
Computer Communications, 89:141–153, 2016.

[22] Caroline Tarbett. Why K3s is the future of Kubernetes
at the edge.
https://rancher.com/blog/2019/why-k3s-is-the-future-
of-k8s-at-the-edge, 2019.

[23] Ying Xiong, Yulin Sun, Li Xing, and Ying Huang. Ex-
tend cloud to edge with KubeEdge. In 2018 IEEE/ACM
Symposium on Edge Computing (SEC), pages 373–377.
IEEE, 2018.

[24] Wenhui Zhang, John Craig, Kandemir Mahmut,
Yizheng Jiao, Robert P Eby, Deepak Kataria, David
Plunkett, Robin Chen, Zhe Huang, Oliver Spatscheck,
et al. Network slicing, personalized intrusion detection
for internet of things gateway.

https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/
https://community.arm.com/developer/research/b/articles/posts/continuous-cross-architecture-integration-with-gitlab
https://community.arm.com/developer/research/b/articles/posts/continuous-cross-architecture-integration-with-gitlab
https://community.arm.com/developer/research/b/articles/posts/continuous-cross-architecture-integration-with-gitlab
https://community.arm.com/developer/research/b/articles/posts/continuous-cross-architecture-integration-with-gitlab
https://pages.arm.com/iot-security-manifesto.html
https://pages.arm.com/iot-security-manifesto.html
https://devblogs.nvidia.com/multi-camera-large-scale-iva-deepstream-sdk/
https://devblogs.nvidia.com/multi-camera-large-scale-iva-deepstream-sdk/
https://devblogs.nvidia.com/multi-camera-large-scale-iva-deepstream-sdk/
https://blog.mbed.com/post/gateway-to-unified-iot
https://blog.mbed.com/post/gateway-to-unified-iot
https://rancher.com/blog/2019/why-k3s-is-the-future-of-k8s-at-the-edge/
https://rancher.com/blog/2019/why-k3s-is-the-future-of-k8s-at-the-edge/
https://rancher.com/blog/2019/why-k3s-is-the-future-of-k8s-at-the-edge/

	Introduction
	Edge versus Cloud
	Architecture
	Connectivity
	Device Manager
	Monitoring and Debug
	Related Work
	Discussion

