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ABSTRACT
Next-generation non-volatile memories (NVMs) will provide byte
addressability, persistence, high density, and DRAM-like perfor-
mance. They have the potential to benefit many datacenter applica-
tions. However, most previous research on NVMs has focused on
using them in a single machine environment. It is still unclear how
to best utilize them in distributed, datacenter environments.

We introduce Distributed Shared Persistent Memory (DSPM), a
new framework for using persistent memories in distributed data-
center environments. DSPM provides a new abstraction that allows
applications to both perform traditional memory load and store
instructions and to name, share, and persist their data.

We built Hotpot, a kernel-level DSPM system that provides low-
latency, transparent memory accesses, data persistence, data relia-
bility, and high availability. The key ideas of Hotpot are to integrate
distributed memory caching and data replication techniques and
to exploit application hints. We implemented Hotpot in the Linux
kernel and demonstrated its benefits by building a distributed graph
engine on Hotpot and porting a NoSQL database to Hotpot. Our
evaluation shows that Hotpot outperforms a recent distributed
shared memory system by 1.3× to 3.2× and a recent distributed
PM-based file system by 1.5× to 3.0×.

CCS CONCEPTS
• Software and its engineering → Distributed memory; Dis-
tributed systems organizing principles; • Computer systems
organization→ Reliability; Availability;
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1 INTRODUCTION
Next-generation non-volatile memories (NVMs), such as 3DX-
point [36], phase change memory (PCM), spin-transfer torque

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5028-0/17/09. . . $15.00
https://doi.org/10.1145/3127479.3128610

magnetic memories (STTMs), and the memristor will provide byte
addressability, persistence, high density, and DRAM-like perfor-
mance [85]. These developments are poised to radically alter the
landscape of memory and storage technologies and have already
inspired a host of research projects [5, 15, 16, 22, 57, 62, 88, 89, 95].
However, most previous research on NVMs has focused on using
them in a single machine environment. Even though NVMs have
the potential to greatly improve the performance and reliability of
large-scale applications, it is still unclear how to best utilize them
in distributed, datacenter environments.

This paper takes a significant step towards the goal of using
NVMs in distributed datacenter environments. We propose Dis-
tributed Shared Persistent Memory (DSPM), a framework that pro-
vides a global, shared, and persistent memory space using a pool
of machines with NVMs attached at the main memory bus. Appli-
cations can perform native memory load and store instructions to
access both local and remote data in this global memory space and
can at the same time make their data persistent and reliable. DSPM
can benefit both single-node persistent-data applications that want
to scale out efficiently and shared-memory applications that want
to add durability to their data.

Unlike traditional systems with separate memory and storage
layers [23, 24, 80, 81], we propose to use just one layer that incor-
porates both distributed memory and distributed storage in DSPM.
DSPM’s one-layer approach eliminates the performance overhead
of data marshaling and unmarshaling, and the space overhead of
storing data twice. With this one-layer approach, DSPM can poten-
tially provide the low-latency performance, vast persistent memory
space, data reliability, and high availability that many modern data-
center applications demand.

Building a DSPM system presents its unique challenges. Adding
“Persistence” to Distributed Shared Memory (DSM) is not as simple
as just making in-memory data durable. Apart from data durability,
DSPM needs to provide two key features that DSM does not have:
persistent naming and data reliability. In addition to accessing data
in PM via native memory loads and stores, applications should
be able to easily name, close, and re-open their in-memory data
structures. User data should also be reliably stored in NVM and
sustain various types of failures; they need to be consistent both
within a node and across distributed nodes after crashes. To make
it more challenging, DSPM has to deliver these guarantees without
sacrificing application performance in order to preserve the low-
latency performance of NVMs.

We built Hotpot, a DSPM system in the Linux kernel. Hotpot of-
fers low-latency, direct memory access, data persistence, reliability,
and high availability to datacenter applications. It exposes a global
virtual memory address space to each user application and provides
a new persistent naming mechanism that is both easy-to-use and
efficient. Internally, Hotpot organizes and manages data in a flexible
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way and uses a set of adaptive resource management techniques to
improve performance and scalability.

Hotpot builds on two main ideas to efficiently provide data re-
liability with distributed shared memory access. Our first idea is
to integrate distributed memory caching and data replication by
imposing morphable states on persistent memory (PM) pages.

In DSM systems, when an application on a node accesses shared
data in remote memory on demand, DSM caches these data copies
in its local memory for fast accesses and later evicts them when re-
claiming local memory space. Like DSM, Hotpot caches application-
accessed data in local PM and ensures the coherence of multiple
cached copies on different nodes. But Hotpot also uses these cached
data as persistent data replicas and ensures their reliability and crash
consistency.

On the other hand, unlike distributed storage systems, which
creates extra data replicas to meet user-specified reliability require-
ments, Hotpot makes use of data copies that already exist in the
system when they were fetched to a local node due to application
memory accesses.

In essence, every local copy of data serves two simultaneous pur-
poses. First, applications can access it locally without any network
delay. Second, by placing the fetched copy in PM, it can be treated
as a persistent replica for data reliability.

This seemingly-straightforward integration is not simple. Main-
taining wrong or outdated versions of data can result in inconsistent
data. To make it worse, these inconsistent data will be persistent in
PM. We carefully designed a set of protocols to deliver data relia-
bility and crash consistency guarantees while integrating memory
caching and data replication.

Our second idea is to exploit application behaviors and intentions
in the DSPM setting. Unlike traditional memory-based applications,
persistent-data-based applications, DSPM’s targeted type of appli-
cation, have well-defined data commit points where they specify
what data they want to make persistent. When a process in such
an application makes data persistent, it usually implies that the
data can be visible outside the process (e.g., to other processes or
other nodes). Hotpot utilizes these data commit points to also push
updates to cached copies on distributed nodes to avoid maintaining
coherence on every PM write. Doing so greatly improves the per-
formance of Hotpot, while still ensuring correct memory sharing
and data reliability.

To demonstrate the benefits of Hotpot, we ported the Mon-
goDB [63] NoSQL database to Hotpot and built a distributed graph
engine based on PowerGraph [28] on Hotpot. Our MongoDB evalu-
ation results show that Hotpot outperforms a PM-based replication
system [95] by up to 3.1×, a recent PM-based distributed file sys-
tems [57] by up to 3.0×, and a DRAM-based file system by up to 53×.
Hotpot outperforms PowerGraph by 2.3× to 5×, and a recent DSM
system [65] by 1.3× to 3.2×. Moreover, Hotpot delivers stronger
data reliability and availability guarantees than these alternative
systems.

Overall, this paper makes the following key contributions:

• We are the first to introduce the Distributed Shared Persis-
tent Memory (DSPM) model and among the first to build
distributed PM-based systems. The DSPM model provides di-
rect and shared memory accesses to a distributed set of PMs

and is an easy and efficient way for datacenter applications
to use PM.
• We propose a one-layer approach to build DSPM by integrat-
ing memory coherence and data replication. The one-layer
approach avoids the performance cost of two or more indi-
rection layers.
• We designed two distributed data commit protocols with
different consistency levels and corresponding recovery pro-
tocols to ensure data durability, reliability, and availability.
• We built the first DSPM system, Hotpot, in the Linux kernel,
and open source it together with several applications ported
to it.
• We demonstrated Hotpot’s performance benefits and ease
of use with two real datacenter applications and extensive
microbenchmark evaluation. We compared Hotpot with five
existing file systems and distributed memory systems.

The rest of the paper is organized as follows. Section 2 presents
and analyzes several recent datacenter trends that motivated our
design of DSPM. We discuss the benefits and challenges of DSPM
in Section 3. Section 4 presents the architecture and abstraction of
Hotpot. We then discuss Hotpot’s data management in Section 5.
We present our protocols and mechanisms to ensure data durability,
consistency, reliability, and availability in Section 6. Section 7 briefly
discusses the network layer we built underlying Hotpot, and Section
8 presents detailed evaluation of Hotpot. We cover related work in
Section 9 and conclude in Section 10.

2 MOTIVATION
DSPM is motivated by three datacenter trends: emerging hardware
PM technologies, modern data-intensive applications’ data shar-
ing, persistence, and reliability needs, and the availability of fast
datacenter network.

2.1 Persistent Memory and PM Apps
Next-generation non-volatile memories (NVMs), such as 3DX-
point [36], phase change memory (PCM), spin-transfer torque mag-
netic memories (STTMs), and the memristor will provide byte ad-
dressability, persistence, and latency that is within an order of mag-
nitude of DRAM [33, 50–52, 57, 74, 85, 90]. These developments
are poised to radically alter the landscape of memory and storage
technologies.

NVMs can attach directly to the main memory bus to form Per-
sistent Memory, or PM. If applications want to exploit all the low
latency and byte-addressability benefits of PM, they should di-
rectly access it via memory load and store instructions without
any software overheads [15, 41, 61, 70, 88, 95] (we call this model
durable in-memory computation), rather than accessing it via a file
system [16, 21, 22, 57, 69, 89].

Unfortunately, most previous durable in-memory systems were
designed for the single-node environment. With modern datacenter
applications’ computation scale, we have to be able to scale out
these single-node PM systems.

2.2 Shared Memory Applications
Modern data-intensive applications increasingly need to access
and share vast amounts of data fast. We use PIN [58] to collect
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Figure 1: PowerGraph SharingAnalysis. Results of running PageR-
ank [49] on a Twitter graph [46]. Black lines represent total amount of sharing.
Green lines represent sharing within five seconds.

memory access traces of two popular data-intensive applications,
TensorFlow [2] and PowerGraph [28]. Figures 1 and 2 show the
total number of reads and writes performed to the same memory
location by N threads and the amount of these shared locations.
There are a significant amount of shared read accesses in these
applications, especially across a small set of threads. We further
divided the memory traces into smaller time windows and found
that there is still a significant amount of sharing, indicating that
many shared accesses occur at similar times.

Distributed Shared Memory (DSM) takes the shared memory
concept a step further by organizing a pool of machines into a
globally shared memory space. Researchers and system builders
have developed a host of software and hardware DSM systems in the
past few decades [6, 8, 9, 19, 25, 27, 39, 40, 43, 54, 76, 79, 82, 83, 96, 97].
Recently, there is a new interest in DSM [65] to support modern
data-intensive applications.

However, although DSM scales out shared-memory applications,
there has been no persistent-memory support for DSM. DSM sys-
tems all had to checkpoint to disks [66, 77, 84]. Memory persistence
can allow these applications to checkpoint fast and recover fast [64].

2.3 Fast Network and RDMA
Datacenter network performance has improved significantly over
the past decades. InfiniBand (IB) NICs and switches support high
bandwidth ranging from 40 to 100Gbps. Remote Direct Memory Ac-
cess (RDMA) technologies that provide low-latency remote memory
accesses have become more mature for datacenter uses in recent
years [21, 32, 37, 38]. These network technology advances make
remote-memory-based systems [7, 12, 31, 65, 72, 92] more attractive
than decades ago.

2.4 Lack of Distributed PM Support
Many large-scale datacenter applications require fast access to vast
amounts of persistent data and could benefit from PM’s perfor-
mance, durability, and capacity benefits. For PMs to be successful in
datacenter environments, they have to support these applications.
However, neither traditional distributed storage systems or DSM
systems are designed for PM. Traditional distributed storage sys-
tems [3, 11, 18, 26, 45, 73] target slower, block-based storage devices.
Using them on PMs will result in excessive software and network
overheads that outstrip PM’s low latency performance [95]. DSM
systems were designed for fast, byte-addressable memory, but lack
the support for data durability and reliability.
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Figure 2: Tensorflow Sharing Analysis. Results of running a hand-
writing recognition workloads provided by TensorFlow. Black lines represent
total amount of sharing. Green lines represent sharing within five seconds.

Octopus [57] is a recent RDMA-enabled distributed file system
built for PM. Octopus and our previous work Mojim [95] are the
only distributed PM-based systems that we are aware of. Octopus
was developed in parallel with Hotpot and has a similar goal as
Hotpot: to manage and expose distributed PM to datacenter ap-
plications. However, Octopus uses a file system abstraction and is
built in the user level. These designs add significant performance
overhead to native PM accesses (Section 8.2). Moreover, Octopus
does not provide any data reliability or high availability, both of
which are key requirements in datacenter environments.

3 DISTRIBUTED SHARED PERSISTENT
MEMORY

The datacenter application and hardware trends described in Sec-
tion 2 clearly point to one promising direction of using PM in data-
center environments — as distributed, shared, persistent memory
(DSPM). A DSPM system manages a distributed set of PM-equipped
machines and provides the abstraction of a global virtual address
space and a data persistence interface to applications. This section
gives a brief discussion on the DSPM model.

3.1 DSPM Benefits and Usage Scenarios
DSPM offers low-latency, shared access to vast amount of durable
data in distributed PM, and the reliability and high availability
of these data. Application developers can build in-memory data
structures with the global virtual address space and decide how to
name their data and when to make data persistent.

Applications that fit DSPM well have two properties: accessing
data with memory instructions and making data durable explicitly.
We call the time when an application makes its data persistent a
commit point. There are several types of datacenter applications
that meet the above two descriptions and can benefit from running
on DSPM.

First, applications that are built for single-node PM can be easily
ported to DSPM and scale out to distributed environments. These
applications store persistent data as in-memory data structures and
already express their commit points explicitly. Similarly, storage
applications that use memory-mapped files also fit DSPM well,
since they operate on in-memory data and explicitly make them
persistent at well-defined commit points (i.e.,msync). Finally, DSPM
fits shared-memory or DSM-based applications that desire to in-
corporate durability. These applications do not yet have durable
data commit points, but we expect that when developers want to
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make their applications durable, they should have the knowledge
of when and what data they want make durable.

3.2 DSPM Challenges
Building a DSPM system presents several new challenges.

First, what type of abstraction should DSPM offer to support both
direct memory accesses and data persistence (Section 4)? To perform
native memory accesses, application processes should use virtual
memory addresses. But virtual memory addresses are not a good
way to name persistent data. DSPM needs a namingmechanism that
applications can easily use to retrieve their in-memory data after
reboot or crashes (Section 4.2). Allowing direct memory accesses to
DSPM also brings another new problem: pointers need to be both
persistent in PM and consistent across machines (Section 4.3).

Second, how to efficiently organize data in DSPM to deliver good
application performance (Section 5)? To make DSPM’s interface easy
to use and transparent, DSPM should manage the physical PM
space for applications and handle PM allocation. DSPM needs a
flexible and efficient data management mechanism to deliver good
performance to different types of applications.

Finally, DSPM needs to ensure both distributed cache coherence
and data reliability at the same time (Section 6). The former require-
ment ensures the coherence of multiple cached copies at different
machines under concurrent accesses and is usually enforced in a
distributed memory layer. The latter provides data reliability and
availability when crashes happen and is implemented in distributed
storage systems or distributed databases. DSPM needs to incorpo-
rate both these two different requirements in one layer in a correct
and efficient way.

4 HOTPOT ARCHITECTURE AND
ABSTRACTION

We built Hotpot, a kernel-level DSPM system that provides applica-
tions with direct memory load/store access to both local and remote
PM and a mechanism to make in-PM data durable, consistent, and
reliable. Hotpot is easy to use, delivers low-latency performance,
and provides flexible choices of data consistency, reliability, and
availability levels. This section presents the overall architecture of
Hotpot and its abstraction to applications.

We built most of Hotpot as a loadable kernel module in Linux
3.11.0 with only a few small changes to the original kernel. Hot-
pot has around 19K lines of code, out of which 6.4K lines are
for a customized network stack (Section 7). Hotpot is available
at https://github.com/WukLab/Hotpot.

Hotpot sits in the kernel space and manages PMs in a set of dis-
tributed nodes, or Hotpot nodes. Hotpot provides applications with
an easy-to-use, memory-based abstraction that encapsulates both
memory and persistent data access in a transparent way. Figure 3
presents Hotpot’s architecture. Hotpot uses a Central Dispatcher
(CD) to manage node membership and initialization tasks (e.g., cre-
ate a dataset). All data and metadata communication after a dataset
has been created takes place between Hotpot nodes and does not
involve the CD.

Node 2Node 1
DSPM

App

OS

RDMA 
Stack

Hotpot Core

PM

load/store commit

App Threads

OS

RDMA 
Stack

Hotpot Core

PM

commit

App Threads

page 
fault

load/store

RDMA
page 
fault

Central 
Dispatcher management and 

initialization tasks

data
metadata

Figure 3: Hotpot Architecture.

4.1 Application Execution and Data Access
Abstraction

Most data-intensive applications are multithreaded and distribute
their data processing work across threads [28, 63]. Thus, Hotpot
adopts a thread-based model to run applications on a set of Hotpot
nodes. Hotpot uses application threads as the unit of deployment
and lets applications decide what operations and what data accesses
they want to include in each thread. Applications specify what
threads to run on each Hotpot node and Hotpot runs an application
by starting all its threads together on all Hotpot nodes. We give
users full flexibility in choosing their initial thread and workload
distributions. However, such user-chosen distributions may not
be optimal, especially as workloads change over time. To remedy
this situation, Hotpot provides a mechanism to adaptively move
data closer to computation based on workload behavior, as will be
discussed in Section 5.5.

Hotpot provides a global virtual memory address space to each
application. Application threads running on a node can perform
native memory load and store instructions using global virtual
memory addresses to access both local and remote PM. The ap-
plications do not know where their data physically is or whether
a memory access is local or remote. Internally, a virtual memory
address can map to a local physical page if the page exists locally or
generate a page fault which will be fulfilled by Hotpot by fetching
a remote page (more in Section 5.3). Figure 4 presents an example
of Hotpot’s global virtual address space. Unlike an I/O-based in-
terface, Hotpot’s native memory interface can best exploit PMs’
low-latency, DRAM-like performance, and byte addressability.

On top of the memory load/store interfaces, Hotpot provides a
mechanism for applications to name their data, APIs to make their
data persistent, and helper functions for distributed thread syn-
chronization. Table 1 lists Hotpot APIs. We also illustrate Hotpot’s
programming model with a simple program in Figure 5. We will
explain Hotpot’s data commit semantics in Section 6.

4.2 Persistent Naming
To be able to store persistent data and to allow applications to
re-open them after closing or failures, Hotpot needs to provide a
naming mechanism that can sustain power recycles and crashes.

h
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API Explanation Backward
open
(close)

open or create (close) a DSPM
dataset

same as current

mmap
(mun-
map)

map (unmap) a DSPM region
in a dataset to application ad-
dress space

same as current

commit commit a set of data and make
N persistent replicas

similar to msync

acquire acquire single writer permis-
sion

thread-
barrier

helper function to synchro-
nize threads on different
nodes

similar to pthread
barrier

Table 1: Hotpot APIs. Apart from these APIs, Hotpot also supports direct
memory loads and stores.

Virtual Address Space Starting from vaddr1 on Node 1

Node 1 physical PM Node 2 physical PM

Virtual Address Space Starting from vaddr1 on Node 2
“Dataset1”

Figure 4: Hotpot Addressing. Hotpot maps “Dataset1” to Node 1 and
Node 2’s virtual address space using the same base virtual addresses. The
physical address mapping on each node is different. The grey blocks in the
middle are pointers that point to the blocks on the left.

Many modern data-intensive applications such as in-memory
databases [63] and graphs [28, 29] work with only one or a few
big datasets that include all of an application’s data and then man-
age their own fine-grained data structures within these datasets.
Thus, instead of traditional hierarchical file naming, we adopt a
flat naming mechanism in Hotpot to reduce metadata management
overhead.

Specifically, Hotpot applications assign names by datasets and
can use these names to open the datasets. A dataset is similar to the
traditional file concept, but Hotpot places all datasets directly under
a mounted Hotpot partition without any directories or hierarchies.
Since under Hotpot’s targeted application usage, there will only be
a few big datasets, dataset lookup and metadata management with
Hotpot’s flat namespace are easy and efficient. We use a simple
(persistent) hash table internally to lookup datasets.

The open and mmap APIs in Table 1 let applications create or
open a dataset with a name and map it into the application’s virtual
memory address space. Afterwards, all data access is through native
memory instructions.

4.3 Consistent and Persistent Pointers
Hotpot applications can use DSPM as memory and store arbitrary
data structures in it. One resulting challenge is the management of
pointers in DSPM. To make it easy to build persistent applications
with memory semantics, Hotpot ensures that pointers in DSPM

/* Open a dataset in Hotpot DSPM space */

int fd = open("/mnt/hotpot/dataset", O_CREAT|O_RDWR);

/* Obtain virtual address of dataset with traditional mmap() */

void *base= mmap(0,40960,PROT_WRITE,MAP_PRIVATE,fd,0);

/* Size of the application log */

int *log_size = base;

/* The application log */

int *log = base + sizeof(int);

/* Append an entry to the end of the log */

int new_data = 24;

log[*log_size] = new_data;

*log_size += 1;

/* Prepare memory region metadata for commit */

struct commit_area_struct {void *address; int length;};

struct commit_area_struct areas[2];

areas[0].address = log_size;

areas[0].length = sizeof(int);
areas[1].address = &log[*log_size];

areas[1].length = sizeof(int);

/* Commit the two data areas, each with two replicas */

commit(areas, 2);

Figure 5: Sample code using Hotpot. Code snippet that implements
a simple log append operation with Hotpot.

have the same value (i.e., virtual addresses of the data that they
point to) both across nodes and across crashes. Application threads
on different Hotpot nodes can use pointers directly without pointer
marshaling or unmarshaling, even after power failure. We call such
pointers globally-consistent and persistent pointers. Similar to NV-
Heaps [15], we restrict DSPM pointers to only point to data within
the same dataset. Our targeted type of applications which build
their internal data structures within big datasets already meet this
requirement.

To support globally-consistent and persistent pointers, Hotpot
guarantees that the same virtual memory address is used as the
starting address of a dataset across nodes and across re-opens of
the dataset. With the same base virtual address of a dataset and
virtual addresses within a dataset being consecutive, all pointers
across Hotpot nodes will have the same value.

We developed a new mechanism to guarantee that the same base
virtual address is used across nodes and crashes. When an appli-
cation opens a dataset for the first time, Hotpot uses a consensus
protocol to discover the current available virtual address ranges on
all nodes and select one for the dataset. Nodes that have not opened
the dataset will reserve this virtual address range for possible future
opening of the dataset. Since the total amount of virtual addresses
for DSPM is bound to the total size of DSPM datasets, Hotpot can
always find available virtual address ranges on 64-bit platforms.
Hotpot records the virtual address range persistently and forces
applications to use the same virtual address the next time it starts.
To ensure that recorded persistent virtual address ranges are al-
ways available when opening datasets, we change the kernel loader
and virtual memory address allocator (i.e., brk implementation) to
exclude all recorded address ranges.
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5 DATA MANAGEMENT AND ACCESS
This section presents how Hotpot manages user data in DSPM.
We postpone the discussion of data durability and reliability to
Section 6.

5.1 PM Page Morphable States
One of Hotpot’s design philosophies is to use one layer for both
memory and storage and to integrate distributed memory caching
and data replication. To achieve this goal, we propose to impose
morphable states on PM pages, where the same PM page in Hotpot
can be used both as a local memory cached copy to improve per-
formance and as a redundant data page to improve data reliability
and availability.

We differentiate three states of a PM page: active and dirty, active
and clean, and inactive and clean, and we call these three states
dirty, committed, and redundant respectively. A page being clean
means that it has not been updated since the last commit point;
committing a dirty page moves it to the clean state. A page being
active means that it is currently being accessed by an application,
while an redundant page is a page which the application process
has not mapped or accessed. Several Hotpot tasks can change page
states, including page read, page write, data commit, data replica-
tion, page migration, and page eviction. We will discuss how page
states change throughout the rest of this section. Figure 6 illustrates
two operations that cause Hotpot data state changes.

5.2 Data Organization
Hotpot aims to support large-scale, data-intensive applications on
a fairly large number of nodes. Thus, it is important to minimize
Hotpot’s performance and scalability bottlenecks. In order to enable
flexible load balancing and resource management, Hotpot splits the
virtual address range of each dataset into chunks of a configurable
size (e.g., 4MB). PM pages in a chunk do not need to be physically
consecutive and not all pages in a chunk need to exist on a node.

Each chunk in Hotpot is owned by an owner node (ON), similar
to the “home” node in home-based DSM systems [97]. An ON main-
tains all the data and metadata of the chunk it owns. Other nodes,
called data node or DN, always fetch data from the ON when they
initially access the data. A single Hotpot node can simultaneously
be the ON for some data chunks and the DN for other chunks.
When the application creates a dataset, Hotpot CD performs an
initial assignment of ONs to chunks of the dataset.

Two properties separate Hotpot ONs from traditional home
nodes. First, Hotpot ON is responsible for the reliability and crash
consistency of the pages it owns, besides serving read data and
ensure the coherence of cached copies. Second, Hotpot does not fix
which node owns a chunk and the location of ON adapts to applica-
tion workload behavior dynamically. Such flexibility is important
for load balancing and application performance (see Section 5.5).

5.3 Data Reads and Writes
Hotpot minimizes software overhead to improve application per-
formance. It is invoked only when a page fault occurs or when
applications execute data persistence operations (see Section 6 for
details of data persistence operations).

Node 1 physical PM

Node 2 physical PM

Node 3 becomes ON of chunk 1

B1 D

B1 D

C B1

C A

A

Node 1 physical PM

Node 2 physical PM

Node 3 physical PM

A B C D

B1 D AC

B1

Chunk 1

A D

C B1

Node 1 physical PM

Node 2 physical PM

Node 3 physical PM

B D AC

B1

B

B

A D

C

(a) State before commit-xact (b) State after commit-xact (c) State after ON migration
C

Figure 6: Data State Change Example. White, black, and striped
blocks represent committed, redundant, and dirty states. Before commit, Node
2 and Node 3 both have cached copies of data page B . Node 2 has written to B
and created a dirty page, B1. During commit, Node 2 pushes the content B1 to
its ON, Node 1. Node 1 updates its committed copy to B1 and also sends this
update to Node 3. Figure (c) shows the state after migrating the ON of chunk 1
from Node 1 to Node 3. After migration, Node 3 has all the pages of the chunk
and all of them are in committed states.

When a page fault happens because of read, it means that there
is no valid local page. Hotpot first checks if there is any local re-
dundant page. If so, it will move this page to the committed state
and establish a page table entry (PTE) for it. Otherwise, there is no
available local data and Hotpot will fetch it from the remote ON.
Hotpot writes the received data to a newly-allocated local physical
PM page. Afterwards, applications will use memory instructions to
access this local page directly.

Writing to a committed page also causes a page fault in Hotpot.
This is because a committed page can contribute towards user-
specified degree of replication as one data replica, and Hotpot
needs to protect this committed version from being modified. Thus,
Hotpot write protects all committed pages. When these pages are
written to (and generating a write page fault), Hotpot creates a
local Copy-On-Write (COW) page and marks the new page as dirty
while leaving the original page in committed state. Hotpot does not
write protect this COW page, since it is already in the dirty state.

Following Hotpot’s design philosophy to exploit hints from our
targeted data-intensive applications, we avoid propagating updates
to cached copies at other nodes on each write and only do so at
each application commit point. Thus, all writes in Hotpot is local
and only writing to a committed page will generate a page fault.

Not updating remote cached copies on each write also has the
benefit of reducing write amplification in PM. In general, other soft-
ware mechanisms and policies such as wear-aware PM allocation
and reclamation and hardware techniques like Start-Gap [75] can
further reduce PM wear. We do not focus on PM wear in this paper
and leave such optimizations for future work.

5.4 PM Page Allocation and Eviction
Each Hotpot nodemanages its own physical PM space and performs
PM page allocation and eviction. Since physical pages do not need to
be consecutive, we use a simple and efficient allocation mechanism
by maintaining a free page list and allocating one page at a time.

Hotpot uses an approximate-LRU replacement algorithm that
is similar to Linux’s page replacement mechanism. Different from
Linux, Hotpot distinguishes pages of different states. Hotpot never
evicts a dirty page and always tries to evict redundant pages before
evicting committed pages. We choose to first evict redundant pages,
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because these are the pages that have not been accessed by applica-
tions and less likely to be accessed in the future than committed
pages.

Since both redundant and committed pages can serve as a redun-
dant copy for data reliability, Hotpot cannot simply throw them
away during eviction. The evicting node of a page will contact
its ON, which will check the current degree of replication of the
candidate pages and prioritize the eviction of pages that already
have enough replicas. For pages that will drop below the user-
defined replication degree after the eviction, the ON will make a
new redundant page at another node.

5.5 Chunk ON Migration
An ON serves both page read and data commit requests that belong
to the chunks it owns. Thus, the location of ON is important to
Hotpot’s performance. Ideally, the node that performs the most
reads and commits of data in a chunk should be its ON to avoid
network communication.

By default, Hotpot initially spreads out a dataset’s chunks to
all Hotpot nodes in a round robin fashion (other static placement
policies can easily replace round robin). Static placement alone
cannot achieve optimal run-time performance. Hotpot remedies
this limitation by performing online chunk migration, where one
ON and one DN of a chunk can switch their identities and become
the new DN and new ON of the chunk.

Hotpot utilizes application behavior in recent history to decide
how to migrate ONs. Each ON records the number of page read
requests and the amount of committing data it receives in the most
recent time window.

ONs make their migration decisions with a simple greedy algo-
rithm based on the combination of two criteria: maximizing the
benefit while not exceeding a configurable cost of migration. The
benefit is the potential reduction in network traffic during remote
data reads and commits. The node that performs most data com-
munication to the ON in recent history is likely to benefit the most
from being the new ON, since after migration these operations will
become local. We model the cost of migration by the amount of
data needed to copy to a node so that it has all the chunk data to
become ON.

Once Hotpot has made a decision, it performs the actual chunk
migration using a similar method as process and VM migra-
tion [14, 20, 68] by temporary stopping commits to the chunk under
migration and resume them at the new ON after migration.

6 DATA DURABILITY, CONSISTENCY, AND
RELIABILITY

Being distributed shared memory and distributed storage at the
same time, DSPM should ensure both correct shared memory ac-
cesses to PM and the persistence and reliability of in-PM data.
Hotpot provides three guarantees: coherence among cached copies
of in-PM data, recovery from various types of failures into a consis-
tent state, and user data reliability and availability under concurrent
failures. Although each of these three properties have been explored
before, as far as we know, Hotpot is the first system that integrates
all of them in one layer. Hotpot also has the unique requirement of
low software overhead to retain the performance benefit of PM.

• Cache coherence. In Hotpot, application processes on different
nodes cache remote data in their local PM for fast accesses. Hot-
pot provides two consistency levels across cached copies: R1.a,
multiple readers and single writer (MRSW) and R1.b, multiple
readers and multiple writers (MRMW). MRMW allows multiple
nodes to concurrently write and commit their local cached copies.
With MRMW, there can be multiple versions of dirty data in the
system (but still one committed version), while MRSW guaran-
tees only one dirty version at any time. An application can use
different modes for different datasets, but only one mode with
the same dataset. This design allows flexibility at the dataset
granularity while guaranteeing correctness.
• Crash consistency. Data storage applications usually have well-
defined consistent states and need to move from one consistent
state to another atomically. When a crash happens, user data
should be recovered to a consistent state (i.e., crash consistency).
Hotpot guarantees crash consistency both within a single node
(R2.a) and across distributed nodes (R2.b). Note that crash con-
sistency is different and orthogonal to cache coherence in R1.a
and R1.b.
• Reliability and availability. To ensure that user persistent data
can sustain N − 1 concurrent node failures, where N is a user
defined value, Hotpot guarantees that R3, once data has been
committed, there are always N copies of clean, committed data.

This section first discusses howHotpot ensures crash consistency
within a single node, then presents the MRMW and MRSW modes
and their atomic commit protocols, and ends with the discussion of
Hotpot’s recovery mechanisms under different crash scenarios.

6.1 Single-Node Persistence and Consistency
Before ensuring user data’s global reliability and consistency in
DSPM, Hotpot first needs to make sure that data on a single node
can properly sustain power crashes (R2.a) [70]. Hotpot makes
data persistent with the standard Intel persistent memory instruc-
tions [42], i.e., clflush, mfence (note that we do not include
the deprecated pcommit instruction [35]).

After a node crashes, if its PM is still accessible, Hotpot will use
the PM content to recover; otherwise, Hotpot will use other nodes
to reconstruct data on a new node (Section 6.4). For the former case,
Hotpot needs to guarantee that user data in DSPM is in a consistent
state after crash. Hotpot also needs to ensure that its own metadata
is persistent and is consistent with user data.

Hotpot maintains metadata on a local node to find user data and
record their morphable states (i.e., committed, dirty, or redundant).
Since these metadata are only used within a single node, Hotpot
does not need to replicate them on other nodes. Hotpot makes these
metadata persistent at known locations in PM — a pre-allocated
beginning area of PM. Hotpot also uses metadata to record online
state of the system (e.g., ON maintains a list of active DNs that have
a cached copy of data). These metadata can be reconstructed by
re-examining system states after recovery. Thus, Hotpot does not
make these metadata persistent.

Similar to traditional file systems and databases, it is important to
enforce ordering ofmetadata and data persistence in order to recover
to a consistent state. For single-node non-commit operations (we
defer the discussion of commit operations to Sections 6.2 and 6.3),
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Figure 7: MRMW Commit Example. Solid arrows represent data
communication. Dashed arrows represent metadata communication. Node 1
(CN) commit data to ONs at Node 2 and 3 with replication degree four. Black
shapes represent old committed states before the update and white shapes
represent new states.

Hotpot uses a simple shadow-paging mechanism to ensure that
the consistency of metadata and data. Specifically, we associate
each physical memory page with a metadata slot and use a single
8-byte index value to locate both the physical page and its metadata.
When an application performs a memory store to a committed page,
Hotpot allocates a new physical page, writes the new data to it,
and writes the new metadata (e.g., the state of the new page) to the
metadata slot associated with this physical page. After making all
the above data and metadata persistent, Hotpot changes the index
from pointing to the old committed page to pointing to the new
dirty page. Since most architectures support atomic 8-byte writes,
this operation atomically moves the system to a new consistent
state with both the new data and the new metadata.

6.2 MRMWMode
Hotpot supports two levels of concurrent shared-PM accesses and
uses different protocols to commit data. The MRMW mode allows
multiple concurrent versions of dirty, uncommitted data to support
great parallelism. MRMW meets R1.b, R2.b, and R3.

MRMW uses a distributed atomic commit protocol at each com-
mit point to make local updates globally visible, persistent, and
replicated. Since MRMW supports concurrent commit operations
and each commit operation can involve multiple remote ONs, Hot-
pot needs to ensure that all the ONs reach consensus on the commit
operation they serve. We designed a three-phase commit proto-
col for the MRMWmode based on traditional two-phase commit
protocols [30, 48, 78] but differs in that Hotpot needs to ensure
cache coherence, crash consistency, and data replication all in one
protocol. Figure 7 illustrates an example of MRMW.
Commit phase 1. When a node receives a commit call (we call
this node CN), it checks if data specified in the commit call is dirty
and commits only the dirty pages. CN persistently records the
addresses of these dirty pages for recovery reasons (Section 6.4).
CN also assigns a unique ID (CID) for this commit request and
persistently records the CID and its state of starting phase 1.

Afterwards, CN sends the committing data to its ONs to prepare
these ONs for the commit. Each ON accepts the commit request if
it has not accepted other commit request to the same pages, and it
stores the committing data in a persistent redo log in PM. The ON
also persistently records the CID and its state (i.e., completed phase
1) persistently. The ON will block future commit requests to these

commit
Node 1

Node 2

Node 3

Node 4

 acquire  release update

Figure 8: MRSW Example. Node 1 (CN) first acquires write permission
from Node 2 (MN) before writing data. It then commits the new data to ONs
at Node 2 and 3 with replication degree four and finally releases the write
permission to MN.

data until the whole commit process finishes. The CN can proceed
to phase 2 only when all ONs return successfully.
Commit phase 2. In commit phase 2, Hotpot makes the commit-
ting data persistent, coherent, and replicated. This is the phase that
Hotpot differs most from traditional distributed commit protocols.

CN sends a command to all the involving ONs to indicate the
beginning of phase 2. Each ON then performs two tasks in one
multicast operation (Section 7): updating DNs’ cached copies of
the committing data and making extra replicas. ON looks up its
metadata to find what DNs have a cached copy. If these DNs alone
cannot meet the replication degree, ON will choose new DNs that
do not have a copy of the data and send the data to them.

When a DN receives the committing data from an ON, it checks
the state of its local data pages. If a local page is in the committed
state or the redundant state, the DN will directly overwrite the local
page with the received data. In doing so, the DN’s cached PM data
is updated. If the local page is dirty or if there is no corresponding
local page, the DN allocates a new physical page and writes the new
data to this page. The new physical page will be in the redundant
state and will not affect the DN’s dirty data. In this way, all DNs
that receive updated data from the ON will have a clean, committed
copy, either in the committed or the redundant state.

After all DNs have replied to the ON indicating that there are
now N copies of the committing data, the ON commits data locally
by checkpointing (copying) data from the redo log to their home
locations. Unlike traditional databases and file systems that lazily
checkpoint logged data, Hotpot checkpoints all committing data in
this phase so that it can make the updated version of the data visible
to applications immediately, a requirement of shared-memory cache
coherence. During checkpointing, the ON will block both local and
remote reads to the committing data to prevent applications from
reading intermediate, inconsistent data.

After the CN receives successful replies from all the ONs, it
deletes its old local data and moves to the new, committed version.
At this point, the whole system has a coherent view of the new data
and has at least N copies of it.
Commit phase 3. In the last phase, the CN informs all ONs that
the commit operation has succeeded. The ONs then delete their
redo logs.
Committing to a single ON and to local ON. When only one
remote ON is involved in a commit operation, there is no need to
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coordinate multiple ONs and Hotpot performs the above commit
protocol in a single phase.

The CN can also be the ON of committing data. In this case,
the CN performs the commit operation locally. Since all local dirty
pages are the COW of old committed pages, CN already has an
undo and a redo copy of the committing data and does not need to
create any other redo log as in remote ON’s phase 1.

6.3 MRSWMode
The MRSW mode allows only one writer to a PM page at a time
to trade parallelism for stronger consistency. MRSW meets R1.a,
R2.b, and R3.

TraditionalMRSWprotocols in DSM systems are usually invoked
at every memory store (e.g., to update cached read copies, to revoke
current writer’s write permission). Unlike DSM systems, DSPM
applications store and manage persistent data; they do not need
to ensure coherence on every memory store, since they have well-
defined points of when they want to start updating data and when
they want to commit. To avoid the cost of invoking coherence
events on each memory store while ensuring only one writer at a
time, Hotpot uses an acquire API for applications to indicate the
data areas they want to update. Afterwards, applications can update
any date that they have acquired and use the commit call to both
commit updates and release corresponding data areas. Figure 8
shows an example of MRSW.
Acquire write permission. Hotpot uses a master node (MN) to
maintain the active writer of each page. An MN can be one of the
Hotpot node, the CD, or a dedicated node. When a node receives
the acquire call, it sends the virtual addresses of the data specified
in the call to the MN. If the MN finds that at least one of these
addresses are currently being written to, it will reject the acquire
request and let the requesting node retry later.
Commit and release data. MRSW’s commit protocol is simpler
and more efficient than MRMW’s, since there is no concurrent
commit operations to the same data in MRSW (concurrent commit
to different data pages is still allowed). MRSW combines phase 1
and phase 2 of the MRMW commit protocol into a single phase
where the CN sends committing data to all ONs and all ONs commit
data on their own. Each ON individually handles commit in the
same way as in the MRMW mode, except that it does not need to
coordinate with any other ONs or the CN. ON directly proceeds to
propagating data to DNs after it has written its own redo log.

At the end of the commit process, the CN informs the ONs to
delete their redo logs (same as MRMW commit phase 3) and the
MN to release the data pages.

6.4 Crash Recovery
Hotpot can safely recover from different crash scenarios without
losing applications’ data. Hotpot detects node failures by request
timeout and by periodically sending heartbeat messages from the
CD to all Hotpot nodes. We now explain Hotpot’s crash recovery
mechanism in the following four crash scenarios. Table 2 summa-
rizes various crash scenarios and Hotpot’s recovery mechanisms.
Recovering CD and MN. CD maintains node membership and
dataset name mappings. Hotpot currently uses one CD but can

Node PM Time Action
any Y any resume normal operation after reboot
CD N any reconstruct using mirrored copy
ON N NC promote an existing DN to ON
DN N NC reconstruct data to meet replication degree

M
RM

W
Co

m
m
it CN/ON N p1 undo commit, ONs delete redo logs

CN N p2 redo commit, ONs send new data to DNs
ON N p2 redo commit, CN sends new data to new ON
DN N p2 continue commit, ON sends data to new DN
CN N p3 complete commit, ONs delete redo logs
ON/DN N p3 complete commit, new chunk reconstructed

using committed data

M
RS

W

CN N commit undo commit, ONs send old data to DNs
ON N commit CN redo commit from scratch
CN N release complete commit, release data
ON/DN N release complete commit, new chunk reconstructed

using committed data
Table 2: Crash and Recovery Scenarios. Columns represent crash-
ing node, if PM is accessible after crash, time of crash, and actions taken at
recovery. NC represents non-commit time.

be easily extended to include a hot stand-by CD (e.g., using Mo-
jim [95]).

MN tracks which node has acquired write access to a page under
the MRSWmode. Hotpot does not make this information persistent
and simply reconstructs it by contacting all other nodes during
recovery.
Non-commit time crashes. Recovering from node crashes during
non-commit time is fairly straightforward. If the PM in the crashed
node is accessible after the crash (we call it with-PM failure), Hotpot
directly restarts the node and lets applications access data in PM.
As described in Section 6.1, Hotpot ensures crash consistency of a
single node. Thus, Hotpot can always recover to a consistent state
when PM survives a crash. Hotpot can sustain arbitrary number of
with-PM failures concurrently.

When a crash results in corrupted or inaccessible PM (we call it
no-PM failure), Hotpot will reconstruct the lost data using redundant
copies. Hotpot can sustain N − 1 concurrent no-PM failures, where
N is the user-defined degree of replication.

If a DN chunk is lost, the ON of this chunk will check what data
pages in the chunk have dropped below user-defined replication
degree and replicating them on the new node that replaces the
failed node. There is no need to reconstruct the rest of the DN data;
Hotpot simply lets the new node access them on demand.

When an ON chunk is lost, it is critical to reconstruct it quickly,
since an ON serves both remote data read and commit operations.
Instead of reconstructing a failed ON chunk from scratch, Hotpot
promotes an existing DN chunk to an ON chunk and creates a new
DN chunk. The new ON will fetch locally-missing committed data
from other nodes and reconstruct ON metadata for the chunk. Our
evaluation results show that it takes at most 2.3 seconds to promote
a 1GB DN chunks to ON.
Crash during commit. If a with-PM failure happens during a
commit call, Hotpot will just continue its commit process after
restart. When a no-PM failure happens during commit, Hotpot
takes different actions to recover depending on when the failure
happens.
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For MRMW commit, if no-PM failure happens before all the ONs
have created the persistent redo logs (i.e., before starting phase 2),
Hotpot will undo the commit and revert to the old committed state
by deleting the redo logs at ONs. If a no-PM failure happens after
all ONs have written the committing data to their persistent redo
logs (i.e., after commit phase 1), Hotpot will redo the commit by
replaying redo logs.

For MRSW, since we combine MRMW’s phase 1 and phase 2 into
one commit phase, we will not be able to tell whether or not an ON
has pushed the committing data to DNs when this ON experience
a no-PM failure. In this case, Hotpot will let CN redo the commit
from scratch. Even if the crashed ON has pushed updates to some
DNs, the system is still correct after CN redo the commit; it will
just have more redundant copies. When the CN fails during MRSW
commit, Hotpot will undo the commit by letting all ONs delete their
redo logs and send old data to DNs to overwrite DNs’ updated data.

During commit, Hotpot only supports either CN no-PM failure
or ON no-PM failure. We choose not to support concurrent CN
and ON no-PM failures during commit, because doing so largely
simplifies Hotpot’s commit protocol and improves its performance.
Hotpot’s commit process is fast (under 250µs with up to 16 nodes,
see Section 8.4). Thus, the chance of CN and ON both fail and lose
their PM during commit is very small. Hotpot always supports
DN no-PM failures during commit regardless of whether there are
concurrent CN or ON failure.

7 NETWORK LAYER
The networking delay in DSPM systems is crucial to their overall
performance. We implement Hotpot’s network communication us-
ing RDMA. RDMA provides low-latency, high-bandwidth direct
remote memory accesses with low CPU utilization. Hotpot’s net-
work layer is based on LITE [87], an efficient RDMA software stack
we built in the Linux kernel on top of the RDMA native APIs,
Verbs [60].

Most of Hotpot’s network communication is in the form of RPC.
We implemented a customized RPC-like interface in our RDMA
layer based on the two-sided RDMA send and receive semantics.
We further built a multicast RPC interface where one node can send
a request to multiple nodes in parallel and let them each perform
their processing functions and reply with the return values to the
sending node. Similar to the findings from recent works [38], two-
sided RDMA works better and is more flexible for these RPC-like
interfaces than one-sided RDMA.

To increase network bandwidth, our RDMA layer enables multi-
ple connections between each pair of nodes. It uses only one busy
polling thread per node to poll a shared ring buffer for all connec-
tions, which delivers low-latency performance while keeping CPU
utilization low. Our customized RDMA layer achieves an average
latency of 7.9µs to perform a Hotpot remote page read. In compari-
son, IPoIB, a standard IP layer on top of Verbs, requires 77µs for a
round trip with the same size.

8 APPLICATIONS AND EVALUATION
This section presents the performance evaluation of two applica-
tions and a set of microbenchmarks. We ran all experiments on
a cluster of 17 machines, each with two Intel Xeon CPU E5-2620

2.40GHz processors, 128 GB DRAM, and one 40 Gbps Mellanox
ConnectX-3 InfiniBand network adapter; a Mellanox 40 Gbps In-
finiBand switch connects all of the machines. All machines run the
CentOS 7.1 distribution and the 3.11.1 Linux kernel.

The focus of our evaluation is to understand the performance of
DSPM’s distributed memory model, its commit protocols, and its
data persistence cost. As there is no real PM in production yet, we
use DRAM as stand-in for PM. A previous study [94] shows that
even though PM and DRAM can have some performance difference,
the difference is small and has much lower impact on application
performance than the cost of flushing data from CPU caches to PM,
which we have included in Hotpot and can measure accurately.

8.1 Systems in Comparison
We compare Hotpot with one in-memory file system, two PM-based
file systems, one replicated PM-based system, and a distributed
shared memory systems. Below we briefly describe these systems
in comparison.
Single-Node File Systems. Tmpfs is a Linux file system that stores
all data in main memory and does not perform any I/Os to storage
devices. PMFS [22] is a file system designed for PM. The key dif-
ference between PMFS and a conventional file system is that its
implementation of mmap maps the physical PM pages directly into
the applications’ address spaces rather than moving them back and
forth between the file store and the buffer cache. PMFS ensures
data persistence using sfence and clflush instructions.
Distributed PM-Based Systems Octopus [57] is a user-level
RDMA-based distributed file system designed for PM. Octopus
provides a set of customized file APIs including read and write, but
does not support memory-mapped I/Os or provide data reliability
and availability.

Mojim [95] is our previous work that uses a primary-backup
model to replicate PM data over a customized IB layer. Similar
to Hotpot, PMFS, and Octopus, Mojim maps PM pages directly
into application virtual memory address spaces. Mojim supports
application reads and writes on the primary node but only reads
on backup nodes.
Distributed Shared Memory System. We compare Hotpot with
Grappa [65], a recent DSM system that supports modern data-
parallel applications. Grappa implements a customized network
stack on InfiniBand. Different from traditional DSM systems,
Grappa moves computation to data instead of fetching data to
where computation is.

8.2 In-Memory NoSQL Database
MongoDB [63] is a popular distributed NoSQL database that sup-
ports several different storage engines including its own storage
engine that is based on memory-mapped files (called MMAPv1).
Applications like MongoDB can largely benefit from having a fast
means to store and access persistent data. We ported MongoDB
v2.7.0 to Hotpot by modifying its storage engine to keep track of
all writes to the memory-mapped data file. We then group the writ-
ten memory regions belonging to the same client request into a
Hotpot commit call. In total, porting MongoDB to Hotpot requires
modifying 120 lines of code.
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Workload Read Update Scan Insert R&U
A 50% 50% - - -
B 95% 5% - - -
C 100% - - - -
D 95% - - 5% -
E - - 95% 5% -
F 50% - - - 50%

Figure 9: YCSB Workload Properties. The percentage of opera-
tions in each YCSB workload. R&U stands for Read and Update.
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Figure 10: YCSB Workloads Throughput.

To use the ported MongoDB, administrators can simply config-
ure several machines to share a DSPM space under Hotpot and
run ported MongoDB on each machine. Applications on top of the
ported MongoDB can issue requests to any machine, since all ma-
chines access the same DSPM space. In our experiments, we ran the
ported MongoDB on three Hotpot nodes and set data replication
degree to three.

We compare this ported MongoDB with the default MongoDB
running on tmpfs, PMFS, and Octopus, and a ported MongoDB to
Mojim on three nodes connected with IB. Because Octopus does not
have memory-mapped operations and MongoDB’s storage engine
is based on memory-mapped files, MongoDB cannot directly run
on Octopus. We run MongoDB on top of FUSE [1], a full-fledged
user-level file system, which in turn runs on Octopus.

For tmpfs and PMFS, we use two consistency models (called
MongoDB write concerns): the JOURNALED write concern and the
FSYNC_SAFE write concern. With the JOURNALED write concern,
MongoDB logs data in a journal file and checkpoints the data in a
lazy fashion. MongoDB blocks a client call until the updated data is
written to the journal file. With FSYNC_SAFE, MongoDB does not
perform journaling. Instead, it flushes its data file after each write
operation and blocks the client call until this operation completes.
We run Octopus and Mojim with the FSYNC_SAFE write concern.
None of Octopus, tmpfs, and PMFS perform any replication, while
Mojim and Hotpot use their own replication mechanisms to make
three replicas of all data (Mojim uses one node as the primary node
and the other two nodes as backup nodes).

YCSB [17] is a key-value store benchmark that imitates web
applications’ data access models. Figure 9 summarizes the amount
of different operations in the YCSB workloads. Each workload per-
forms 10,000 operations on a database with 100,000 1KB records.
Figure 10 presents the throughput of MongoDB on tmpfs, PMFS,
Octopus, Mojim, and Hotpot using YCSB workloads.

For all workloads, Hotpot outperforms tmpfs, PMFS, Octopus,
and Mojim for both the JOURNALED and the FSYNC_SAFE write
concerns. The performance improvement is especially high for
write-heavy workloads. PMFS performs worst mainly because of its
inefficient process of making data persistent with default MongoDB.
The default MongoDB fsyncs the whole data file after each write
under FSYNC_SAFE, and PMFS flushes all cache lines of the file to
PM by performing one clflush at a time. Hotpot and Mojim only
commit dirty data, largely improving MongoDB performance over
PMFS. Compared to tmpfs and PMFS under JOURNALED, Hotpot
and Mojim use their own mechanisms to ensure data reliability
and avoid the performance cost of journaling. Moreover, Hotpot
and Mojim make three persistent replica for all data, while PMFS
makes only one. Tmpfs with JOURNALED is slower than Hotpot

even though tmpfs does not make any data persistent, because
MongoDB’s slower journaling mechanism.

Octopus performs worse than Hotpot and Mojim because it
incurs significant overhead of additional indirection layers: each
memory operation within the memory-mapped file goes through
the FUSE file system and then through Octopus. Hotpot and Mojim
both support native memory instructions and incurs no indirection
overhead. Octopus’s incurs performance overhead for all types of
I/O operations; for the read-only workload, it is worse than all the
rest of the systems in comparison. Finally, even though Mojim’s
replication protocol is simpler and faster than Hotpot’s, Hotpot
outperforms Mojim because Mojim only supports writes on one
node while Hotpot supports writes on all nodes.

8.3 Distributed (Persistent) Graph
Graph processing is an increasingly important type of applications
in modern datacenters [28, 29, 47, 55, 56, 59]. Most graph systems
require large memory to run big graphs. Running graph algorithms
on PM not only enables them to exploit the big memory space the
high-density PM provides, but can also enable graph algorithms to
stop and resume in the middle of a long run.

We implemented a distributed graph processing engine on top of
Hotpot based on the PowerGraph design [28]. It stores graphs using
a vertex-centric representation with random graph partitioning
and distributes graph processing load to multiple threads across
all Hotpot nodes. Each thread performs graph algorithms on a
set of vertices in three steps: gather, apply, and scatter, with the
optimization of delta caching [28]. After each step, we perform a
global synchronization with thread-barrier and only start the next
step when all threads have finished the previous step. At the scatter
step, the graph engine uses Hotpot’s MRSW commit to make local
changes of the scatter values visible to all nodes in the system. We
implemented the Hotpot graph engine with around 700 lines of
code.

We compare Hotpot’s graph engine with PowerGraph and
Grappa [65] using two real datasets, Twitter (41M vertices, 1 B
directed edges) [46] and LiveJournal (4M vertices, 34.7M undi-
rected edges) [53]. For space reason, we only present the results
of the Twitter graph, but the results of LiveJournal are similar. Fig-
ure 11 shows the total run time of the PageRank [49] algorithmwith
Hotpot, PowerGraph, and Grappa under three system settings: four
nodes each running four graph threads, seven nodes each running
four threads, and seven nodes each running eight threads.

Hotpot outperforms PowerGraph by 2.3× to 5× and Grappa by
1.3× to 3.2×. In addition, Hotpot makes all intermediate results
of graph persistent for fast restart. A major reason why Hotpot
outperforms PowerGraph and Grappa even when Hotpot requires
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data persistence and replication is because of Hotpot’s efficient
network stack. Compare to the IPoIB used in PowerGraph and
Grappa’s own network stack, Hotpot’s RDMA stack offers much
lower latency.

To further understand the performance differences, we traced
the network traffic of these three systems. Figure 12 plots the total
amount of traffic and Figure 13 plots a detailed trace of network
activity of the 7Nx4T setting. Hotpot sends less total traffic and
achieves higher bandwidth than PowerGraph and Grappa.

8.4 Micro-Benchmark Results
We now present our microbenchmark results that evaluate the
effect of different system settings and parameters. Since Hotpot
reads have a constant latency (around 7.9µs) and Hotpot writes do
not go through network, Hotpot’s performance is largely affected
by its data commit process. Thus, we focus our microbenchmark
experiments on the commit operations.
Scalability. Figure 14 shows the total commit throughput of Hot-
pot on 2 to 16 nodes with a workload that lets all nodes concurrently
commit 32 random 4KB areas with replication degree 1. Overall,
both MRMW and MRSW commit scale. As expected, MRMW com-
mit is more costly than MRSW.
Replication degree and committing size. We next evaluate the
effect of replication degree and the total amount of data in a commit
call. Our results show that with higher replication degree and with
more committing data, commit takes longer for both MRMW and
MRSW. Because of space reasons, we do not include figures for
these experiments.
Chunk size.We use a controlled microbenchmark to showcase the
effect of chunk size (Figure 15). Each run has one node in a cluster
of four nodes committing 32 1KB areas that spread evenly in a
32MB region with replication degree 1. Since Hotpot distributes
chunks in Round Robin, when chunk size is below 8MB, the 32MB
region will be distributed equally to all four nodes. The commit
performance stays similar with 1, 4, and 8MB chunk size, since
commit will always use all four nodes as ONs. When chunk size is
16MB (or 32MB), only two (or one) nodes are ON. We observe two
different behaviors: when the CN happens to also be the ON of the
chunk that contains the committing data, the commit performance
is better than when chunk size is below 8MB, since half (or all)
commit happens locally at the CN. But when the CN is not ON, all
commit traffic goes to only two (or one) remote nodes, resulting
in worse performance than when chunk size is small. This result
suggest that smaller chunk size has better load balancing.

ON migration. From the previous experiments, we find that the
commit performance depends heavily on the location of ON and the
initial Hotpot ON assignment may not be optimal. We now evaluate
how effective Hotpot’s ON migration technique is in improving
commit performance (Figure 16). We ran a workload with Zipf
distribution to model temporal locality in datacenter applications [4,
10] on four nodes with replication degree 1 to 4. Each node issues
100,000 commit calls to commit two locations generated by Zipf.
With ON migration, the commit performance improves by 13% to
29% under MRSW and 38% to 64% under MRMW. ON migration
improves performance because the node that performs most commit
on a chunk becomes its ON after migration. The improvement is
most significant with replication degree one, because when CN is
ON and the replication degree is one, there is no need to perform
any network communication. MRMW’s improvement is higher
than MRSW, because MRMW can benefit more from committing
data locally (the MRMW commit process that involves remote ONs
is more costly than that of MRSW).
Effect of conflict commits. Figure 17 compares the commit per-
formance of when 1 to 4 nodes in a four node cluster concurrently
commit data in two scenarios: all CNs commit the same set of data
(32 sequential 1 KB areas) at the same time which results in com-
mit conflict, and CNs use different set of data without any conflict.
Commit conflict causes degraded performance, and the degradation
is worse with more conflicting nodes. However, conflict is rare in
reality, since commit is fast. Conflict only happens when different
nodes commit the same data page at exactly the same time. In fact,
we had to manually synchronize all nodes at every commit call
using thread-barrier to create conflict.

9 RELATEDWORK
There have been a host of distributed shared memory systems and
distributed storage systems [3, 11, 13, 18, 26, 27, 44, 45, 73, 79, 82,
83, 86, 93, 96, 97] over the past few decades. While some of Hotpot’s
coherence protocols may resemble existing DSM systems, none of
them manages persistent data. There are also many single-node
PM systems [15, 16, 21, 22, 41, 42, 61, 69, 71, 88, 89], but they do not
support distributed environments.

Octopus [57] is a user-level RDMA-based distributed PM file
system developed in parallel with Hotpot. Octopus manages file
system metadata and data efficiently in a pool of PM-equipped
machines. Octopus provides a set of customized file APIs including
read and write but not any memory-mapped interfaces. Octopus
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does not provide data reliability and high availability either. Hot-
pot’s abstraction is memory-based rather than file-based, and it
offers data reliability, availability, and different consistency levels.

Grappa [65] is a DSM system that supports modern data-parallel
applications. Instead of fetching remote memory to a local cached
copy, Grappa executes functions at the remote side. Hotpot is a
DSPM system and lets applications store persistent data. It fetches
remote data for both fast local access and data replication.

FaRM [21] is an RDMA-based distributed memory system. RAM-
Cloud is a low-latency distributed key-value store system that keeps
a single copy of all data in DRAM [67] and replicates data on mas-
sive slower storages for fast recovery. The major difference between
Hotpot and FaRM or RAMCloud is that FaRM and RAMCloud both
add software indirection layers for key-value stores which can cause
significant latency overhead over native load/store operations and
obscure much of the performance of the underlying PM. Hotpot
uses a memory-like abstraction and directly stores persistent data
in PM. Hotpot also performs data persistence and replication dif-
ferently and uses a different network layer in the kernel.

Crail [34] is an RDMA-based high-performance multi-tiered dis-
tributed storage system that integrates with the Apache Spark
ecosystem [91]. Crail mainly consists of a file system that manages
tiered storage resources (e.g., DRAM, flash, disk) with flexible allo-
cation policies across tiers. Hotpot is a pure PM-based system that
exposes a memory-like interface.

PerDis [81] and Larchant [23, 80] use a distributed file system
below a DSM layer. Unlike these systems, Hotpot is a single-layer
system that provides shared memory access, data persistence, and
reliability.

Our own previous work, Mojim [95], provides an efficient mech-
anism to replicate PM over IB using a primary-backup protocol.
Hotpot is a DSPM system that provides a shared-memory abstrac-
tion and integrates cache coherence and data replication.

10 CONCLUSION
We presented Hotpot, a kernel-level DSPM system that provides
applications with a shared persistent memory abstraction. Our
evaluation results show that it is easy to port existing applications to
Hotpot and the resulting systems significantly outperform existing
solutions.
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