
54 COMMUNICATIONS OF THE ACM | JUNE 2019 | VOL. 62 | NO. 6

contributed articles

THERE IS A major disconnect today in cloud datacenters
concerning the speed of innovation between
application/operating system (OS) and storage
infrastructures. Application/OS software is patched
with new/improved functionality every few weeks at
“cloud speed,” while storage devices are off-limits
for such sustained innovation during their hardware
life cycle of three to five years in datacenters. Since
the software inside the storage device is written by
storage vendors as proprietary firmware not open
for general application developers to modify, the
developers are stuck with a device whose functionality
and capabilities are frozen in time, even as many of
them are modifiable in software. A period of five years is
almost eternal in the cloud computing industry where
new features, platforms, and application program
interfaces (APIs) are evolving every couple of

months and application-demanded
requirements from the storage sys-
tem grow quickly over time. This
notable lag in the adaptability and
velocity of movement of the storage
infrastructure may ultimately affect
the ability to innovate throughout the
cloud world.

In this article, we advocate creating
a software-defined storage substrate of
solid-state drives (SSDs) that are as pro-
grammable, agile, and flexible as the
applications/OS accessing from serv-
ers in cloud datacenters. A fully pro-
grammable storage substrate prom-
ises opportunities to better bridge the
gap between application/OS needs and
storage capabilities/limitations, while
allowing application developers to in-
novate in-house at cloud speed.

The move toward software-defined
control for IO devices and co-proces-
sors has played out before in the data-
center. Both GPUs and network inter-
face cards (NICs) started as black-box
devices that provide acceleration for
CPU-intensive operations (such as
graphics and packet processing). In-
ternally, they implemented accelera-
tion features with a combination of
specialized hardware and proprietary
firmware. As customers demanded
greater flexibility, vendors slowly ex-
posed programmability to the rest of
the system, unleashing the vast pro-
cessing power available from GPUs
and a new level of agility in how sys-
tems can manage networks for en-
hanced functionality like more granu-
lar traffic management, security, and

Programmable
Solid-State
Storage in
Future Cloud
Datacenters

DOI:10.1145/3286588

Programmable software-defined
solid-state drives can move computing
functions closer to storage.

BY JAEYOUNG DO, SUDIPTA SENGUPTA, AND STEVEN SWANSON

 key insights
 ˽ A fully programmable storage substrate

in cloud datacenters opens up new
opportunities to innovate the storage
infrastructure at cloud speed.

 ˽ In-storage programming is becoming
increasingly easier with powerful
processing capabilities and highly flexible
development environments.

 ˽ New value propositions with the
programmable storage substrate can be
realized, such as customizing the storage
interface, moving compute close to data,
and performing secure computations.

http://dx.doi.org/10.1145/3286588

JUNE 2019 | VOL. 62 | NO. 6 | COMMUNICATIONS OF THE ACM 55

I
M

A
G

E
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

,
U

S
I

N
G

 P
H

O
T

O
 F

R
O

M
 S

H
U

T
T

E
R

S
T

O
C

K
.C

O
M

deep-network telemetry.
Storage is at the cusp of a similar

transformation. Modern SSDs rely
on sophisticated processing engines
running complex firmware, and ven-
dors already provide customized firm-
ware builds for cloud operators. Ex-
posing this programmability through
easily accessible interfaces will let
storage systems in the cloud data-
centers adapt to rapidly changing re-
quirements on the fly.

Storage Trends
The amount of data being generated
daily is growing exponentially, placing
more and more processing demand on
datacenters. According to a 2017 mar-
keting-trend report from IBM,a 90% of
the data in the world in 2016 has been
created in the last 12 months of 2015.

a https://ibm.co/2XNvHPk

Such large-scale datasets—which gen-
erally range from tens of terabytes to
multiple petabytes—present chal-
lenges of extreme scale while achieving
very fast and efficient data processing:
a high-performance storage infrastruc-
ture in terms of throughput and latency
is necessary. This trend has resulted in
growing interest in the aggressive use
of SSDs that, compared with tradition-
al spinning hard disk drives (HDDs),
provides orders-of-magnitude lower
latency and higher throughput. In ad-
dition to these performance benefits,
the advent of new technologies (such
as 3D NAND enabling much denser
chips and quad-level-cell, or QLC, for
bulk storage) allows SSDs to continue
to significantly scale in capacity and to
yield a huge reduction in price.

There are two key components in
SSDs,4 as shown in Figure 1—an SSD
controller and flash storage media.

The controller that is most com-
monly implemented as a system-on-
a-chip (SoC) is designed to manage
the underlying storage media. For ex-
ample, SSDs built using NAND flash
memory have unique characteristics
in that data can be written only to an
empty memory location—no in-place
updates are allowed—and memory
can endure only a limited number
of writes before it can no longer be
read. Therefore, the controller must
be able to perform some background
management tasks (such as garbage
collection) to reclaim flash blocks
containing invalid data to create
available space and wear leveling to
evenly distribute writes across the
entire flash blocks with the purpose
of extending the SSD life. These tasks
are, in general, implemented by pro-
prietary firmware running on one or
more embedded processor cores in

56 COMMUNICATIONS OF THE ACM | JUNE 2019 | VOL. 62 | NO. 6

contributed articles

of 16 or 32 flash channels, as out-
lined in Figure 2. Since each flash
channel can keep up with ~500MB/
sec; internally each SSD can be up to
~500MB/sec per channel X 32 chan-
nels = ~16GB/sec (see Figure 2d); and
the total aggregated in-SSD perfor-
mance would be ~16GB/sec per SSD X
64 SSDs = ~1TB/sec (see Figure 2c), a
66x gap. Making SSDs programmable
would thus allow systems to fully le-
verage this abundant bandwidth.

In-Storage Programming
Modern SSDs combine processing—
embedded processor—and storage
components—SRAM, DRAM, and flash
memory—to carry out routine func-
tions required for managing the SSD.
These computing resources present in-
teresting opportunities to run general
user-defined programs. In 2013, Do et
al.6,17 explored such opportunities for
the first time in the context of running
selected database operations inside
a Samsung SAS flash SSD. They wrote
simple selection and aggregation oper-
ators that were compiled into the SSD
firmware and extended the execution
framework of Microsoft SQL Server
2012 to develop a working prototype
in which simple selection and aggrega-
tion queries could be run end-to-end.

That work demonstrated several
times improvement in performance
and energy efficiency by offloading
database operations onto the SSD and
highlighted a number of challenges
that would need to be overcome to
broadly adapt programmable SSDs:
First, the computing capabilities
available inside the SSD are limited by
design. The low-performance embed-
ded processor inside the SSD with-
out L1/L2 caches and high latency to
the in-SSD DRAM require extra care-
ful programming to run user code in
the SSD without producing a perfor-
mance bottleneck.

Moreover, the embedded software-
development process is complex and
makes programming and debugging
very challenging. To maximize perfor-
mance, Do et al. had to carefully plan
the layout of data structures used by the
code running inside the SSD to avoid
spilling out of the SRAM. Likewise, Do
et al. used a hardware-debugging tool
to debug programs running inside the
SSD that is far more primitive than reg-

storage server at low cost (compared
to building a specialized server to
directly attach all SSDs on the moth-
erboard of the host), the maximum
throughput is limited to 16-lane
PCIe interface speed (see Figure 2a),
which is approximately 16GB/sec,
regardless of the number of SSDs
accessed in parallel. There is thus
an 8x throughput gap between the
host interface and the total aggre-
gated SSD bandwidth that could be
up to roughly ~2GB/sec per SSDc X 64
SSDs = ~128GB/sec (see Figure 2b).
More interestingly, this gap would
grow further if the internal SSD per-
formance is considered. A modern
enterprise-level SSD usually consists

c Practical sequential-read bandwidth of a com-
modity PCIe SSD.

the controller. In enterprise SSDs, large
SRAM is often used for executing the
SSD firmware, and both user data and
internal SSD metadata are cached in
external DRAM.

Interestingly, SSDs generally have
a far larger aggregate internal band-
width than the bandwidth supported
by host I/O interfaces (such as SAS and
PCIe). Figure 2 outlines an example
of a conventional storage system that
leverages a plurality of NVM Express
(NVMe)b SSDs; 64 of them are con-
nected to 16 PCIe switches that are
mounted to a host machine via 16
lanes of PCIe Gen3. While this stor-
age architecture provides a com-
modity solution for high-capacity

b A device interface for accessing non-volatile
memory attached via a PCI Express (PCIe) bus.

Figure 1. Internal architecture of a modern flash SSD.
H

os
t

In
te

rf
ac

e
C

on
tr

ol
le

r

DRAM
Controller

Embedded
Processor

SRAM

DRAM

Flash
Controller

Flash
Controller

Flash Channel

Flash ChannelSSD
Controller

Flash Storage Media

Flash SSD

Figure 2. Example conventional storage server architecture with multiple NVMe SSDs.

CPU

D
R

A
M

R
oo

t
co

m
pl

ex

PCIe
Switch

PCIe
Switch

PCIe
Switch

Flash SSD

Flash SSD

Flash SSD

Flash SSD

Flash SSD

Flash SSD

Flash SSD

Flash SSD

0

1

31

0

1

31

15

1

0

D
R

A
M

32 channels X ~500 MB/s
= ~16 GB/s

64 SSDs X ~2 GB/s
= ~128 GB/s

16 lanes of PCIe
= ~16 GB/s

Throughput gap of 8x

SSD Storage System

0

1

2

3

0

1

2

3

(a) (b) (d)

64 SSDs X ~16 GB/s
= ~1 TB/s

(c)

Throughput gap of 66x

JUNE 2019 | VOL. 62 | NO. 6 | COMMUNICATIONS OF THE ACM 57

contributed articles

software-hardware innovation inside
the SSD. Moreover, going beyond the
packaged SSD, because the two major
components inside the SSD are each
manufactured by multiple vendors,d it
is conceivable that SSDs could be cus-
tom designed and provided in partner-
ship with component vendorse (just
like how today’s datacenter servers are
built and deployed), and even contrib-
ute back some of the designs to the
community (via forums like the Open
Compute project, https://www.open-
compute.org). For example, the indus-
try is already moving in this direction
with introduction of the Open-Channel
SSD technology2,8,f that moves much of
the SSD firmware functionalities out of
the black box and into the operating
system or userspace, giving applica-
tions better control over the device. In
an open source project called Denalig
in 2018, Microsoft proposed a scheme

d Several vendors manufacture each type of
component in flash SSDs. For example: flash
controller manufactured by Marvell, PMC (ac-
quired by Microsemi), Sandforce (acquired by
Seagate), Indilinx (acquired by OCZ), and flash
memory manufactured by Samsung, Toshiba,
and Micron.

e Many large-scale datacenter operators (such
as Google19 and Baidu16) build their own SSDs
that are fully optimized for their own applica-
tion requirements.

f The Linux Open-Channel SSD subsystem was
introduced in the Linux kernel version 4.4.

g https://bit.ly/2GCuIum

ular debugging tools (such as Micro-
soft Visual Studio) available to general
application developers. Worse, the de-
vice-side processing code—selection
and aggregation—had to be compiled
into the SSD firmware in the prototype,
meaning application developers would
need to worry about not only the target
application itself but also complex in-
ternal structures and algorithms in the
SSD firmware.

On top of this, the consequences
of an error can be quite severe, which
could result in corrupted data or an
unusable drive. Workaday application
programmers are unlikely to accept
the additional complexity, and cloud
providers are unlikely to let untrusted
code run in such a fragile environment.

Application developers need a flex-
ible and general programming model
that allows easily running user code
written in a high-level programming
language (such as C/C++) inside an
SSD. The programming model must
also support the concurrent execution
of multiple in-SSD applications while
ensuring that malicious applications
do not adversely affect the overall SSD
operation or violate protection guar-
antees provided by the operating and
file system.

In 2014, Seshadri et al.20 proposed
Willow, an SSD that made program-
mability a central feature of the SSD
interface, allowing ordinary developers
to safely augment and extend the SSD
semantics with application-specific
functions without compromising file
system protections. In their model, host
and in-SSD applications communicate
via PCIe using a simple, generic—not
storage-centric—remote procedure call
(RPC) mechanism. In 2016, Gu et al.7 ex-
plored a flow-based programming mod-
el where an in-SSD application can be
constructed from tasks and data pipes
connecting the tasks. These program-
ming models provide great flexibility in
terms of programmability but are still
far from “general purpose.” There is
a risk that existing large applications
might still need significant redesigns
to exploit each model’s capabilities, re-
quiring much time and effort.

Fortunately, winds of change can
disrupt the industry and help applica-
tion developers explore SSD program-
ming in a better way, as illustrated in
Figure 3. The processing capabilities

available inside the SSD are increasingly
powerful, with abundant compute
and bandwidth resources. Emerging
SSDs include software-programmable
controllers with multi-core proces-
sors, built-in hardware accelerators
to offload compute-intensive tasks
from the processors, multiple GBs of
DRAM, and tens of independent chan-
nels to the underlying storage media,
allowing several GB/s of internal data
throughput. Even more interesting
and useful, programming SSDs is be-
coming easier, with the trend away
from proprietary architectures and
software runtimes and toward com-
modity operating systems (such as
Linux) running on top of general-
purpose processors (such as ARM and
RISC-V). This trend enables general
application developers to fully lever-
age existing tools, libraries, and exper-
tise, allowing them to focus on their
own core competencies rather than
spending many hours getting used to
the low-level, embedded development
process. This also allows application
developers to easily port large applica-
tions already running on host operat-
ing systems to the device with mini-
mal code changes.

All in all, the programmability evo-
lution in SSDs presents a unique op-
portunity to embrace the SSDs as a
first-class programmable platform
in the cloud datacenters, enabling

Figure 3. Disruptive trends in the flash storage industry toward abundant resources and
increased ease of programmability inside the SSD.

Frugal
resources
inside SSD

Abundant
resources
inside SSD

(C
P

U
 #

co
re

s/
cl

oc
k

sp
ee

d
, h

ar
d

w
ar

e
of

fl
oa

d
, D

R
A

M
,

#
 fl

as
h

 c
h

an
n

el
s

an
d

 c
ap

ac
it

y)

Embedded CPU, proprietary
firmware OS

General purpose CPU,
server-like OS (Linux)

(Ease of programmability inside SSD)

Disruptive Trend

Today’s
SSD

Programmable
SSD

58 COMMUNICATIONS OF THE ACM | JUNE 2019 | VOL. 62 | NO. 6

contributed articles

ray (FPGA)13,21 and GPU,h with storage
media) and flash and other emerging
new non-volatile memories (such as 3D
XPoint, ReRAM, STT-RAM, and PCM)
that provide persistent storage at DRAM
latencies to deliver high-performance
gains. This approach would present the
greatest flexibility to take advantage of
advances in the underlying storage de-
vice to optimize performance for mul-
tiple cloud applications. In the near
future, the software-hardware innova-
tion inside the SSD can proceed much
like the PC, networking hardware, and

h https://bit.ly/2L8LfM4

GPU ecosystems have in the past. This
is an opportunity to rethink datacenter
architecture with efficient use of het-
erogeneous, energy-efficient hardware,
which is the way forward for higher
performance at lower power.

Value Propositions
Here, we summarize three value
propositions that demonstrate future
directions in programmable storage
(see Figure 4):

Agile, flexible storage interface (see
Figure 4a). Full programmability will al-
low the storage interface and feature set
to evolve at cloud speed, without having
to persuade standardization bodies to
bless them or persuade device manu-
facturers to implement them in the
next-generation hardware roadmap,
both usually involving years of delay. A
richer, customizable storage interface
will allow application developers to stay
focused on their application, without
having to work around storage con-
straints, quirks, or peculiarities, thus
improving developer productivity.

As an example of the need for such an
interface, consider how stream writes
are handled in the SSD today. Because
the SSD cannot differentiate between
incoming data from multiple streams, it
could pack data from different streams
onto the same flash erase block, the
smallest unit that can be erased from
flash at once. When a portion of the
stream data is deleted, it leaves blocks
with holes of invalid data. To reclaim
these blocks, the garbage-collection ac-
tivity inside the SSD must copy around
the valid data, slowing the device and
increasing write amplification, thus re-
ducing device lifetime.

If application developers had con-
trol over the software inside the SSD,
they could handle streams much more
efficiently. For instance, incoming
writes could be tagged with stream
IDs and the device could use this in-
formation to fill a block with data
from the same stream. When data
from that stream is deleted, the entire
data block could be reclaimed with-
out copying around data. Such stream
awareness has been shown to double
device lifetime, significantly increas-
ing read performance.14 In Micro-
soft, this need of supporting multiple
streams in the SSD was identified in
2014, but NVMe incorporated the fea-

that splits the monolithic components
of an SSD into two different modules—
one standardized part dealing with
storage media and a software interface
to handle application-specific tasks
(such as garbage collection and wear
leveling). In this way, SSD suppliers can
build simpler products for datacen-
ters and deliver them to market more
quickly while per-application tuning is
possible by datacenter operators.

The component-based ecosystem
also opens up entirely new opportu-
nities for integrating powerful het-
erogeneous programming elements
(such as field-programmable gate ar-

Figure 4. Programmable SSD value proposition.

Host

Server

Programmable SSD

(c)
Trusted domain for secure computation

(cleartext not allowed to egress the SSD boundary.)

Host

Server

Programmable SSD

(b)
Moving compute inside SSD to leverage

low latency, high bandwidth, and access to data

Host

Server

Programmable SSD

DRAM

Processor +
HW Offload

(a)
Agile, flexible storage interface

leveraging programmability within SSD

DRAM

Processor +
HW Offload

DRAM

Processor +
HW Offload

JUNE 2019 | VOL. 62 | NO. 6 | COMMUNICATIONS OF THE ACM 59

contributed articles

to provide access to these files.10 Secu-
rity is often among the topmost con-
cerns enterprise chief information offi-
cers have when they move to the cloud,
as cloud providers are unwilling to take
on full liability for the impact of such
breaches. Development of a secure
cloud is not just a feature requirement
but also an absolute foundational ca-
pability necessary for the future of the
cloud computing model and its busi-
ness success as an industry.

To realize the vision of a trusted
cloud, data must be encrypted while
stored at rest, which however, limits
the kind of computation that can be
performed on encrypted data with-
out decryption. To facilitate arbitrary
(legitimate) computation on stored
data, it needs to be decrypted before
computing on it. This requires de-
crypted cleartext data to be present
(at least temporarily) in various por-
tions of the datacenter infrastructure
vulnerable to security attacks. Appli-
cation developers need a way to facili-
tate secure computation on the cloud
by fencing in well-defined, narrow,
trusted domains that can preserve
the ability to perform arbitrary com-

ture only late 2017.i Moreover, large-
scale deployment in Microsoft data-
centers might take at least another
year and be very expensive, since new
SSDs must be purchased to essential-
ly get a new version of the firmware.
Waiting five years for a change to a
system software component is com-
pletely out of step with how quickly
computer systems are evolving today.
A programmable storage platform
would reduce this delay to months
and allow rapid iteration and refine-
ment of the feature, not to mention
the ability to “tweak” the implementa-
tion to match specific use cases.

Moving compute close to data (see
Figure 4b). The need to analyze and
glean intelligence from big data im-
poses a shift from the traditional com-
pute-centric model to data-centric
model. In many big data scenarios,
application performance and re-
sponsiveness (demanded by interac-
tive usage) is dominated not by the
execution of arithmetic and logic in-
structions but instead by the require-
ment to handle huge volumes of data
and the cost of moving this data to the
location(s) where compute is per-
formed. When this is the case, moving
the compute closer to the data can
reap huge benefits in terms of in-
creased throughput, lower latency,
and reduced energy usage.

Big data analytics running inside an
SSD can have access to the stored data
with tens of GB/sec bandwidth (rivaling
DRAM bandwidth), and with latency
comparable to accessing raw non-vola-
tile memory. In addition, large energy
savings can be achieved because pro-
cessors inside the SSD are more energy
efficient compared to the host-server
CPU (such as Intel Xeon), and data
does not need to be hauled over large
distances from storage all the way up
to the host via network, which is more
energy-expensive than processing it.

Processors inside the SSD are clear-
ly not as powerful as host processors,
but together with in-storage hardware
offload engines, a broad range of data
processing tasks can be competitively
performed inside the SSD. As an ex-
ample, consider how data analytic que-
ries are processed in general: When an

i Note the multi-stream technology for SCSI/
SAS was standardized in T10 on May 20, 2015.

analytic query is given, compressed
data required to answer the query is
first loaded to host, uncompressed,
and then executed using host resourc-
es. Such fundamental data analytics
primitive can be processed inside the
SSD by accessing data with high in-
ternal bandwidth and by offloading
decompression to the dedicated en-
gine. Subsequent stages of the query-
processing pipeline (such as filtering
out unnecessary data and performing
the aggregation) can execute inside
the SSD, resulting in greatly reduced
network traffic and saved host CPU/
memory resources for other important
jobs. Further, performance and band-
width together can be scaled by adding
more SSDs to the system if the applica-
tion requires higher data rates.

Secure computation in the cloud
(see Figure 4c). Recent security breach
events related to personal, private in-
formation (financial and otherwise)
have exposed the vulnerability of data
infrastructures to hackers and attackers.
Also, a new type of malicious software
called “encryption ransomware” at-
tacks machines by stealthily encrypt-
ing data files and demanding a ransom

Figure 5. A prototype programmable SSD developed for research purposes.

(a)
Device with a storage board with an embedded storage controller

and DIMM slots for flash or other forms of NVM

(b)
Device with a storage board where M.2 SSDs can be plugged into.

60 COMMUNICATIONS OF THE ACM | JUNE 2019 | VOL. 62 | NO. 6

contributed articles

flexible with enterprise-level capa-
bilities and resources. It comprises
a main board and a storage board.
The main board contains an ARMv8
processor, 16GB of RAM, and various
on-chip hardware accelerators (such
as 20Gbps compression/decompres-
sion, 20Gbps SEC-crypto, and 10Gbps
RegEx engines). It also provides
NVMe connectivity via four PCIe Gen3
lanes, and 4x10Gbps Ethernet that
supports remote dynamic memory
access (RDMA) over converged ether-
net (RoCE) protocol. It supports two
different storage boards that connect
via 2x4 PCIe Gen3 lanes: One type of
board (see Figure 5a) includes an em-
bedded storage controller and four
memory slots where flash or other
forms of NVM can be installed; and
the second (see Figure 5b) an adapter
that hosts two M.2 SSDs.

The ARM SoC inside the board runs
a full-fledged Ubuntu Linux, so pro-
gramming the board is very similar
to programming any other Linux de-
vice. For instance, software can lever-
age the Linux container technology
(such as Docker) to provide isolated
environments inside the board. To
create applications running on the
board, a software development kit
(SDK) containing GNU tools to build
applications for ARM and user/ker-
nel mode libraries to use the on-chip
hardware accelerators is provided, al-
lowing a high level of programmabil-
ity. The DFC can also serve as a block
device, just like regular SSDs. For this
purpose, the device is shipped with a
flash translation layer (FTL) that runs
on the main board.

The SSD industry is also moving

toward bringing compute to SSDs so
data can be processed without leaving
the place where it is originally stored.
For instance, in 2017 NGD Systemsl
announced an SSD called Catalina21
capable of running applications di-
rectly on the device. Catalina2 uses
TLC 3D NAND flash (up to 24TB),
which is connected to the onboard
ARM SoC that runs an embedded
Linux and modules for error-correct-
ing code (ECC) and FTL. On the host
server, a tunnel agent (with C/C++
libraries) runs to talk to the device
through the NVMe protocol. As anoth-
er example, ScaleFluxm uses a Xilinx
FPGA (combined with terabytes of
TLC 3D NAND flash) to compute data
for data-intensive applications. The
host server runs a software module,
providing API accesses to the device
while being responsible for FTL and
flash-management functionalities.

Academia and industry are work-
ing to establish a compelling value
proposition by demonstrating appli-
cation scenarios for each of the three
pillars outlined in Figure 4. Among
them we are initially focused on ex-
ploring the benefits and challenges
of moving compute closer to stor-
age (see Figure 4b) in the context of
big data analytics, examining large
amounts of data to uncover hidden
patterns and insights.

Big data analytics within a program-
mable SSD. To demonstrate our ap-
proach, we have implemented a C++
reader that runs on a DFC card (see
Figure 5) for Apache Optimized Row
Columnar (ORC) files. The ORC file for-
mat is designed for fast processing and
high storage efficiency of big data ana-
lytic workloads, and has been widely
adopted in the open source community
and industry. The reader running in-
side the SSD reads large chunks of ORC
streams, decompresses them, and then
evaluates query predicates to find only
necessary values. Due to the server-like
development environment—Ubuntu
and a general-purpose ARM proces-
sor—we easily ported a reference im-
plementation of the ORC readern to the
ARM SoC environment (with only a few
lines of code changes) and incorporat-

l http://www.ngdsystems.com
m http://www.scaleflux.com
n https://github.com/apache/orc

putation on the data.
SSDs with their powerful compute

capabilities can form a trusted do-
main for doing secure computation
on encrypted data, leveraging their in-
ternal hardware cryptographic engine
and secure boot mechanisms for this
purpose. Cryptographic keys can be
stored inside the SSD, allowing arbi-
trary compute to be carried out on the
stored data—after decryption if need-
ed—while enforcing that data cannot
leave the device in cleartext form. This
allows a new, flexible, easily program-
mable, near-data realization of trusted
hardware in the cloud. Compared to
currently proposed solutions like Intel
Enclavesj that are protected, isolated
areas of execution in the host server
memory, this solution protects orders
of magnitude more data.

Programmable SSDs
While the concept of in-storage pro-
cessing on SSDs was proposed more
than six years ago,6 experimenting with
SSD programming has been limited
by the availability of real hardware on
which a prototype can be built to dem-
onstrate what is possible. The recent
emergence of prototyping boards avail-
able for both research and commercial
purposes has opened new opportuni-
ties for application developers to take
ideas from conception to action.

Figure 5 shows such prototype
device, called Dragon Fire Card
(DFC),k,3,5 designed and manufac-
tured by Dell EMC and NXP for re-
search. The card is powerful and

j https://software.intel.com/en-us/sgx
k https://github.com/DFC-OpenSource

Figure 6. Preliminary results using a programmable SSD yield approximately 5x speedups
for full scans of ZLIB-compressed ORC files within the device, compared to native ORC
readers running on x86 architecture.

55.4

272.47

0

50

100

150

200

250

300

X86 (Intel Xeon @2.3GHz) Programmable SSD
(ARM @1.8GHz + Decompression offload)

T
h

ro
u

g
h

p
u

t
(m

il
li

on
 r

ow
s/

se
co

n
d

)

JUNE 2019 | VOL. 62 | NO. 6 | COMMUNICATIONS OF THE ACM 61

contributed articles

node that could be accessed over the
network through a simple key-value
store interface provided fault tolerance
through replication and application-
specific processing (such as predicate
evaluations, substring matching and
decompression) at line rate.

Datacenter Realization
Each application running in cloud
datacenters has its own, unique re-
quirements, making it difficult to
design server nodes with the proper
balance of compute, memory, and
storage. To cope with such complex-
ity, an approach of physically decou-
pling resources was proposed re-
cently by Han et al.9 in 2013 to allow
replacing, upgrading, or adding in-
dividual resources instead of the en-
tire node. With the availability of fast
interconnect technologies (such as
InfiniBand, RDMA, and RoCE), it is al-
ready common in today’s large-scale
cloud datacenters to disaggregate
storage from compute, significantly
reducing the total cost of ownership
and improving the efficiency of the
storage utilization. However, stor-
age disaggregation is a challenge15
as storage-media access latencies are
heading toward single-digit microsec-
ond levelp compared to a disk’s milli-
second latency, which is much larger
than the fast network overhead. It is
likely that, in the next few years the
network latency will become a bottle-
neck as new, emerging non-volatile
memories with extremely low laten-
cies become available.

This challenge of storage disaggre-
gation can be overcome by using pro-
grammable storage, enabling a fully
programmable storage substrate
that is decoupled from the host sub-
strate as outlined in Figure 7. This
view of storage as a programmable
substrate allows application devel-
opers not only to leverage very low,
storage-medium access latency by
running programs inside the storage
device but also to access any remote
storage device without involving the
remote host server where the device
is physically attached (see Figure 7) by

p For example, the access latency of 3D XPoint
can take 5~10 µsec, while NVMe SSD and disk
takes ~50–100 µsec and 10 msec, respectively.8

ed library APIs into the reader, enabling
reading data from flash and offloading
the decompression work to the ARM
SoC hardware accelerator.

Figure 6 shows preliminary band-
width results of scanning a ZLIB-com-
pressed, single-column integer dataset
(one billion rows) through the C++ ORC
reader running on a host x86 server vs.
inside the DFC card, respectively.o As in
the figure, we achieved approximately
5x faster scan performance inside the
device compared to running on the
host server. Given that this is a single
device performance, we should be able
to achieve much better performance
improvements by increasing the num-
ber of programmable SSDs that are
used in parallel.

In addition to scanning, filtering,
and aggregating large volumes of data
at high-throughput rates by offload-
ing part of the computation directly to
the storage has been explored as well.
In 2016 Jo et al.12 built a prototype
that performs very early filtering of
data through a combination of ARM
and a hardware pattern-matching en-
gine available inside a programmable
SSD equipped with a flow-based pro-
gramming model described by Gu et
al.7 When a query is given, the query
planner determines whether early
filtering is beneficial for the query
and chooses a candidate table as the
target if the estimated filtering ratio
is sufficiently high. Early filtering is
then performed against the target
table inside the device, and only fil-
tered data is then fetched to the host
for residual computation. This early
filtering inside the device turns out
to be highly effective for analytic
queries; when running all 22 TPC-H
queries on a MariaDB server with the
programmable device prototyped on
a commodity NVMe SSD, a 3.6x speed-
up was achieved by Jo et al.12 com-
pared to a system with the same SSD
without the programmability.

Alternatively, an FPGA-based proto-
type design for near-data processing
inside the a storage node for database
engines was studied by István et al.11 in
2017. In this prototype, each storage

o Note, to effectively compare data-processing
capability in each case—Intel Xeon in x86 vs.
ARM + decompression accelerator in the device—
only a single core for each processor was used.

The programmable
storage substrate
can be viewed as
a hyper-converged
infrastructure
where storage,
networking,
and compute
are tightly coupled
for low-latency,
high-throughput
access, while
still providing
availability.

62 COMMUNICATIONS OF THE ACM | JUNE 2019 | VOL. 62 | NO. 6

contributed articles

8. Hady, F. Wicked fast storage and beyond. In
Proceedings of the 7th Non Volatile Memory Workshop
(San Diego, CA, Mar. 6–8). Keynote, 2016.

9. Han, S., Egi, N., Panda, A., Ratnasamy, S., Shi, G.,
and Shenker, S. Network support for resource
disaggregation in next-generation datacenters. In
Proceedings of the 12th ACM Workshop on Hot Topics in
Networks (College Park, MD, Nov. 21–22). ACM Press,
New York, 2013, 10.

10. Huang, J., Xu, J., Xing, X., Liu, P., and Qureshi, M. K.
Flashguard: Leveraging intrinsic flash properties
to defend against encryption ransomware. In
Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (Dallas,
TX, Oct. 30–Nov. 3). ACM Press, New York, 2017,
2231–2244.

11. István, Z., Sidler, D., and Alonso, G. Caribou:
Intelligent distributed storage. In Proceedings of the
VLDB Endowment 10, 11 (Aug. 2017), 1202–1213.

12. Jo, I., Bae, D.-H., Yoon, A.S., Kang, J.-U., Cho, S., Lee,
D.D., and Jeong, J. YourSQL: A high-performance
database system leveraging in storage computing.
In Proceedings of the VLDB Endowment 9, 12 (Aug.
2016), 924–935.

13. Jun, S.-W., Liu, M., Lee, S., Hicks, J., Ankcorn, J., King,
M., Xu, S., et al. BlueDBM: An appliance for big data
analytics. In Proceedings of the ACM/IEEE 42nd Annual
International Symposium on Computer Architecture
(Portland, OR, Jun. 13–17). IEEE, 2015, 1–13.

14. Kang, J.-U., Hyun, J., Maeng, H., and Cho, S. The
multi-streamed solid-state drive. In Proceedings of
the 6th USENIX Workshop on Hot Topics in Storage and
File Systems (Philadelphia, PA, Jun. 17–18). USENIX
Association, Berkeley, CA, 2014.

15. Klimovic, A., Kozyrakis, C., Thereska, E., John, B.,
and Kumar, S. Flash storage disaggregation. In
Proceedings of the 11th European Conference on
Computer Systems (London, U.K., Apr. 18–21). ACM
Press, New York, 2016, 29.

16. Ouyang, J., Lin, S., Jiang, S., Hou, Z., Wang, Y., and
Wang, Y. SDF: Software-defined flash for web-scale
Internet storage systems. In Proceedings of the 19th
International Conference on Architectural Support
for Programming Languages and Operating Systems
(Salt Lake City, UT, Mar. 1–5). ACM press, New York,
2014, 471–484.

17. Park, K., Kee, Y.-S., Patel, J.M., Do, J., Park, C., and
Dewitt, D.J. Query processing on smart SSDs. IEEE
Data Engineering Bulletin 37, 2 (Jun. 2014), 19–26.

18. Picoli, I.L., Pasco, C.V., Jónsson, B.Þ., Bouganim,
L., and Bonnet, P. uFLIP-OC: Understanding flash
I/O patterns on open-channel solid state drives.
In Proceedings of the 8th Asia-Pacific Workshop on
Systems (Mumbai, India, Sep. 2–3). ACM Press, New
York, 2017, 20.

19. Schroeder, B., Lagisetty, R., and Merchant, A. Flash
reliability in production: The expected and the
unexpected. In Proceedings of the 14th USENIX
Conference on File and Storage Technologies (Santa
Clara, CA, Feb. 22–25). USENIX Association, Berkeley,
CA, 2016, 67–80.

20. Seshadri, S., Gahagan, M., Bhaskaran, S., Bunker,
T., De, A., Jin, Y., Liu, Y., and Swanson, S. Willow: A
user-programmable SSD. In Proceedings of the 11th
USENIX Symposium on Operating Systems Design and
Implementation (Broomfield, CO, Oct. 6–8). USENIX
Association, Berkeley, CA, 2014, 67–80.

21. Woods, L., István , Z., and Alonso, G. Ibex: An
intelligent storage engine with support for advanced
SQL offloading. In Proceedings of the VLDB
Endowment 7, 11 (Jul. 2014), 963–974.

Jaeyoung Do (jaedo@microsoft.com) is a researcher at
Microsoft Research, Redmond, WA, USA. He is leading a
project, SoftFlash, which aims to use programmable SSDs
in cloud datacenters.

Sudipta Sengupta (sudipta@amazon.com) is leading
new initiatives in artificial intelligence/deep learning at
Amazon AWS, Seattle, WA, USA; the research reported in
this article was done while he was at Microsoft Research,
Redmond, WA, USA.

Steven Swanson (swanson@cs.ucsd.edu) is a professor
in the Department of Computer Science and Engineering
at the University of California, San Diego, USA.

Copyright held by authors/owners.
Publication rights licensed to ACM. $15.00.

provides opportunities for embracing
them as a first-class programmable
platform in cloud datacenters, en-
abling software-hardware innovation
that could bridge the gap between ap-
plication/OS needs and storage capa-
bilities/limitations. We hope to shed
light on the future of software-defined
storage and help chart a direction for
designing, building, deploying, and
leveraging a software-defined storage
architecture for cloud datacenters.

Acknowledgments
This work was supported in part by
National Science Foundation Award
1629395.

References
1. Alves, V. In-situ processing. Flash Memory Summit

(Santa Clara, CA, Aug. 8–10), 2017.
2. Bjørling, M., González, J., and Bonnet, P. Lightnvm: The

Linux open-channel SSD subsystem. In Proceedings
of the 15th USENIX Conference on File and Storage
Technologies (Santa Clara, CA, Feb. 27–Mar. 2).
USENIX Association, Berkeley, CA, 2017, 359–374.

3. Bonnet, P. What’s up with the storage hierarchy?
In Proceedings of the 8th Biennial Conference on
Innovative Data Systems Research (Chaminade, CA,
Jan. 8–11), 2017.

4. Cornwell, M. Anatomy of a solid-state drive. Commun.
ACM 55, 12 (Dec. 2012), 59–63.

5. Do, J. Softflash: Programmable storage in future data
centers. In Proceedings of the 20th SNIA Storage
Developer Conference (Santa Clara, CA, Sep. 11–14), 2017.

6. Do, J., Kee, Y.-S., Patel, J.M., Park, C., Park, K., and
DeWitt, D.J. Query processing on smart SSDs:
Opportunities and challenges. In Proceedings of
the ACM SIGMOD International Conference on
Management of Data (New York, NY, Jun. 22–27). ACM
Press, New York, 2013, 1221–1230.

7. Gu, B., Yoon, A. S., Bae, D.-H., Jo, I., Lee, J., Yoon, J.,
Kang, J.-U., Kwon, M., Yoon, C., Cho, S., et al. Biscuit:
A framework for near data processing of big data
workloads. In Proceedings of the ACM/IEEE 43rd
Annual International Symposium on Computer
Architecture (Seoul, S. Korea, Jun. 18–22). IEEE,
2016, 153-165.

using NVMe over Fabrics (NVMe-oF)q
with RDMA.

With the programmable storage sub-
strate, we can think of going beyond the
single-device block interface. For exam-
ple, a micro server inside storage can ex-
pose a richer interface like a distributed
key-value store or distributed streams.
Or the storage infrastructure can be man-
aged as a fabric, not as individual devices.
The programmable storage substrate can
also provide high-level datacenter capa-
bilities (such as backup, data snapshot,
replication, de-duplications, and tier-
ing), which are typically supported in a
datacenter server environment where
compute and storage are separated.
This means the programmable storage
substrate can be viewed as a hyper-con-
verged infrastructure where storage, net-
working, and compute are tightly cou-
pled for low-latency, high-throughput
access, while still providing availability.

Conclusion
In this article, we have presented our
vision of a fully programmable stor-
age substrate in cloud datacenters,
allowing application developers to
innovate the storage infrastructure
at cloud speed like the software ap-
plication/OS infrastructure. The
programmability evolution in SSDs

q A technology specification designed for non-
volatile memories to transfer data between
a host and a target system/device over a net-
work. Approximately 90% of the NVMe-oF pro-
tocol is the same as the NVMe protocol.

Figure 7. Enabling a programmable storage substrate decoupled from the host substrate.

Direct traffic between programmable storage devices (with a network
interface) without involving a remote host.

Network
Interconnect

Programmable Host
Substrate

Programmable Storage
Substrate

Server Node

Host

SSD

NIC

NIC

Host

SSD

Host

SSD

NIC

