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ABSTRACT

Relational Database-as-a-Service (DaaS) platforms today support
the abstraction of a resource container that guarantees a fixed amo-
unt of resources. Tenants are responsible for selecting a container
size suitable for their workloads, which they can change to lever-
age the cloud’s elasticity. However, automating this task is daunt-
ing for most tenants since estimating resource demands for arbi-
trary SQL workloads in an RDBMS is complex and challenging.
In addition, workloads and resource requirements can vary signifi-
cantly within minutes to hours, and container sizes vary by orders
of magnitude both in the amount of resources as well as monetary
cost. We present a solution to enable a DaaS to auto-scale con-
tainer sizes on behalf of its tenants. Approaches to auto-scale state-
less services, such as web servers, that rely on historical resource
utilization as the primary signal, often perform poorly for stateful
database servers which are significantly more complex. Our solu-
tion derives a set of robust signals from database engine telemetry
and combines them to significantly improve accuracy of demand
estimation for database workloads resulting in more accurate scal-
ing decisions. Our solution raises the abstraction by allowing ten-
ants to reason about monetary budget and query latency rather than
resources. We prototyped our approach in Microsoft Azure SQL
Database and ran extensive experiments using workloads with re-
alistic time-varying resource demand patterns obtained from pro-
duction traces. Compared to an approach that uses only resource
utilization to estimate demand, our approach results in 1.5× to 3×
lower monetary costs while achieving comparable query latencies.

Keywords

Relational database-as-a-service; elasticity; auto-scaling; resource
demand estimation.

1. INTRODUCTION
Relational Database-as-a-Service (DaaS) is a rapidly growing

business with offerings from major providers, such as Amazon’s
Relational Database Service (RDS), Microsoft’s Azure SQL Data-
base (Azure SQL DB), and Google’s Cloud SQL. Many enterprises
today deploy mission-critical databases in these DaaS environments.
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Since these DaaS environments are multi-tenant, performance pre-
dictability through resource isolation has been identified as a criti-
cal requirement for such mission-critical databases [10, 15]. Com-
mercial DaaS offerings now support resource isolation through log-
ical or physical containers. The container can be a virtual machine
(VM) [10, 20] dedicated to a tenant’s database, such as in Amazon
RDS, or a logical container, such as in Azure SQL Database [15].
Regardless of the specific container abstraction, a container guar-
antees a fixed set of resources, referred to as the container size.

A major attraction of DaaS is the promise of elasticity, pay-per-
use, and high availability. DaaS platforms offer a collection of con-
tainer sizes and supports elasticity by allowing a tenant to change
the container size for their database over time.1,2,3 Such container
size changes can be performed relatively quickly (e.g., typically
within minutes). Judiciously changing container sizes results in
significant cost savings due to two reasons. First, the workload’s
resource requirements change over time. Our analysis of resource
utilization from thousands of production tenant databases (details
in Section 2.2) reveals that changes in resource requirements cross-
ing container size boundaries are frequent, typically occurring in
the order of minutes to a few hours. This is similar to resource de-
mand variations observed in non-database workloads [8, 19]. Sec-
ond, there are large differences in resources and cost between dif-
ferent container sizes. For example, at the time of writing, three
orders of magnitude separate the cost of the smallest and largest
containers in Azure SQL DB.

We focus on the “scale-up” form of auto-scaling, where the size
of a single container is changed over time. This is different from
the “scale-out” approach of auto-scaling [4,8,19,20] which changes
the number of containers (e.g., VMs). The “scale-out” approach re-
partitions the workload as the number of containers change. This
orthogonal “scale-up” approach is supported in today’s DaaS and
allows databases contained in a single server to leverage elasticity
without partitioning the database. Even though the maximum con-
tainer size is limited by the largest server in the service, based on
current trends, large containers with 16 − 32 cores, hundreds of
Gigabytes of RAM and Terabytes of storage are sufficient for an
overwhelming majority of tenants.

Today, to benefit from elasticity, a tenant has to determine when
to scale the container size. Well-known application-agnostic ap-
proaches rely on resource utilization as the primary driver for scal-
ing decisions. For instance, if resource utilization is high (e.g.,
80% I/O utilization in the current container with 100 IOPS), then
scale up the container; similarly, low resource utilization implies
scale down. However, high resource utilization does not necessarily

1http://azure.microsoft.com/en-us/pricing/details/sql-database/
2https://developers.google.com/cloud-sql/pricing
3http://aws.amazon.com/rds/pricing/



mean that there is demand for more resources. That is, if allocated
a larger container (e.g., with 200 IOPS), the workload will indeed
consume the additional resources (i.e., number of I/Os will exceed
100 IOPS). Since resource demand cannot be measured, the prob-
lem is to estimate demand for database workloads. The challenge
arises due to the complexity of database engines and how multi-
ple resources interact. For example, if the offered load increases,
it does not necessarily mean that that adding more resources will
significantly improve query latencies, particularly if queries are
mostly waiting for locks on shared data items. Similarly, adding
more memory might reduce the need for I/O and increase the CPU
demand since more data can be cached. When container sizes vary
significantly in resources and cost, the penalty for incorrect demand
estimation can be high – either poor performance if demand is un-
derestimated or higher monetary cost if demand is overestimated.
Most tenants of a DaaS cannot afford to hire sophisticated database
administrators necessary to make judiciously scale resources.

We study the problem of how a DaaS platform can support ro-
bust auto-scaling functionality on the tenant’s behalf by estimating
resource demands for the tenant’s workload. Any solution that the
DaaS platform uses must be general enough for arbitrary, and of-
ten unseen, SQL workloads that the tenant’s application may issue.
Previous work on resource modeling in classic enterprise consol-
idation scenarios build resource models assuming the workload is
known in advance [3, 14, 21] (e.g., the query classes and their rela-
tive frequencies are known). However, obtaining such a “represen-
tative” workload to train models specific to the workload is hard
even with expert database administrators, and is infeasible for a
DaaS platform which must support hundreds of thousands of ten-
ants with very different requirements. Therefore, our auto-scaling
solution leverages generic telemetry and execution characteristics
of a tenant’s workload that is available for all tenants and does not
require tenant-specific human input.

Auto-scaling functionality supported today in commercial cloud
platforms uses tenant-specified rules based on resource utilization.4,5

We show that for database workloads, it is possible to significantly
improve accuracy of demand estimation by deriving additional sig-
nals from database engine telemetry that goes well beyond resource
utilization. For example, we show that resource waits, which is the
amount of time a tenant’s requests wait for a logical or physical re-
source, is an important signal since significant waits for resources
might indicate the workload would benefit from more resources.

Our technique results in improved accuracy in demand estima-
tion due to three key ideas. First, we derive statistically-robust sig-
nals that can tolerate noise, which is inevitable in system telemetry
(Section 3). Second, we use domain knowledge of database engine
internals to systematically design a decision logic to combine mul-
tiple signals to greatly reduce the fraction of inaccurate estimations
of high (or low) demand (Section 4). Intuitively, if there are multi-
ple weak signals of high demand for a resource (such as utilization
and waits), it increases the likelihood of the demand actually being
high. Third, we leverage the fact that a DaaS platform can observe
telemetry of large numbers of tenants with very different workloads
and resource demands. We analyze this service-wide telemetry to
improve our demand-estimation logic, e.g., to determine meaning-
ful and suitable thresholds for the input signals.

Besides estimating resource demands, an end-to-end auto-scaling
solution must cater to a number of practical challenges. First, many
tenants have a cost budget which is specified over a longer period
of time such as a month, while container sizing actions occur more
frequently, e.g., in minutes or hours. The challenge is to design

4http://aws.amazon.com/autoscaling/
5https://cloud.google.com/compute/docs/autoscaler/

an online budget allocation strategy that allows periods of high re-
source demand (where the budget is consumed at a rate higher that
the average rate) while ensuring that the total cost does not exceed
the budget. We borrow ideas from the traffic shaping problem in
computer networks to address this problem (Section 5). Second,
tenants may wish to specify latency goals for their applications.
We use this input to further reduce costs. If latency goals are met,
we allocate a smaller container even if there is demand for a larger
container. Further, latency goals might not be met due to issues
beyond resources, such as poorly-written application code. There-
fore, we increase the container sizes only if there is resource de-
mand, even when the latency goals are not being met. Note that
tenants do not need to specify a throughput goal. When the offered
load increases, the unmet resource demand and query latencies pro-
vide the necessary feedback to the auto-scaling logic. Our solution
continuously monitors the resource demands and latency goals, and
adjusts the container sizes in a closed loop. We present an end-to-
end auto-scaling solution for relational DaaS that helps the tenants

achieve their desired latency goals while minimizing the costs and

remaining within the specified budget (Section 6). Such function-
ality raises the abstraction of a DaaS by allowing tenants to reason
about budget and query latency rather than resource provisioning.

We prototype our solution in Microsoft Azure SQL Database and
demonstrate the benefits using a variety of benchmark workloads
and resource demand traces derived from production workloads.
When compared to an approach that uses only resource utilization
to estimate demand, our solution reduces the tenant’s costs by 1.5×
to 3× while resulting in similar 95th percentile latencies.

Following are the major contributions of this paper:
• By leveraging domain knowledge of database engines, we iden-

tify a set of statistically-robust signals and propose a decision
logic to improve accuracy in estimating resource demands.

• We propose an end-to-end solution for auto-scaling in a DaaS
that combines automatic estimated resource demands with tenant-
specified budget constraints and latency goals.

• We demonstrate the cost-effectiveness and robustness of our ap-
proach by prototyping it in Microsoft Azure SQL Database and
evaluation using a variety of benchmark workloads and resource
demand patterns derived from production traces.

2. PROBLEM SETTING

2.1 Database-as-a-Service
We consider a relational DaaS such as Azure SQL Database. The

DaaS offers a set of resource containers each with a fixed set of re-
sources (e.g., two virtual cores, 4GB memory, 100 disk IOPS, and 1
TB disk space) and a cost per billing interval (e.g., 50 cents/hour).
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Figure 1: Container sizes in a DaaS

with resources as dimensions.

We consider a set-
ting where container
sizes can be scaled in-
dependently in each
resource dimension or
in lock-step for all re-
sources. Figure 1
demonstrates this scal-
ing of container sizes
using two resource di-
mensions CPU and
Disk I/O as exam-
ples. Container sizes
(S,M,L, . . .) scale both the CPU and Disk I/O in the same propor-
tion. That is, M has 2× larger allocation and L has 3× larger allo-
cation for both CPU and Disk IO compared to S. S,MC , LC , . . .
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Figure 2: Distribution of interval between changes (IEI) and

the frequency of changes.

and S,MD, LD, . . . represent container scaling along CPU and
Disk IO dimensions respectively. For instance, the standard tiers
in Amazon and Azure proportionally increase resources while high
memory, high CPU, and high I/O instances scale resources along a
specific dimension. Workloads having demand in one resource can
benefit if containers are scaled independently in each dimension.

2.2 Resource Demand Analysis in Production
To understand the importance of auto-scaling, we performed an

offline analysis using week-long resource utilization traces for a
few thousand tenant databases from production Azure DB clusters.
We aggregated a tenant’s resource utilization over 5 minute inter-
vals for CPU, I/O, and memory. We then logically assigned the
smallest container supported by the service that can meet the re-
source requirements for that interval as the tenant’s container for
that interval. We record a change event when a tenant’s assigned

container size changes between successive intervals. Intuitively, a
change event indicates resource demand changes equivalent to a
container resize. Since we did not actually change container sizes,
we can only capture cases where demand is smaller or equal to the
tenant’s current container size. Thus, our analysis may even be an
underestimation. We use the Inter Event Interval (IEI), the time
between two successive change events, to characterize the changes
in the tenant’s resource demands.

Figure 2(a) plots the cumulative percentage distribution of the
IEI for all databases in the service. That is, the data point of (60, 86)
implies that among all container size changes detected across the
service, 86% of the changes happen within 60 minutes of the pre-
vious change. From Figure 2(b) plots the percentage distribution
of the number of changes per day. As is evident, more than 78% of
tenants averaged at least one change event per day, more than 52%
of tenants had 6 or more change events per day; and 28% of the
tenants averaged more than 24 change events per day.

The key takeaway from this analysis is that an overwhelming
majority of tenants in a DaaS experience significant resource de-
mand variations (crossing container size boundaries) per day and
these variations occur frequently. Therefore, an auto-scaling solu-
tion could potentially be of great value to such tenants.

2.3 Auto-scaling Knobs
For many tenants of DaaS, who are not sophisticated database

administrators, it is challenging to reason about resource demands
for their workload. By contrast, it is far easier for tenants to relate
to application-level latency goals and monetary constraints such as
a monthly budget for the database. By auto-scaling resources based
on demand, we aim to bridge this gap.

In principle, an auto-scaling logic can automatically scale the
container sizes purely based on demand. However, based on our
analysis of various customer scenarios and talking to database ad-
ministrators, we find that customers want knobs to tailor the be-
havior of this automated logic for their databases. A DaaS plat-

form hosts variety of tenants, from small departmental applications
with modest latency requirements to line-of-business applications
requiring interactive query latency. While scaling purely based on
demand might be desirable for performance-critical applications, it
might not be cost-effective for budget-conscious tenants. To sup-
port a variety of tenant requirements, we expose a small set of
knobs, which the tenants can optionally set, to control the costs
and behavior of the auto-scaling logic.
Budget. Tenants with an operating budget for their databases can
specify a budget for longer periods of time called the budgeting

period, e.g., a month. The budget is treated as a hard constraint.
When a budget is specified, the auto-scaling logic selects the small-
est container sufficient to meet the resource demands and has cost
less than the available budget. If the budget is not constrained, con-
tainers are selected based only on demand.
Latency goals. Applications having a latency goal for their data-
base back-end can provide goals for the average or 95th percentile
latency. The latency goals allow the auto-scaling logic to provide
resources sufficient to achieve the latency goals, thus reducing costs
when resource demands require a larger container size but the la-
tency goals can be achieved using a smaller container size. For
instance, an application involving interactive user activity might
specify a 95th percentile latency of 100 ms. On the other hand, a
small departmental web application may be content with an average
latency of 1000 ms, thereby potentially achieving lower costs if the
latency goals can be met with a smaller container. Latency goals
of an application might not be met due to issues beyond resources,
such as poorly-written application code. Therefore, latency goals
are not a guarantee of performance, rather a knob to control costs.
Coarse-grained performance sensitivity. For tenants without pre-
cise latency goals, this coarse-grained knob indicates how latency-
sensitive their application is. In principle, this knob can be a con-
tinuous value (e.g., between 0 and 1). However, for convenience,
we expose a small set of discrete steps such as: HIGH, MEDIUM,
LOW with the default value set to MEDIUM. Intuitively, for a tenant
with LOW sensitivity, the auto-scaling logic will be less aggressive in
scaling up (and more aggressive in scaling down) than for a tenant
with HIGH sensitivity, thereby potentially reducing costs.

2.4 Solution Overview
The core of our solution is to improve the accuracy of resource

demand estimation for a variety of SQL workloads that a DaaS
serves. Figure 3 illustrates a simplified architecture of a DaaS. The
service comprises a collection of servers that host the tenant data-
bases and serve requests. Figure 3 hides other components of the
service, such as the management servers, gateways and load bal-
ancers. Each database server in the service hosts a set of containers,
one for each tenant database. The co-location of specific containers
at a server is determined by the management fabric of the service.
The DaaS collects detailed counters (called production telemetry)
for each container.

The auto-scaling module has three major components. (a) The
Telemetry manager (Section 3) collects telemetry for each ten-
ant database. Its challenge is to select a subset from the hun-
dreds of counters in the telemetry which can be used as signals to
robustly-estimate demand. (b) The Resource demand estimator

(Section 4) uses the signals from the telemetry manager to estimate
the demand for each of the resources comprising the container. Sig-
nals collected from telemetry are at best weakly-predictive of re-
source demands. The main challenge is to accurately and robustly
estimate demands for a variety of workloads. (c) The Budget man-

ager (Section 5) is responsible for judiciously translating the bud-
get for the budgeting period into a budget for each billing interval



Figure 3: Simplified architecture of an auto-scaling solution for a DaaS.

for which a container is chosen. The main challenge is to design an
online technique, i.e., one without knowledge of future workload
patterns, which allocates enough budget for each billing interval
that meets bursts in resource demands while ensuring the budget
constraints for the longer budgeting period. The auto-scaling logic
(Section 6) combines the three components to transform the raw
telemetry and high-level tenant-specified knobs into container siz-
ing actions supported by the DaaS, thus continuously and dynami-
cally scaling container sizes in a closed loop as the tenant’s resource
demands vary over time.

3. TELEMETRY MANAGER
Mature DBMSs monitor and report hundreds of counters that

comprise the production telemetry. The goal of the telemetry man-

ager (TM) is to transform this raw telemetry into signals that can be
used to estimate resource demands of a variety of workloads with
high accuracy. First, we need to identify a small set of counters
which are predictive of resource demand. We use domain knowl-
edge of database engines to identify the relevant signals. As we will
discuss later, these signals are at best weakly-predictive. The crux
of our solution is to combine these weakly-predictive signals into
robust and accurate resource demand estimation. In this section,
we focus our discussion to telemetry available from Microsoft SQL
Server, the engine hosting the tenant databases in Azure SQL DB.
Note that many mature RDBMSs provide such telemetry. Hence,
we expect many of our techniques to generalize to other systems.

Second, there is significant amounts of ‘noise’ in the telemetry
arising from the inherent variance and spikes in workloads, tran-
sient system activities such as checkpoints interacting with work-
load, etc. Simple statistical measures such as averages can easily be
‘dominated’ by a few large outlier values. Therefore, as a general
rule, we use statistical measures that are robust to outliers. We de-
fine robustness to outliers using the notion of the breakdown point

of an estimator [18]. Intuitively, an estimator’s breakdown point is
the percentage of incorrect observations (e.g., arbitrarily large de-
viations) an estimator can handle before giving an incorrect result.
Example “breakdown point:” Given m independent variables and
their realizations x1, . . . xm, we can use x̄ = (

∑m

i=1 xi)/m to esti-
mate their mean. However, this estimator has a breakdown point of
0, because we can make x̄ arbitrarily large just by changing any one

of the xi. In contrast, the median of a distribution has a breakdown
point of 50%, which is the highest breakdown point possible.

The remainder of this section explains the signals we obtain from
the telemetry. Some signals are robust aggregates on counters ob-
tained from the raw telemetry, while other are derived robust statis-
tical measures over the counters.

3.1 Signals from Raw Telemetry
Latency. The database servers track latency for every request com-
pleted for a tenant. We aggregate the latencies either to the per-
centile or the average as specified in the latency goals.
Resource Utilization. Resource utilization is a measure of how
much the tenant’s workload is currently using, and is an obvious
signal for resource demand. The database server reports utilization
for the key resources, such as CPU, memory, and disk I/O for each
tenant. The TM collects these values at a fine granularity, such as
once every few seconds, and computes robust statistical measures,
such as the median, over different time granularities, ranging from
minutes to hours, which comprise the utilization signals.
Wait Statistics. Resource utilization provides little information
whether the workload needs more resources. By contrast, if a ten-
ant’s requests wait for a specific resource, it implies that the tenant
has unmet demand for that resources. Mature DBMSs, such as Mi-
crosoft SQL Server, track the amount the time a tenant’s request
spends waiting within the database server. The TM tracks the mag-
nitude of the wait times and the percentage waits, i.e., the time
spent waiting for a resource as a percentage of the total waits for an
interval of time. The TM exposes robust aggregates of these raw
wait statistics as signals for demand estimation. Note that the mag-
nitude and percentage waits are both important for demand estima-
tion. For instance, we might observe large values of CPU waits.
However, if CPU waits are insignificant compared to waits due to
acquiring application-level locks, then even though there might be
demand for more CPU, adding more CPU is not likely to signif-
icantly improve latencies. Similarly, CPU waits might comprise
100% of the waits. However, if the magnitude is small, then de-
mand for CPU might not be high.

Microsoft SQL Server reports wait statistics categorized into more
than 300 wait types.6 Each wait type is associated to a (logical or
physical) resource for which the request waited. Using rules, we
map the wait times to the resource to determine the total time the
tenant’s requests waited for that resource. We classify waits into
a broad set of classes for the key physical and logical resources:
CPU, memory, disk I/O, log I/O, locks, and system. E.g., the signal

wait time is the time when a thread has been signaled and ready to
use to CPU to the time when it was actually allocated the CPU, and
hence comprises CPU waits.

To demonstrate how wait statistics relate to and complement uti-
lization, we analyzed the production telemetry from thousands of
real tenant workloads. Figure 4 plots the CPU wait time (in ms)
and Disk I/O wait time (in ms) in log scale vs. the percentage
CPU utilization and percentage Disk I/O utilization respectively.

6http://msdn.microsoft.com/en-us/library/ms179984.aspx



(a) CPU wait ms vs. % utilization. (b) Disk wait ms vs. % utilization.

Figure 4: Wait ms as a function of percentage utilization of

CPU and Disk I/O.

Wait times are for five minute intervals; we report the median for
both wait times and percentage utilization aggregated for an hour.
As is evident from the figure, as the resource utilization increases,
there is also an increasing trend in resource waits, though the wide
“bandwidth” of the diagonal implies a weak correlation. Of partic-
ular interest is the observation that large values of resource utiliza-
tion (e.g., 80) can correspond to small values of wait (e.g., 1, 000
ms), which corroborates our point that high utilization does not
necessarily mean that requests are waiting due to unmet demand
and hence can benefit from additional resources. Similarly, waits
can be large (e.g., 1, 000, 000 ms) for small utilization values (e.g.,
20), which also shows that neither signal is sufficient by itself to
robustly estimate demand.

3.2 Derived Signals
In addition to the (robustly-aggregated) “raw” telemetry infor-

mation, we also want to analyze trends in latency, resource utiliza-
tion etc., as well as correlation between signals, such as resource
waits with performance. We track both correlation and trends as
they serve different purposes. Trends identify changes to specific
metrics (e.g., resource waits) over time, as these allow early identi-
fication of changes in the workload or its resource demands. Corre-
lation characterizes the dependence between two signals (e.g., CPU
waits and latencies). Large correlation values help us identify the
main bottleneck(s) for a given workload, independently of whether
there is an overall increase or decrease in these counters over time.
These signals are particularly important if the tenants care about
tail latencies (such as the 95th percentile), since tail latencies react
faster to unmet demand.

3.2.1 Robustly Identifying Trends over Time

The first class of derived signals we use is trends in a subset of
monitored counters–such as latency, resource utilization, or waits–
over time. For instance, if there is a trend in the recent history that
the latency is degrading with time, it might be an early signal that
latency goals might be violated in the immediate future. Given the
immediate time scale of our resource scaling actions, we focus on
detecting short-term trends with sufficient confidence. Therefore,
simple, but robust, linear models are sufficient for our purposes.

The challenge in detecting trends is the noise in the underlying
data on which trends are computed. The data itself might be inher-
ently noisy and there might not be a statistically-significant trend,
in which case the trend must be ignored. In addition, the trend
measure should be robust to outliers.

One common approach for detecting linear trends is the use of
linear least squares regression to identify the trend line that min-
imizes the squared error of the value modeled by the line and the
actual values. The coefficient of determination (denoted by the R2

error) can be used to determine how good a fit the line is for the
data and reject the trend if the fit is not good. However, the least
squares linear regression technique has a small breakdown point,

thus making the measure unsuitable for noisy data; a single large
outlier point can significantly affect the line’s slope.

To address the problem, we use the Theil-Sen estimator for ro-
bust detection of the trend line [25]. Given n tuples 〈X,Y 〉, the
Thiel-Sen estimator computes the slope of the line passing through

each pair of tuples (xi, yi) and (xj , yj) as mi =
yj−yi

xj−xi
and uses

the median of mi as the slope of the trend line. It can be shown
that this estimator has a breakdown point of 29%, making it robust
to significant amount of noise in the telemetry data. While there
exist estimators with even higher breakdown points, the Theil-Sen
estimator has the advantages of being simple, efficient to compute,
and not requiring additional tuning parameters.

We use the O(n2) slopes computed by the estimator in two ways.
First, the median value is the slope of any existing trend in the data.
Second, we use the set of slopes to test for the existence of a signif-
icant trend in the data. That is, if there is indeed a (linear) trend in
the (non-noisy) data points, then this implies that (the vast major-
ity of) the slopes between them have the same sign. Therefore, we
only ‘accept’ a trend if at least α% of the slopes are positive or α%
of the slopes are negative. In our implementation, we use α = 70,
which we have found to work well in practice.

3.2.2 Robustly Detecting Correlation

If there is demand for a resource which exceeds the allocation,
making the resource a bottleneck, then in the time intervals pre-
ceding that event, there is typically an increase in the utilization
of that resource or the wait times associated with that resource, or
both. A strong correlation between the degrading latencies and the
resource utilization and/or wait counters is indicative of demand
in the resource which, if met, can significantly improve latencies.
Therefore, we use this correlation measure as an additional signal.

We use the Spearman rank coefficient [22], denoted by ρ, as the
correlation measure. Spearman’s rank correlation is a statistical
measure of the correlation of ranks or orders of two ranked data
sets which assesses how well the relationship between two vari-
ables can be described using a monotonic function. That is, the
dependence need not be linear for Spearman’s coefficient to detect
it, which makes it suitable for our case since for arbitrary database
applications, the correlation of utilization, waits, and latencies is
often non-linear. Given two ranked data sets X and Y , ρ is com-
puted as the Pearson’s coefficient on the ranks of the x and y values.
The value of ρ lies between −1 and 1; ρ = 1 implies perfect cor-
relation, ρ = −1 implies perfect negative correlation, and ρ = 0
implies no correlation between the two orders. A side-effect of
using the Spearman coefficient is that outliers due to data noise be-
come much less of an issue because we first map each value to the
space of ranks, which bounds the degree to which an outlier value
can deviate from the average.

4. RESOURCE DEMAND ESTIMATOR
Each signal obtained from the telemetry manager is weakly-pre-

dictive of resource demands, and hence cannot be used in isola-
tion to estimate demand with high accuracy. Therefore, we need a
technique to combine these signals to improve accuracy of demand
estimation. Our observation is that if multiple weakly-predictive
signals predict high demand for a resource, it increases the likeli-
hood of the demand actually being high.

One approach is to use statistical learning techniques to infer a
model using training data obtained from production telemetry. For
instance, we could use machine learning techniques to estimate re-
source demand from the input signals. While such an approach is
elegant and was one of the first approaches we tried, we found them



to be prone to over-fitting. The general problem we face for any
statistical technique that depends on customer workloads is that–
when collecting training data–we can only observe a very small
fraction of space of the possible customer workloads. When using a
sufficiently-powerful statistical technique to combine different sig-
nals from production telemetry, we found the resulting model to
have high prediction accuracy on the workload it had been trained
on. However, the accuracy would degrade very significantly for
other, unseen workloads. This is a major challenge for a relational
DaaS platform which caters to a variety of applications and work-
loads. The tenant is free to execute any arbitrary SQL code and user
defined functions which can be very different from what the model
was trained on. Similar issues with statistical techniques were also
reported in Li et al. [12]. Note that we do not claim that over-fitting
is an inevitable side-effect of using fully-statistical learning tech-
niques; they may be overcome with careful selection of features,
the learners, and training data, something we would like to con-
tinue exploring in the future.

Our approach is to combine signals by leveraging domain knowl-
edge of the internals of the database engine and how different re-
sources interact. We propose a decision logic comprising a manually-
constructed hierarchy of rules that use multiple signals to deter-
mine the resource demands of the tenant’s workload. The core of
the rule-based logic is a set of thresholds for each signal to deter-
mine the tenant’s state in terms of each signal in isolation. Each
rule combines the states obtained from each signal to determine
the overall resource demand. By traversing this hierarchy of rules,
the logic decides to add more resources (i.e., scale-up) if there is
high demand or take away unused resources (i.e., scale-down) if
the demand is low. Recall that given the discrete container sizes
and that at any instant of time, the tenant is associated with a con-
tainer size, our problem is to estimate if there is demand for a larger
container or the demand can be met by a smaller container. When
estimating demand, we determine in each resource dimension, how
many steps in container sizes do we need to increase (or decrease).
We use production telemetry across thousands of tenants to guide
us through this process. By assigning container sizes to tenant’s
resource utilization values (similar to that in Section 2.2), we ob-
served that of the total number of container size change events due
to resource demands changing, 90% result in the container size
changing by 1 step, and step sizes 1 and 2 together comprise 98%
of the changes. Therefore, we constrain our problem to estimat-
ing demand to change container size by 0 (i.e., no change), 1, or 2
steps.

There are several pragmatic benefits of our approach. First, we
found it to be robust when testing across a wide range of very differ-
ent workloads. Second, once thresholds are applied to the signals,
it transforms the signals from a continuous value domain to a cat-
egorical value domain where each category has easy-to-understand
semantics. This makes the rules easier to construct, debug, main-
tain, extend, and explain. For instance, using categories with well-
defined semantics allows the auto-scaling logic to provide an “ex-

planation” of its actions. These explanations provide the (often
unsophisticated) end-users with a simple reasoning for scaling ac-
tions. The container sizing decisions result from analyzing tens of
signals. However, the model traverses a hierarchy of rules with
well-understood semantics for each path. An explanation is a con-
cise way of explaining the path the model traversed when recom-
mending a container size. For instance, if the model identifies a
CPU bottleneck which in turn scales up the container size, then
an explanation of the form “Scale-up due to a CPU bottleneck” is
generated. If the model recommended a scale-up but the budget
constraints disallow it, then it can generate an explanation of the

20,000, 

95%

0%

20%

40%

60%

80%

100%

C
u

m
u

la
t
iv

e
 P

e
r
c
e

n
ta

g
e

Wait Time (in ms)

CPU Waits

Disk Waits

(a) Wait ms for low utilization.

�����������

���

���������

���

��

	��

���


��

���

����

�

�

��
��
�
�
��
�
��
�
�
��
�
�

�����������������

���������

 ��!������

(b) Wait ms for high utilization.

30, 79%

20, 83%

0%

20%

40%

60%

80%

100%

C
u

m
u

la
t
iv

e
 P

e
r
c
e

n
ta

g
e

Percentage Waits

CPU Wait %

Disk Wait %

(c) Wait percent for low utilization.

95, 63%

60, 60%

75, 79%

0%

20%

40%

60%

80%

100%

C
u

m
u

la
t
iv

e
 P

e
r
c
e

n
t
a

g
e

Percentage Waits

CPU Wait %

Disk Wait %

(d) Wait percent for high utilization.

Figure 6: Distribution of wait ms and wait time for a resource

as a percentage of total waits for CPU and Disk I/O.

form “Scale-up constrained by budget.” For an expert administra-
tor, the model also exposes the raw telemetry as well as the signals
used to facilitate detailed diagnostics.

We now explain the steps in resource demand estimation: de-
termining the thresholds for each signal and how we leverage pro-
duction telemetry from a DaaS to determine these thresholds, and
some example rules to detect high and low demand.

4.1 Determining Thresholds

Latency
GOOD BAD

Goal100 ms

MED HIGH

80%

LOW

20%

Utilization

Figure 5: Categorizing signals

using thresholds.

Setting thresholds for
latencies and resource
utilization is straightfor-
ward; Figure 5 illustrates
this. If the tenant speci-
fies a latency goal, it be-
comes the threshold to
determine if the latency
is GOOD (i.e., goals are met) vs. it is BAD, i.e., goals are not being
met. Similarly, for the underlying database engine the DaaS plat-
form utilizes, there already exist well-known thresholds and rules
that system administrators use to categorize the resource utilization
as LOW, MEDIUM, and HIGH (e.g., see Figure 5).

Waits associated with a resource can also be categorized as HIGH,
MEDIUM or LOW. However, deriving thresholds to categorize waits is
not as straightforward as latency and resource utilization. As can be
seen from Figure 4, resource waits can be as large as 1, 000 seconds
even with low utilization levels of 20% or 30% and waits can be as
low as 1 second even for high utilization levels of 70% or 80%.
Similar reasoning also applies for the percentage waits. It is imper-
ative that we use a systematic approach for setting thresholds for
the wait statistics in order that the categories are meaningful. We
use production telemetry collected from thousands of real tenant’s
databases across the service to determine these thresholds. The ra-
tionale behind our approach is that if resource demands are high,
wait for that resource will also be high. Since this correlation is
weak, there can be occasional noise. However, if we analyze data
from thousands of tenants, there should be a clear separation be-
tween waits for low and high demand; our analysis of production
telemetry supports this hypothesis.

The first challenge is in determining the thresholds to categorize
the resource wait times into HIGH, MEDIUM, and LOW. Figures 6(a)



and 6(b) plot the cumulative distribution of the wait times (in ms)
for CPU and Disk I/O for different levels of utilization for the cor-
responding resource. Wait times reported are for five minute in-
tervals and we report the median over an hour. We separate the
waits based on the utilization levels (low and high) of the corre-
sponding resource, which we use as a proxy for high/low demand.
Resource utilization is high if the average hourly utilization of that
resource is more than 70% and low if the average hourly utiliza-
tion is less than 30%. When the resource utilization is low, even
the 90th percentile of both CPU and Disk I/O waits is about 20
seconds (see Figure 6(a)). On the other hand, when the resource
utilization is high, the 75th percentile of Disk I/O waits is 500 sec-
onds and that for CPU waits is 1500 seconds. Therefore, there
exists a clear separation between the wait distributions for high and
low utilization. We use percentile values from these distributions
to categorize waits as HIGH, for instance if CPU waits exceed 1500
seconds, or LOW if it is less than 20 seconds. The percentiles shown
in the figure are for illustration, the actual percentile is different for
each container size, resources type, and cluster configuration.

The second challenge is to identify the thresholds for percentage
waits to be SIGNIFICANT or NOT SIGNIFICANT. Again, we use
production telemetry to set thresholds for percentage waits. Fig-
ures 6(c) and 6(d) plot the distribution of the percentage waits cor-
responding to CPU and Disk I/O. Similarly to the previous case,
we plot separate distributions for low and high utilization levels for
that resource. As is evident from Figure 6(c), the 80th percentile of
percentage waits for CPU and Disk I/O is in the range 20%− 30%
while the corresponding number for high utilization is in the range
70% − 90% which demonstrates this separation in values.

As the software evolves, new hardware SKUs are deployed in the
data centers, and new container sizes are supported in the service,
these thresholds need to be re-tuned. Updating these thresholds in-
crementally is automated through reports and alerts expressed over
the aggregate telemetry collected from the service.

4.2 Detecting High Demand
We now explain how we use our knowledge of the database

engine internals to craft a set of rules using the signals to esti-
mate whether demand is high enough to require a scale-up. The
first step is to identify the scenarios that correspond to high de-
mand. A few illustrative scenarios are: (a) If utilization is HIGH
and wait times are HIGH with SIGNIFICANT percentage waits. (b)
If utilization is HIGH, wait times are HIGH, percentage waits are
NOT SIGNIFICANT, and there is a SIGNIFICANT increasing trend
over time in utilization and/or wait. (c) If utilization is HIGH, wait
times are MEDIUM, percentage waits are SIGNIFICANT, and there
is a SIGNIFICANT increasing trend over time in utilization and/or
waits. Note that all of the scenarios combine two or more signals.
Moreover, if one of the signals is weak (e.g., wait time in not HIGH),
we consider additional signals (e.g., trends).

Note that we stated the scenarios in terms of the signals and their
categories. In addition to being easy to explain, these scenarios can
be directly encoded as predicate rules in the model which if true for
a resource implies high demand for that resource.

Further note that memory and disk I/O interact. That is, if mem-
ory is a bottleneck, it will result in higher I/O utilization and waits.
Since memory waits and tracked independent of I/O waits, if both
resources are identified as a bottleneck, the model will recommend
scaling-up both resources.

4.3 Detecting Low demand
Estimating whether demand is low is similar to high demand es-

timation, except that the tests are for the other end of the spectrum

of categories for the signals. For instance, the rules test for LOW
utilization or LOW waits, and non-positive trends in resource waits
or utilization; we omit the rules for brevity. However, an interest-
ing case is detecting low memory demand, which we discuss in the
remainder of this subsection.

Memory utilization of a database server is rarely LOW. This is be-
cause the largest consumers of memory in a database server are the
different caches, such as the buffer pool and the query plan cache,
which do not voluntarily release memory. When all pages accessed
are in memory, the waits associated with memory are also LOW.
Therefore, estimating low memory demand using memory utiliza-
tion and waits alone is hard since these signals do not accurately
differentiate low demand from the case where there is demand but
all requests are being met using memory already allocated to the
tenant. For instance, if the tenant’s working set fits in memory,
it will result in low memory waits. However, when memory is re-
duced to a point where the working set does not fit in memory, there
will be a significant increase in memory demand and subsequent
impact on latency. Therefore, in addition to low memory waits, we
must also account for the potential increase in number of disk I/Os
and memory wait times as a result of reducing memory. Memory
demand is low only if the expected increase in disk I/Os and wait
times is below a threshold. Estimating this expected increase in
I/Os when reducing memory for arbitrary database workloads is
incredibly challenging.

We use a technique inspired by ballooning [3, 27] where we
slowly reduce the memory allocated to a tenant to observe its im-
pact on disk I/O. If the memory can be reduced all the way to the
next smaller container size without causing a significant increase
in disk I/O demand, we determine memory demand as low. If bal-
looning results in increase in disk I/O demand, we revert the tenant
to the current memory allocation. Our challenge is to determine
when to trigger ballooning so that the impact of latencies can be
minimized. We trigger ballooning only when the demand for all
other resources is LOW. While being conservative, in the absence of
an accurate and versatile model to predict the impact of reducing
memory on latencies, this strategy minimizes the risk of adversely
affecting the tenant’s query latencies.

5. BUDGET MANAGER
A tenant can specify a budget (B) for a budgeting period com-

prising n billing intervals. The budget manager needs to determine
the available budget (Bi) for each billing interval, which is consid-
erably smaller than the budgeting period, such that

∑n

i=1 Bi ≤ B.
Let Cmin and Cmax be the respective costs per billing interval
for the cheapest and the most expensive containers. The budget
manager must ensure Bi ≥ Cmin in order still be able to allo-
cate the cheapest container within the budget. The main challenge
is in managing the surplus budget (B − n × Cmin). The sim-
plest approach is to spread the surplus equally among each inter-
val. However, tenants’ resource demands and workloads arrive in
bursts, thus making the even-spread approach unsuitable. More-
over, since the budget allocation for an interval is online without
any knowledge of the future workload arrival patterns, the alloca-
tion algorithm must balance meeting current demands while retain-
ing sufficient budget for unanticipated bursts in future intervals.

We draw analogy of our budget management problem to the traf-
fic shaping problem in computer networks [24]. A network router
shapes a flow, allowing periodic bandwidth bursts, while providing
a minimum steady bandwidth, and ensuring that the flow conforms
to a total bandwidth allocation. We adapt the token bucket algo-

rithm [24] for our problem of budget allocation. Figure 7 illustrates
this algorithm which uses a fixed capacity bucket, of depth D, to



hold tokens where D is the maximum burst size. The bucket is ini-
tialized with TI tokens and periodically refreshed at a fixed rate,
called the fill rate TR, which is the guaranteed average bandwidth.

Bucket 

Depth (D)

Max burst 

size

Fill rate (TR)

Available 

tokens (Bi)

Consume 

tokens (Ci)

Figure 7: Token bucket.

We now describe how the
budget manager configures
the token bucket by setting
TR, TI , and D to meet the
requirements. At any instant,
the number of tokens in the
bucket is the available bud-
get Bi. At the end of the
ith billing interval, TR to-
kens are added and Ci tokens
are subtracted, where Ci is the cost for the ith interval. Setting
TR = Cmin ensures that Bi ≥ Cmin. Setting D = B− (n− 1)×
Cmin guarantees

∑n

i=1 Ci ≤ B. The value we set for TI deter-
mines how aggressive we are in consuming the budget during peri-
ods of high demand. An aggressive bursting strategy sets TI = D,
i.e., start the budgeting period with a full bucket. If there is a sus-
tained high demand such that the largest container is allocated for

m intervals, the bucket will be empty when m = B−(n−m)×Cmin

Cmax
.

Starting from the (m+ 1)th interval to the nth interval, the avail-
able budget will be Bi = Cmin and the tenant can only use the
cheapest container which might not be enough to meet the de-
mands. An alternative is to set TI = K × Cmax, where K < m
and set TR = B−TI

n−1
. This conservative setting ensures that the

maximum usage burst is limited to at most K intervals of using
Cmax plus any surplus unused tokens unused from the past, i.e.,
this setting saves more for intervals later in the budgeting period at
the expense of limiting costs early on. A service administrator can
analyze the production telemetry to set a suitable value of K.

6. AUTO-SCALING LOGIC
The auto-scaling logic determines the container size for the next

billing interval by monitoring latencies, resource demands, and the
available budget. At the end of a billing interval, the auto-scaling
logic determines if the tenant has high demand for a resource. If
the latency is BAD, or there is a SIGNIFICANT increasing trend
of latency with time, then the logic will recommend scaling-up if
enough budget is available. If latency is GOOD and not degrading,
and resource demands are LOW, then the logic recommends scale-
down. Otherwise it takes no action.

The resource demand estimator determines if more (or less) of
each resource resource is desired. The resource demand of each
resource comprises the desired container size. The auto-scaling
logic uses the available budget (Bi) and the desired container size
to find the cheapest container, among the set of DaaS’s contain-
ers, with resources greater or equal to the desired container on all
resource dimensions and price Ci ≤ Bi. If desired container is
constrained by the available budget, then the most expensive con-
tainer with price less than Bi is selected. This process is an iterative
search over the set of containers supported by the DaaS. Since the
resource demand estimation is for individual resources. Therefore,
if the workload only has demand for one type of resource, such as
CPU, then the estimation logic will only recommend increasing the
CPU allocation in the desired container. If the DaaS supports scal-
ing containers in each resource dimension, for instance Figure 1,
the auto-scaling logic can leverage that.

If the container size recommended is different from the current
container size, the model issues a container resize command to the
management fabric of the DaaS which then executes the resize op-
eration. This container resize operation is an online operation.
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Figure 8: Traces derived from real-life workloads used for the

experiments. Horizontal axis is time in minutes, vertical axis is

number of concurrent requests per second.

7. EXPERIMENTAL EVALUATION
We prototyped our auto-scaling solution in Azure SQL Database

which supports a set of fixed sized containers. In this section, we
experimentally evaluate the effectiveness of our approach (hence-
forth referred to as Auto for brevity) using a variety of workloads
and resource demand patterns derived from production traces. We
compare our approach with a number of alternatives solution us-
ing latency (the 95th percentile latency of the workload), and cost

incurred on behalf of the tenant. These experiments demonstrate
that Auto’s improved demand estimation accuracy results in signif-
icantly lower costs (in the range of 1.5× to 8×) while achieving the
desired latency goals for a wide variety of workloads and resource
demand patterns, which also demonstrates its robustness.

7.1 Methodology
Our technique estimates the resource demand characteristics ex-

hibited by any SQL workload and does not make any assumptions
about the knowledge of the workload. We, therefore, expect our so-
lution to to be effective for both transactional as well as data ware-
housing workloads. For brevity, we focus our experiments here on
transactional workloads with time-varying resource demands. We
use demand patterns derived from production workloads to control
the load for some well-known benchmarks to create time-varying
resource demands. Figure 8 plots four “traces” derived from real
customer workloads in a production Daas. In each figure, the hor-
izontal axis is time and the vertical axis is number of concurrent
requests in the real workload.

Each trace is chosen to target a specific demand scenario. Trace
1 corresponds to a workload with steady demand. This trace is
suitable for a static container size and the goal is to validate that an
auto-scaling logic is at least competitive to a technique that knows
the demand upfront and sets a static container size suitable for the
demand. Traces 2 and 3 correspond to workloads which are mostly
idle with one burst of resource demand; in trace 2 the burst lasts
longer compared to trace 3. These demand patterns are suitable
for an auto-scaling solution that reacts to the burst, scales up the
container size during the period of high demand, and subsequently
scales-down to save cost. Trace 4 exhibits lots of bursts in demand
for short intervals. This workload is intended to stress-test the on-
line auto-scaling solutions.

We use standard benchmark workloads to generate the actual
user requests. The workload generator executes in steps in sync
with the trace. At every step, the workload generator reads the
number of requests from the trace to set the target number of re-
quests/sec for the workload until the next step. At every step,
the workload generator executes transactions from the benchmark
workload and maintains the offered load as close as possible to
the specified target. The workload generator executes the entire
trace which comprises one run for that experiment. We use three
types of workloads in our experiments: TPC-C, Dell DVD Store



(DS2),7 and a synthetic micro-benchmark (CPUIO) that generates
queries that are CPU-, disk I/O- and/or log I/O-intensive. Our
goal of selecting these workloads is to generate a variety of trans-
actions/query mixes ranging from short read/write transactions to
lightweight analytical queries that scan parts of the data and com-
putes aggregates. The CPUIO micro-benchmark allows us to exe-
cute queries that create demand for each of CPU, memory, and I/O
while allowing us to alter the mix of the queries. The workload’s
working set is controlled by creating a hotspot in data accesses.
This variety helps us evaluate the robustness of the solutions.

A tenant is an instance of one of these workloads and connects
to its own database enclosed in a container. The auto-scaling mod-
ule monitors the tenant’s workload demands and sets the appropri-
ate container size for the billing interval. We use a set of eleven
container sizes modeled similar to ones supported by today’s com-
mercial offerings such as Microsoft Azure SQL DB, Amazon RDS,
and Google Cloud SQL. The container sizes cover a large gamut of
resource allocations all the way from half-a-core of CPU alloca-
tion for the smallest container to tens of CPU cores for the largest
container. Other resources, such as memory and I/O, also have a
similar spectrum; the cost of a container ranges from 7 units to 270
units for each billing interval.

For the purposes of experimentation, we compress the time scales
for each workload trace as well as the billing interval. This com-
pression makes the problem more challenging for an auto-scaling
since changes in demands are more drastic. It also allows us to
observe many instances of the container size changes without re-
quiring to run the experiment for days. We use minutes as unit of
time for the horizontal axis of each trace in Figure 8. This implies
that an experiment on a trace takes from a few hours to up to a day
depending on the length of the trace. We set the billing interval to
one minute. Note that having a billing interval of a minute does
not imply the auto-scaling module will change container sizes ev-
ery minute—the auto-scaling module changes container sizes only
when the demand changes, which we validate using the number of
container size changes during an experiment.

7.2 Alternative Solutions
We compare Auto against a set of practical solutions which can

be implemented in production today without requiring a deep un-
derstanding and knowledge of the application’s workload. We com-
pare Auto with two offline and one online solution. We also com-
pare against a setting (called Max) where we statically set the ten-
ant’s container to the largest container supported by the DaaS. This
results in the highest cost, but also provides a gold standard with
the best performance for the workload.

7.2.1 Offline solutions

We use two offline solutions which have the luxury to observe
the resource demands of the workload trace before making a choice
of the container size. Since these techniques cannot dynamically
adapt container sizes based on latency goals, we do not set any
latency goal for these techniques. Once an offline solution selects
a container size, we replay the exact same workload to measure the
impact of container choice on latency.
Static. This solution simulates an approach a typical administrator
who has knowledge about the historical resource demands for its
application which s/he uses to statically set the container size. We
execute the workload with Max to analyze the resource utilization
and then set the container size to be the smallest container that can
meet the historical utilization. We experiment with two settings for
the container size: one using the 95th percentile resource utiliza-

7http://linux.dell.com/dvdstore/
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Figure 9: The impact of latency targets to trade costs with

latency for a bursty resource demand (Trace 2) executing the

CPUIO micro benchmark workload.

tion for the entire workload to configure the container for the Peak,
and one using the average utilization to configure for the Avg.
Trace. This solution simulates an offline approach which exactly
“knows” the workload’s resource demands and can generate a se-
quence of container size changes that “hugs” the resource utiliza-
tion and demand curve. We generate this trace of hugging contain-
ers by executing the workload with Max to obtain the actual re-
source utilization of the workload. For a given billing interval, we
then select the smallest container that meets the resource require-
ments for that interval. The output trace is of the form 〈i,Conti〉
where i is the billing interval and Conti is the container size for
interval i. The exact workload is then repeated; during replay, at
every interval i, the container size is set to Conti.

7.2.2 Online solutions

An online solution, such as Auto, estimates the resource de-
mands and monitors performance to determine the container size.
For these solutions, we specify a latency goal for the entire work-
load. We derive the latency goal from the 95th percentile latency
measured by running the workload with Max, which corresponds
to best latency. In one setting, we use 1.25× latency with Max as
the goal, and in another we use 5× the latency with Max as the
goal. Our evaluation primarily focuses on how the online solutions
change container sizes based on resource demands and latency. We
set the budget to the default value since it is intended as a tenant-
specified safeguard and is not of interest for these experiments; ex-
periments with budget constraint is omitted for brevity.

We compare against an online auto-scaling solution (Util) which
uses the latency and the utilization of every resource to decide the
container size. This solution emulates the auto-scaling offerings for
VMs that today’s cloud providers support, translated to our setting
of determining container sizes instead of adding or removing VMs.
This solution tracks latencies, and if latency is BAD and resource
utilization is GOOD or HIGH then scales-up the container size. On
the contrary, if performance is GOOD and resource utilization is LOW,
it scales-down the container size.

7.3 End-to-End Results
We now report end-to-end results using a variety of resource de-

mand traces and workloads. For the online techniques, latency
goals are set for the 95th percentile for the entire workload; the
offline techniques to not consider latency goals. Recall that use
Auto to refer to our solution.

Figure 9 plots the cost and latencies for running the CPUIO
workload using the demand pattern from Trace 2. The bars report
the 95th percentile latency for the workload (in ms) and is plotted
along the primary (left) vertical axis. The line reports the average
cost per billing interval for each technique and is plotted along the
secondary (right) vertical axis. The different sub figures correspond



to the different setting for the latency goals. Figure 9(a) reports the
experiment where the latency goal was set to 1.25× the latency
with Max (i.e., 120 ms) and Figure 9(b) reports the experiment
where the latency goal was set to 5× the latency with Max (i.e.,
485 ms). Recall that Trace 2 has one big burst of resource demand
which is preceded and followed by periods of low activity. The
goal of this experiment is to demonstrate that a good auto-scaling
solution can result in significant cost savings while achieving good
latencies. As is evident from Figure 9(a), when the tenant desires
latencies close to that with Max, Auto helps the tenant achieve the
latency goal with 2.75× lower cost when compared to allocation
for the Peak (i.e., 95th percentile of resource utilization). Note that
provisioning for Avg results in lower costs, but the latency is almost
3× worse compared to the goal. The other online solution Util re-
sults in about 1.8× higher cost compared to Auto. This demon-
strates that reasoning about resource demands using multiple sig-
nals, such as utilization, resource waits, trends, and correlation can
significantly lower costs of Auto while achieving good latencies
within the tenant-specified goals. While not directly comparable,
putting the results in perspective with the offline technique Trace,
Auto results in a lower costs, though Trace achieves a slightly bet-
ter latency. However, if the objective is achieve the least cost while
meeting the goal, Auto’s lower cost trumps Trace.

When the latency goal is set to 5× that with Max (Figure 9(b)),
Auto results in 2× lower costs compared to Avg, about 8× lower
costs compared to Peak, and about 1.8× lower cost compared to
Util, all while meeting the tenant-specified latency goals. This ex-
periment validates our claim that when the tenant’s latency goals
are less stringent, Auto reduces monetary costs even further. In
terms of the number of container size changes, both Auto and Util
made container size changes for about 11% of the total number of
billing intervals during the experiment. In contrast, Trace, which
hugs the demand curve, results in container size changes in about
15% of the billing intervals.

Figure 10 plots the latency and cost for the TPC-C workload
using the demand pattern from Trace 4. In this experiment, the la-
tency goal is set to 1.25× that of Max (i.e., 340 ms). Similar to the
previous results, Auto results in significantly lower costs compared
to all other alternatives while meeting the latency goal. Among the
the techniques meeting the latency goal, Peak costs 2× more, Trace
costs about 2.4×, and Util costs about 3.4× that of Auto.

To understand why Util costs 3.4× that of Auto, we report the
container sizes, resource utilization, and the performance factor

(which is the observed latency as a percentage of the goal, negative
values imply the goal is not met) for both Util (Figure 13(a)) and
Auto (Figure 13(b)). For ease of exposition, we only plot the CPU
settings for the container and the CPU utilization (plotted along
the primary vertical axis) since it is the dominant resource for this
workload; the performance factor is plotted along the secondary
vertical axis. Both CPU utilization and the container’s Max CPU
are expressed as percentage of the total server capacity on which
the container is hosted. For both techniques, the performance fac-
tor is close to zero, which implies that performance is close to its
goal. Both techniques are designed to keep a buffer for perfor-
mance so that while they react to unanticipated resource demands,
the tenant’s performance does not significantly degrade beyond the
goal. Therefore, both techniques will periodically scale up react-
ing to high resource demands and compensating for performance
degradations for the period it takes to react to changes in demand.
However, note that when Util decides to scale up, it ends up scaling
much higher to compensate for the latency degradation—we see the
container sizes as high as 70% of the server’s CPU capacity. On the
other hand, Auto’s container size selection is in the range of 10% to
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Figure 14: The impact of ballooning on end-to-end latency for

CPUIO micro benchmark workload with a steady demand.

20% of the server’s resources. Observe that even though the con-
tainer sizes are large for Util, the CPU utilization continues to peak
at about 10% for both techniques. This is because for this work-
load, the majority of time is spent on acquiring application-level
locks and hence the workload’s latencies cannot significantly bene-
fit from the additional resources. This is evident from Figure 13(c)
which reports the percentage waits for each wait category. Observe
that lock waits (which are in a dark fill color) are more than 90% of
the waits and dominate any other resource wait category. Auto uses
the wait statistics and the correlation between resource waits and
latencies to identify this bottleneck beyond resources and does not
unnecessarily add resources. Based on this analysis, Auto selects
smaller container sizes for most intervals which is enough to meet
the resource demands for the workload while ensuring the latency
remains close to the specified goal. This experiment demonstrates
how domain knowledge of the internals of the database engines,
using multiple signals, and reasoning about resource demand can
significantly reduce costs while meeting the latency goals.

Figure 11 reports the latency and costs for the CPUIO workload
with resource demand pattern driven by Trace 3 which is also a
bursty workload. The latency goal is set to 5× Max (i.e., 500 ms).
The benefits of Auto is also evident in this scenario where Peak in-
curs 4.5× higher cost, Avg incurs 1.5× higher cost, and Util results
in 2.5× higher cost. Finally, Figure 12 reports the cost and latency
for DS2 workload with an almost steady demand pattern driven by
Trace 1. Even for this workload, which is perfect for a static con-
tainer size, Peak incurs 1.5× higher cost, Avg incurs 1.2× higher
cost, and Util incurs 1.5× higher cost compared to Auto. This
demonstrates that not only is Auto beneficial for bursty workloads,
it also results in significant reduction in costs while meeting the la-
tency goals even for workloads with low variance in demand. These
experiments demonstrates Auto excellent performance and robust-
ness with a variety of workloads and resource demand patterns.

7.4 Ballooning and low memory demand
This experiment demonstrates the impact of using ballooning to

avoid significant impact on the tenant’s end-to-end latency due to
incorrect estimation of low memory demand. We use the CPUIO
workload with Trace 1 to generate a steady demand for all re-
sources. The working set is close to 3GB and is controlled using
a hotspot access distribution with more than 95% operations ac-
cessing data in the working set. Figure 14(a) plots the memory
used by the tenant (in GB) as time progresses. The two lines cor-
respond to Auto with and without ballooning. Once the workload
reaches a steady state, the working set is cached in memory (with
used memory > 3GB). Since the working set fits in memory, this
corresponds to the hard case of detecting low memory demand. In
the absence of ballooning, Auto changes the memory allocation to
the next smaller container size (2.5GB) which causes a sharp drop
in used memory (see Figure 14(a), thick orange line). This change
causes the query latencies to increase two orders of magnitude; Fig-
ure 14(b) plots the average end-to-end query latency (in ms, log



Max Peak Avg Trace Util Auto

Latency 272 283 594 290 306 341

Cost 270 30 15 47.4 66.1 19.5
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Figure 10: TPC-C, Trace 4, Latency

goal: 1.25× Max = 340 ms.

Max Peak Avg Trace Util Auto

Latency 100 251 360 101 451 482

Cost 270 90 30 94.3 51.4 19.5
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Figure 11: CPUI0, Trace 3, Latency

goal: 5× Max = 500 ms.

Max Peak Avg Trace Util Auto

Latency 416 444 465 435 458 518

Cost 270 150 120 168.8 151.2 101
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Figure 12: DS2, Trace 1, Latency goal:

1.25× Max = 520 ms.
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(a) Container sizes for Util
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(b) Container sizes for Auto
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Figure 13: Drill down explaining the behavior of Util and Auto as time progressed through the experiment.

scale) as time progresses. Auto notices this increase in latency due
to unmet disk I/O demand and reverts to the larger container. How-
ever, it takes a long time for the working set to be entirely cached in
memory, which prolongs the impact on latency. By contrast, with
ballooning, Auto starts the process of gradually reducing memory.
However, it aborts before reaching the next smaller container, since
it notices increased I/Os around the point where memory is reduced
to 3GB, which corresponds to the working set. Therefore, Auto
equipped with ballooning results in minimal latency impact in the
event of inaccurate low memory demand estimation.

8. RELATED WORK
Resource estimation, provisioning, and auto-scaling resources

has been an active area of research in the database and the sys-
tems research communities. Existing approaches can be classi-
fied into black-box application-agnostic solutions, typically used
for auto-scaling VMs that host a variety of applications, white-box
and black-box modeling for database workloads typically for enter-
prise consolidation scenarios, and models for estimating resources
for individual long-running data analysis queries.

There is a large body of work on application-agnostic techniques
to auto-scale resources for any application running inside a VM
such that a certain set of application SLOs can be achieved. Ex-
amples include CloudScale [19], AGILE [16], PRESS [9], Auto-
Control [17], AutoScale [8], CloudStone [13], SCADS [26], and
Huber et al. [11]. Since these techniques are application-agnostic,
they must rely on OS/hypervisor level counters to detect resource
utilization and pressure. In contrast, our focus is on auto-scaling re-
sources in a database server. As we show in this paper, by exploit-
ing database-specific signals and building white-box models based
on domain knowledge of database engine, we are able to signif-
icantly improve the accuracy in demand estimation, thereby low-
ering costs while achieving query latencies similar to approaches
using generic resource utilization counters.

Resource modeling for database workloads in an enterprise work-
load consolidation scenario has also been studied. These solutions
rely on a “representative workload” for each application to be pro-
vided upfront, which is then used to construct models that estimate
the resources for that workload. Soror et al. [21] use the query

optimizer’s ‘what-if’ mode to estimate the impact of a particular
resource on the performance. Kairos [3] replays the workload in
a separate sandbox environment to model the resource utilization
and demands. DBSeer [14] builds models to predict the resource
utilization for a given set of transactions in an OLTP workload
which can then be used to estimate resource requirements as the
throughput of the workload changes (e.g., change in disk I/O if
the throughput doubles). In contrast, since a DaaS is a platform
to which tenants can and do submit arbitrary and ad-hoc queries,
we are unable to make a closed-world assumption about knowl-
edge of a “representative workload” to train our model. Thus, our
resource demand estimation logic does not make assumptions that
are specific to a workload, such as transaction types, or the fraction
of each transaction type, and relies instead on exploiting correla-
tion between lower-level counters that are generic to any database
workloads. We do not require running the workloads in a sandbox
environment, which is often infeasible in a DaaS setting. Due to the
complexity of the problem and the inability to make a closed world
assumption, instead of accurately predicting the resource require-
ments of a specific workload mix, we focus on a different problem
of estimating if the current mix of workloads has demand a larger
(or a smaller) container size in each resource dimension. Different
from resource modeling, Pythia [6] targets the problem of model-
ing which combinations of tenants can be co-located at a server in
a setting where tenant’s workloads are not isolated using contain-
ers. The goal is to identify combinations of tenants which can be
co-located without affecting each other’s performance.

Accurately predicting resource usage for individual long-running
queries is another area of active research [1, 2, 5, 7, 12]. These ap-
proaches typically rely on training statistical models on actual ob-
servations of resource consumptions for training queries executed
in isolation. These models find applications in resource manage-
ment and query scheduling in data warehouses with a fixed set
of resources executing a handful of concurrent queries. By con-
trast, a typical tenant of a DaaS often executes hundreds of concur-
rent short-running queries typically finishing within milliseconds
to seconds. The per-query models targeted a different setting and it
is extremely challenging to generalize these models to estimate the
resource requirements for the sum total of hundreds of concurrently



executing queries. Instead of accurately estimating the resource re-
quirements of tens or hundreds of concurrent queries, we focus on
coarser-granularity estimation of whether the current workload mix
has demand for the next larger (or smaller) container.

9. CONCLUDING REMARKS
Elasticity and pay-per-use are two key attractions of cloud plat-

forms. Tenants can leverage this elasticity to reduce costs during
periods of low demand and improve latencies during periods of
high demand. We explored this problem of how a DaaS provider
can efficiently and robustly support auto-scaling container sizes on
behalf of its tenants. We demonstrated that resource utilization
alone is not a good estimator for demand for a variety of database
workloads. By using domain knowledge of database engines, we
proposed a more accurate demand estimator that uses a statistically-
robust set of signals, a decision logic to combine multiple signals,
and a way to leverage the service-wide telemetry across thousands
of tenants of a DaaS. Using a more accurate demand estimator
coupled with optional tenant-specified inputs of monetary budget
constraints and latency goals, we described an end-to-end auto-
scaling solution for a DaaS. We prototyped our approach in Mi-
crosoft Azure SQL Database and demonstrated the cost effective-
ness of our solution and robustness using a wide variety of bench-
mark workloads and resource demand traces derived from produc-
tion. Our solution raises the abstraction for tenants of a DaaS by
allowing them to reason about monetary budget and query latency
rather than resource provisioning.
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