
This paper is included in the Proceedings of the
14th USENIX Symposium on Operating Systems

Design and Implementation
November 4–6, 2020

978-1-939133-19-9

Open access to the Proceedings of the
14th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX

Fast RDMA-based Ordered Key-Value Store
using Remote Learned Cache

Xingda Wei, Rong Chen, and Haibo Chen, Shanghai Jiao Tong University
https://www.usenix.org/conference/osdi20/presentation/wei

Fast RDMA-based Ordered Key-Value Store using Remote Learned Cache

Xingda Wei, Rong Chen, Haibo Chen
Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

Abstract

RDMA (Remote Direct Memory Access) has gained con-

siderable interests in network-attached in-memory key-value

stores. However, traversing the remote tree-based index in or-

dered stores with RDMA becomes a critical obstacle, caus-

ing an order-of-magnitude slowdown and limited scalabil-

ity due to multiple roundtrips. Using index cache with con-

ventional wisdom—caching partial data and traversing them

locally—usually leads to limited effect because of unavoid-

able capacity misses, massive random accesses, and costly

cache invalidations.

We argue that the machine learning (ML) model is a per-

fect cache structure for the tree-based index, termed learned

cache. Based on it, we design and implement XSTORE, an

RDMA-based ordered key-value store with a new hybrid

architecture that retains a tree-based index at the server to

perform dynamic workloads (e.g., inserts) and leverages a

learned cache at the client to perform static workloads (e.g.,

gets and scans). The key idea is to decouple ML model re-

training from index updating by maintaining a layer of indi-

rection from logical to actual positions of key-value pairs. It

allows a stale learned cache to continue predicting a correct

position for a lookup key. XSTORE ensures correctness using

a validation mechanism with a fallback path and further uses

speculative execution to minimize the cost of cache misses.

Evaluations with YCSB benchmarks and production work-

loads show that a single XSTORE server can achieve over

80 million read-only requests per second. This number out-

performs state-of-the-art RDMA-based ordered key-value

stores (namely, DrTM-Tree, Cell, and eRPC+Masstree) by

up to 5.9× (from 3.7×). For workloads with inserts, XS-

TORE still provides up to 3.5× (from 2.7×) throughput

speedup, achieving 53M reqs/s. The learned cache can also

reduces client-side memory usage and further provides an ef-

ficient memory-performance tradeoff, e.g., saving 99% mem-

ory at the cost of 20% peak throughput.

1 Introduction

Network-attached in-memory key-value stores have become

the foundation of many datacenter applications, including

databases [47, 55], distributed file systems [7], web ser-

vices [4, 37], and serverless computing [23, 42, 28], to name

a few. With the prevalence of affordable high-performance

networks in modern datacenters [46, 17, 20], such as Infini-

Band, RoCE, or OmniPath, CPU quickly becomes the per-

formance bottleneck and limits the scalability with the in-

crease of clients [31]. RDMA (Remote Direct Memory Ac-

cess) has recently generated considerable interests in opti-

mizing network-attached in-memory key-value stores (aka

RDMA-based KVs) in both academia [34, 25, 52] and in-

dustry [16, 55, 31], as it enables direct access to the memory

of remote machines with low latency and CPU/kernel bypass-

ing. However, leveraging RDMA to ordered key-value stores

encounters a significant obstacle—traversing tree-based in-

dex with one-sided RDMA primitives is costly and complex

(e.g., 11× slowdown in Fig. 2c). This is because it usually

requires multiple network round trips (e.g., O(logN)) and

rapidly saturates bandwidth.

Many recent academic and industrial efforts [57, 17, 35]

therefore proposed index caching to reduce RDMA op-

erations. Yet, the conventional wisdom on implementing

cache—replicating partial data and accessing them locally—

does not work well with the tree-based index, and the draw-

backs are amplified by maintaining the tree-based cache with

RDMA primitives. First, the tree-based index can be large,

so that the cache would suffer from unavoidable capacity

misses. Second, the cache would aggravate random memory

accesses and further increase the end-to-end latency. Third,

updating the tree-based index may recursively invalidate the

cache and cause false invalidation due to path sharing.

Inspired by recent research [29]—using machine learning

(ML) models as an alternative index structure, we propose to

leverage ML models as the (client-side) RDMA-based cache

for the (server-side) tree-based index, termed learned cache.

Specifically, the client uses learned cache to predict a small

range of positions for a lookup key and then fetches them

using one RDMA READ. After that, the client uses a local

search (e.g., scanning) to find the actual position and fetches

the value using another RDMA READ. Although using ML

models as the index seems efficient (a few floating/int opera-

tions) and cheap (a small memory footprint) for static work-

loads (e.g., gets), it is also notoriously slow (frequently re-

training ML models) and costly (keeping data in order) for

dynamic workloads (e.g., inserts).

To address the above challenges, we propose a hybrid ar-

chitecture that retains a tree-based index at the server to

perform dynamic workloads (e.g., inserts) and leverages a

learned cache at the client to perform static workloads (e.g.,

gets and scans). The hybrid architecture not only provides

separate and appropriate execution paths for both workloads,

but also simplifies the mechanism to guarantee the correct-

ness of concurrent local and remote operations.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 117

Based on this architecture, we further introduce a layer of

indirection (i.e., a translation table) between the ML model

and the tree-based index, which maps the logical position to

the actual position of key-value pairs in the leaf-node granu-

larity. The translation table decouples model retraining from

index updating (e.g., node splits) and allows a stale learned

cache (a combination of ML model and translation table) to

continue predicting a correct position for a lookup key, as

long as it is not overlapped with a leaf node split. It im-

plies that the tree-based index can be concurrently updated

in-place. Meanwhile, the ML model associated with its trans-

lation table can be retrained in the background and indepen-

dently pulled by the clients on demand.

We have implemented XSTORE by extending a concur-

rent B+tree [50] with a well-tuned RDMA framework [51].

We evaluate XSTORE using the YCSB benchmarks [13]

with two synthetic and one real-world [2] datasets, as well

as two production workloads from Nutanix [30]. Our ex-

perimental results show that a single XSTORE server can

achieve over 80 million read-only requests per second.

This number outperforms state-of-the-art RDMA-based or-

dered key-value stores (i.e., DrTM-Tree [11], Cell [35],

and eRPC+Masstree [24]) by up to 5.9× (from 3.7×). For

workloads with inserts, XSTORE still provides up to 3.5×

(from 2.7×) throughput speedup, achieving 53M reqs/s. The

learned cache also reduces client-side memory usage signifi-

cantly and further provides an efficient memory-performance

tradeoff. For example, it can save 99% memory at the cost of

20% peak throughput, compared to caching the whole index.

In summary, this paper makes four contributions:

• The idea of learned cache that leverages machine learning

(ML) models as index cache for RDMA-based, tree-

backed KV stores;

• A hybrid architecture that combines (client-side) learned

cache and (server-side) tree-based index to embrace static

and dynamic workloads;

• A layer of indirection (translation table) that decouples

ML model retraining from index updating and allows a

stale learned cache to predict a correct position;

• A prototype implementation and an evaluation that

demonstrates the advantage and efficacy of XSTORE.

2 RDMA-based Key-Value Store

In this paper, we focus on in-memory key-value (KV) stores

that adopt the client-server model (network-attached) [34, 32,

25, 8] and range index structures (tree-backed) [33, 35, 57].

The server hosts both key-value pairs and indexes in main

memory and handles requests from multiple clients concur-

rently. The client interacts with the server through a library

that provides basic key-value interfaces, including GET(K),

UPDATE(K,V), SCAN(K,N)1, INSERT(K,V), and DELETE(K),

as well as more complex operations built atop them.

1SCAN(K,N) provides a form of range query that retrieves first (up to) N key-

value pairs, where their keys are larger than or equal to K.

RNIC

Value

Server

Index

CPURNICCPU

Client

GET(k)

pos v

polling RNIC

Value

Server

Index

CPURNICCPU

Client

GET(k)

Cache

(a) Server-centric RKV (b) Client-direct RKV

tr
a
v
e
rs
in
g

N
e

tw
o

rk

N
e

tw
o

rk

v
RDMA

DMA/
MMIO

k

k pos

pos

RPC

Fig. 1. The architecture of RDMA-based key-value stores: (a)

server-centric RKV and (b) client-direct RKV.

RDMA (Remote Direct Memory Access) is an emerg-

ing feature—appearing in affordable high-performance net-

works (e.g., InfiniBand, RoCE, or OmniPath)—that enables

direct access to the memory of remote machines with low

latency and CPU/kernel bypassing. It has generated consid-

erable interest in deploying the network in modern data-

centers [17, 46, 20] and optimizing key-value stores (aka

RDMA-based KVs) [34, 25, 16, 9, 8]. However, few prior

systems consider ordered key-value stores that rely on tree-

based indexes to handle range queries (i.e., SCAN(K,N)).

Server-centric design (S-RKV) [52, 26, 24]. An obvious

design is to take a traditional KV store and reimplement the

communication layer (e.g., RPC) using RDMA primitives.

As shown in Fig. 1a, the clients ship their requests to the

server via RDMA network using one round trip for each;

the server traverses the tree-based index and performs the re-

quest locally. The server-centric design allows access to the

server-side store with only two RDMA operations (one for

sending and one for receiving), no matter how complex the

index structures are, thereby avoiding multiple round trips

and message size amplification [26]. However, this design

exploits only high performance (low latency and high band-

width) but not CPU efficiency (remote CPU bypassing) of

RDMA network at the server, which limits the scalability of

these KV stores with the increase of clients.

Client-direct design (C-RKV) [35, 17, 57]. The adoption

of RDMA makes it practical to allow clients to access data

hosted on the server directly, thereby permitting an alterna-

tive (client-direct) design that relaxes the burden on server

CPUs. To simplify the mechanism for consistency, this de-

sign is restricted to read-only requests (i.e., GET and SCAN)

in most systems [34, 16, 35]. This common choice is also mo-

tivated by the read-dominated nature of most applications [6].

As shown in Fig. 1b, the clients use one-sided RDMA oper-

ations to traverse the tree-based index and fetch the value

directly for read-only requests; the server still needs to per-

form the rest of requests (i.e., UPDATE, INSERT, and DELETE)

locally. The client-direct design can shift the CPU load on

the server to the clients, which would alleviate the bottleneck

(from CPU to network), especially on high-bandwidth net-

works (e.g., 100Gbps). However, it may consume extra net-

work round trips for traversing the tree-based index due to

the lack of richness of RDMA primitives, causing an order-

118 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 20

 40

 60

 80

 100

1 50 100 150 200

C
P

U
 u

ti
liz

a
ti
o

n
 (

%
)

Number of client processes

S-RKV

C-RVS

YCSB C

 0

 40

 80

 120

 160

 200

1 50 100 150 200

B
a

n
d

w
id

th
 (

G
b

p
s
)

Network Limit

YCSB C

 0 20 40 60 80
Throughput (M reqs/s)

e.g., DrTM-Tree

e.g., Cell

7M vs. 78M

YCSB C

All (optimal)

6 levels

5 levels

4 levels

3 levels

2 levels

1 level

No cache
C-RKV

S-RKV

 0 10 20 30 40
Median Latency (µs)

NIC IDX

CPU IDX

NIC VAL

CPU

NIC

YCSB C

All (optimal)

6 levels

5 levels

4 levels

3 levels

2 levels

1 level

No cache
C-RKV

S-RKV

 0

 10

 20

 30

 0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
(M

 r
e

q
s
/s

)

Time (s)

No

1L

2L

3L
4L

5L
6L

All

S-RKV C-RKV

YCSB D

Fig. 2. A comparison of server-side (a) CPU and (b) network bandwidth utilization, (c) peak throughput, (d) end-to-end median latency at low

load, and (e) throughput timeline for state-of-the-art server-centric (S-RKV) and client-direct (C-RKV) RDMA-based KV stores. Workload:

YCSB C (100% read) and YCSB D (95% read and 5% insert), using 100M keys with a uniform distribution. Testbed: The server has two

12-core CPUs and two 100Gbps RNICs.

of-magnitude slowdown (e.g., 11× slowdown in Fig. 2c). For

example, recent work [35, 57] uses RDMA READs to tra-

verse remote B+tree index and invariably incurs multiple net-

work round trips (O(logN) [3]).

Recently, index caching has been proposed to reduce net-

work round trips for index traversal by RDMA-based sys-

tems [52, 48, 17, 35, 38], namely, the client caches the server-

side index locally. It aims at reducing RDMA READs for

fetching the position of the value (aka lookup), instead of

caching the value directly.2 Thus, an optimal result with in-

dex caching only needs two RDMA operations per request

(one for lookup and one for read).

3 Analysis of RDMA-based Ordered KVs

CPU is the primary scalability bottleneck in the server-

centric design. Fig. 2 compares hardware resource utiliza-

tion between S-RKV and C-RKV with the increase of clients.

For S-RKV, the server rapidly saturates all CPUs (24 cores)

but just consumes 11% of network bandwidth. It implies that

CPU first becomes the performance bottleneck and limits

the scalability with the increase of clients, especially when

deploying fast networks. This also runs counter to the re-

cent trend of building servers in modern datacenters with

CPU-bypassing networks [17, 46, 20]. As shown in Fig. 2c,

S-RKV reaches the peak throughput of around 24M reqs/s.

Traversing tree-based index occupies most of CPU time, as it

involves massive random memory accesses. On our testbed,

we measured that one CPU core can perform 43 million 64-

byte random reads per second at full speed. Thus, each core

can only process up to 1.8M reqs/s for traversing a (8-level)

B+tree with 100M keys, even putting other CPU and network

costs aside.

Costly RDMA-based traversal is the key obstacle in the

client-direct design. C-RKV allows the client to traverse

the server-side index directly by using one-sided RDMA

READs, which can thoroughly bypass server CPUs (see

Fig. 2a). However, RDMA-based index traversal usually re-

quires multiple network round trips (e.g., O(logN) for tree-

2Considering RDMA performance degradation with increasing payload

size [25], the client will only cache internal nodes [35, 38] and not di-

rectly fetch a batch of keys and (inline) values to avoid bandwidth amplifi-

cation [35, 3].

based index) and saturates the network bandwidth quickly.

As shown in Fig. 2c, RDMA-based traversal limits the peak

throughput of C-RKV to 7 million requests per second, even

much lower than that of S-RKV. Using index caching at

the clients can reduce RDMA operations by traversing in-

dex nodes locally. On our testbed, the throughput of C-

RKV with index caching, similar to state-of-the-art design

(Cell [35]), peaks at 14.5M reqs/s, as each request takes 4

RDMA READs (down from 8) for traversal.

Tree is not a proper structure for RDMA-based index cache.

To our knowledge, existing RDMA-based index caches use

homogeneous structures to store partial index nodes, similar

to the conventional design. For example, each client repli-

cates tree nodes and traverses them locally before accessing

the tree-based index hosted on the server [17, 35, 57].

First, the tree-based index can be large [56, 18, 26], and

the traversal demands multiple random accesses from the

root to the leaf node. Thus, each client can only cache nodes

near the root (e.g., top four levels [35]) to minimize thrashing

and maximize hits [35, 17]. Yet, the index cache still suffers

from unavoidable capacity misses (bottom node levels). In

Fig. 2c, for a read-only workload, the effect of RDMA-based

caching for tree-based index is dominated by inner node lev-

els cached. The optimal throughput (a whole-index cache)

reaches 78M reqs/s using one RDMA READ for each traver-

sal (fetch the position of value), 3.3× better than S-RKV.

Second, traversing tree-based index is a memory-intensive

but low-compute operation. The homogeneous index cache

can just alter the type of memory accesses (i.e., remote and

local), instead of reducing the number of memory accesses

(O(logN)). Hence, despite the index cache, traversing tree-

based index would still incur massive random accesses and

suffer from CPU cache misses, TLB misses, and RNIC’s

page translation cache misses. As shown in Fig. 2d, even

caching the whole index, the end-to-end latency of C-RKV

is still 80% higher than S-RKV, and the CPU cost on index

cache (CPU_IDX) occupies close to 30%.

Third, updates to the tree-based index (i.e., inserts and

deletes) might propagate the changes from the leaf level to

the root node, so that the index updates would probably inval-

idate the cache recursively [57] and cause false invalidations

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 119

pos

key

CDF

LR0 LRM-1

min_err

max_err

Model
-min_err

pos

+max_err

actual

K (sorted)

(sorted)

2-level

Recursive
Model

key

key

pos

NN

Fig. 3. An example of using ML models to predict the position

within a sorted array for a given key.

(path sharing). It would result in frequent cache misses and

RDMA READs to retrieve updated index nodes. Worse yet,

the more tree nodes cached, the more performance degrades.

Further, preserving traversal consistency for dynamic work-

loads demands sophisticated detection schemes (e.g., fence

keys [19, 41]) and incurs additional overhead. In Fig. 2e, the

optimal throughput significantly drops to 25M reqs/s with

severe performance fluctuations, just because of 5% inserts.

4 Approach and Overview

Opportunity: ML Models. Our work is motivated by an at-

tractive observation from the learned index [29]—a range in-

dex (e.g., B+tree) that finds the position of a given key in-

side a sorted array approximates the cumulative distribution

function (CDF) of the keys in the index. As shown in Fig. 3,

suppose the values have been sorted according to the lookup

keys, the CDF (the red curve) is a mapping from the (sorted)

keys to the (sorted) positions of their values, namely CDF(K)

returns the actual position of the value corresponding to K.

Prior work [29] proposes to approximate the shape of a CDF

using machine learning (ML) models, like neural nets (NN)

and linear regression (LR), since they are able to learn a wide

variety of distributions. As an alternative range index, the ML

model is trained with every key to record the worst over- and

under-prediction of a position (i.e., min- and max-error). In

Fig. 3, given a lookup key (K), the model (the black curve)

can predict a position (pos) with a min- and max-error (min_-

err and max_err), and a local search (e.g., scanning) around

the prediction is used to get the actual position. To further re-

duce the prediction error, a hierarchy of simple models (e.g.,

recursive-model index [29]) is used to partition the key space,

where the model at level L picks the model at level L+1 based

on the key.

Our approach: Learned Cache. The key idea behind XS-

TORE is to leverage machine learning (ML) models as (client-

side) RDMA-based cache for the (server-side) tree-based

index, termed “learned cache”. The unique features of

machine learning models can fundamentally overcome the

drawbacks in the conventional wisdom for RDMA-based in-

dex caching (see §3). First, instead of using a homogeneous

structure to cache a partial index, the ML model can cache

the whole index at the cost of accuracy. Therefore, using

the learned cache can completely avoid capacity misses, and

each lookup only needs one RDMA READ. Further, the ML

RNIC

Value

Server

XTree

CPURNICCPU

Client

GET(k)

XCache

N
e
tw
o
rk

v

Models

[-,+]

k

[-,+]

pos

N
e
tw
o
rk

training

RNIC RNIC CPU

XCacheModels

INSERT(k,v)

k

Client

v

RDMA

DMA/MMIO

bkgdModels

polling

k

Key

Fig. 4. The hybrid architecture behind XSTORE: client-direct op-

erations (left) and server-centric operations (right).

model is also famously memory-efficient (e.g., two parame-

ters per LR model). Thus, the learned cache can match the

optimal throughput of conventional design (a whole-index

cache) but with practical memory consumption.

Second, instead of finding the actual position by travers-

ing a tree-based index with O(logN) random memory ac-

cesses, the ML model can approximately predict a range of

positions for a lookup key by performing a single multiplica-

tion and addition (e.g., linear regression). It implies that the

learned cache might also reduce the end-to-end latency, even

compared to a whole-index cache, due to fewer CPU cache

and TLB misses at the clients.

Finally, instead of fine-grained and recursive invalidation

in the tree-based cache for accurate predictions, the ML

model can reduce and delay cache invalidations since it only

needs to provide approximate predictions. Updates to the in-

dex might only decrease the accuracy of the (partial) ML

model. Thus, the learned cache can significantly save inval-

idation cost in terms of network round trips and bandwidth

usage, especially compared to a whole-index cache.

Challenge: Dynamic Workloads. Dynamic workloads (e.g.,

inserts and deletes) would violate an (unrealistic) assump-

tion of ML-based approach that all key-value pairs are stored

in sorted order by key [29]. However, retraining ML mod-

els and keeping data in order are slow and costly, which

is hard to match the high performance of in-memory key-

value stores (tens of millions of requests per second). An

intuitive solution is to maintain a delta index (e.g., B+tree)

for (in-place or buffer-based) inserts and then periodically

compact it with the learned index (data merging and model

retraining) [44, 18]. Unfortunately, it cannot work well with

RDMA-based index caching. First, additional RDMA-based

lookups on the delta index would incur more network round

trips and severely increase the latency. Second, it is also

hard to cache a fast-changing (tree-based) delta index at the

clients. Finally, the data and model compaction definitely

interrupts (RDMA-based) remote accesses and completely

invalidates the learned cache. Hence, how to make learned

cache keep pace with dynamic workloads at low cost be-

comes a key challenge.

Overview of XStore. XSTORE is an in-memory ordered key-

value store using a client-server model, where the server and

the clients are connected with a high-speed, low-latency net-

120 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

work with RDMA.3 Using ML models as the index (aka

learned index) is famously efficient and cheap for static

workloads (e.g., gets and scans), while it is notoriously

slow and costly for dynamic workloads (e.g., inserts and

deletes). It is because the inserts would amplify the pre-

diction error and incur model retraining frequently. Prior

work [29, 44, 15] relies more on the profit from efficiently

handling static workloads to amortize the negative influence

on dynamic workloads. We argue that the learned cache

opens the opportunity to solve this dilemma. Unlike prior

work [29, 44, 15, 14], which replaces or augments the tree-

based index with the learned index, we propose a hybrid ar-

chitecture that retains the tree-based index at the server to

handle dynamic workloads and uses the learned cache at the

clients to handle static workloads.

The architecture of XSTORE is shown in Fig. 4. The

server hosts a B+tree index (XTREE) in the main mem-

ory and stores key-value pairs at the leaf level physically,

like the common practice. Each client interacts with the

server through a library, which hosts a local learned cache

(XCACHE). XSTORE uses the client-direct design for read-

only requests (i.e., GET(K) and SCAN(K,N)) and the server-

centric design for the rest (i.e., UPDATE(K,V), INSERT(K,V),

and DELETE(K)). For client-direct operations, like GET(K) in

Fig. 4, the client first predicts a range of positions for the key

K using XCACHE and then fetches them using one RDMA

READ. Finally, the client uses a local search to find the

actual position and fetches the value using another RDMA

READ. For server-centric operations, like INSERT(K,V) in

Fig. 4, the client uses RPC over RDMA to ship the request to

the server. The server searches the lookup key K by travers-

ing the B+tree index first and then inserts the new KV pair

(K,V). XSTORE will partially retrain ML models for updated

tree nodes in the background, and each client will individu-

ally fetch the models for XCACHE on demand.

5 Design and Implementation

5.1 Data Structures

XTree. At the server, XSTORE retains a B+tree index

(XTREE) and stores key-value pairs at the leaf level physi-

cally, like the common practice, as illustrated in the left part

of Fig. 5. XTREE follows the basic design of a concurrent

B+tree [33, 50], except that the leaf node (LN) adopts the

structure optimized for remote reads. The leaf node consists

of a 24-bit incarnation (INCA), an 8-bit counter (CNT), a 32-

bit right-link pointer to next sibling (NXT), keys with N slots

(K0..KN−1) and values with N slots (V0..VN−1).

Every leaf node is allocated from an RDMA-registered

memory region using a slab allocator and can store at most

N key-value pairs in sorted order. For brevity, we assume

fixed-length key-value pairs here.4 To save the size of RDMA

3The client may not be the end user but the computation node or the front-

end of RDMA-based datacenter applications [34, 35, 16, 17, 25, 55, 57].
4Similar to prior RDMA-enabled KVS [16, 52, 35], XSTORE currently al-

B+Tree

Client

LN LN

CNTINCA K0..KN-1 V0..VN-1

Leaf
Node

valueskeys

key

Trans.

Table

LR0 LRM-1

NN

TT Entry

0316364

LLN:

valid

Server

XModel

TT
INCAALN1

XTree XCache

POS[..]

POS[..]Logical

Actual

CNT
7

NXT

LN

Fig. 5. The main structures in XSTORE: XTREE and XCACHE.

READ for lookup, XSTORE stores keys and values sepa-

rately but continuously. It can avoid storing the address of

the value. The client can fetch N keys from the leaf node and

calculate the (remote) address of expected value locally (a

fixed offset from its key). Moreover, XSTORE uses incarna-

tion checks [16, 52] to guarantee the consistency of remote

accesses. The incarnation in the leaf node is initially zero

and is monotonically increased when the leaf node is reused

(e.g., split or free). The number of slots (N) can be tuned for

RDMA performance (e.g., 16).

XCache. Each client hosts a local learned cache (XCACHE),

which consists of a 2-level recursive ML model (XMODEL)

and a translation table (TT). As illustrated in the right part

of Fig. 5, given a lookup key, XMODEL is used to predict

a range of positions (POS[..]) within a sorted array (logi-

cally stitching together all leaf nodes of XTREE). Currently,

XMODEL uses a linear multi-variate regression model at

level 0 (top-model) and simple linear regression models at

level 1 (sub-model), a common setup recommended in prior

work [15, 29, 44].

The ML model demands the positions (virtual address) of

leaf nodes are always sorted by the keys. It is almost impossi-

ble for dynamic workloads, since the insertion of key-value

pairs may insert a new node at the leaf level and break the

sorted order of leaf nodes. The server maintains an additional

translation table (TT) for leaf nodes, from logical to actual

positions, and each client caches a part of the table on de-

mand. The entry of TT is located by the logical leaf-node

number (LLN) and consists of a valid bit, a 31-bit actual leaf-

node number (ALN), a 24-bit expected incarnation (INCA),

and an 8-bit counter, as shown in Fig. 5. The client can cal-

culate the (host) virtual address of the target leaf node using

ALN and the base address of an RDMA-registered memory

region. Further, the match of incarnation between TT’s en-

try and target leaf node guarantees that the leaf node has not

been reused.

Training models and TT. The server (re-)trains a 2-level

ML model (XMODEL) with a translation table (TT) over

XTREE’s leaf nodes in the background, and each client (re-

)fills the learned cache (XCACHE) on demand. Fig. 6 shows

lows fixed-length key and fixed/variable-length value. For variable-length

value, the leaf node should store a 64-bit fat pointer [16, 53] (the size

and the position of value) instead of the value. We discuss how to support

variable-length key in §6 and leave it to future work.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 121

✁ M: Max. number of sub-models

✁ N: Max. number of keys in each leaf node

TRAIN_XMODEL(xmodel)

✁ train top-model

1 cdf = [] ✁ training set

2 pos = 0

3 foreach k in xtree ✁ in sorted order

4 cdf.add(k, pos++)

5 xmodel.top = new LR trained on cdf

✁ assign keys to sub-models

6 kset = [][] ✁ key set for each sub-model

7 foreach k in xtree

8 mid = xmodel.top.predict(k) × M

9 kset[mid].add(k)

✁ train sub-models

10 for i in [0:M)

11 TRAIN_SUBMODEL(xmodel.subs[i]

MIN(kset[i]), MAX(kset[i]))

TRAIN_SUBMODEL(model, min, max)

12 cdf = [] ✁ training set

13 LLN = 0 ✁ logic leaf-node number

14 start = xtree.find_lnode(min)

15 end = xtree.find_lnode(max)

16 for lnode in [start:end]

17 pos = LLN × N

18 foreach k in lnode.keys ✁ key-sorted order

19 cdf.add(k, pos++)

20 model.tt[LLN++] = {1, ALN(lnode),

lnode.inca, lnode.cnt}

21 model = new LR trained on cdf

22 model.calc_err(cdf) ✁ calculate min/max_err

XModel {

Model top ✁ LR: k → [0,1)

Model[M] subs ✁ LR: k → [0,pos) w/ min/max_err

}

Fig. 6. Pseudo-code of training XMODEL and TT over XTREE.

the pseudo-code of training a complete XMODEL and TT.

Starting from a sorted array of keys with logical positions

(line 4), we first train the top model. Based on the predic-

tion of the top model, we then evenly partition keys into

M sub-models (line 9). Finally, we train each sub-model on

a sorted array of its keys with a private logical position at

a leaf node granularity (line 12-21) and calculate min- and

max-error for every sub-model (line 22). Note that the keys

in the leaf node across sub-models will be trained by both of

sub-models. Moreover, each sub-model has independent log-

ical positions and an own translation table, making it easy to

retrain a sub-model individually when necessary.

In practice, training XMODEL is fast and low-cost, since

(1) all of the models in XMODEL are simple linear/multi-

variate regression models, can be efficiently trained; (2)

XMODEL can be partially retrained at a sub-model granular-

ity; and (3) the top model can be trained over a sampled data.

As an example, for 100M keys, XMODEL with 500K sub-

models takes about 4 seconds to train the top-model and 8

microseconds for each sub-model using a single thread. Fur-

ther, the client can fill a 500K sub-models XCACHE from

scratch in less than one second.

LOOKUP(key, &addr)
1 mid = xmodel.top.predict(key) x M

2 model = xmodel.subs[mid]

3 pos = model.predict(key) � prediction

4 start = (pos - model.min_err)/N � lnode ID

5 end = (pos + model.max_err)/N � lnode ID

6 rdma_doorbell = []

7 for n in [start:end] � from LLN to ALN

8 entry = model.tt[n] � TT entry

9 if entry.valid == 0 then

10 return invalid � fallback

11 ra = RA(entry.ALN) � remote address

12 rdma_doorbell.add(ra)

� one RDMA to read disjoint memory regions

13 lnodes = RDMA_READ(rdma_doorbell)

14 for n in [start:end]

15 lnode = lnodes[n-start]

16 entry = model.tt[n]

17 if entry.inca != lnode.inca then

18 entry.valid = 0 � invalidation

19 return invalid � fallback

20 for i in [0:lnode.cnt) � local search

21 if key == lnode.keys[i] then

22 addr = calc remote addr of ith value

23 return found

24 return not_found � non-existent key

Fig. 7. Pseudo-code of LOOKUP operation based on XCACHE.

A memory-performance trade-off. The ML model is fa-

mously memory-efficient. In XMODEL, the basic sub-

models are 14B large and consist of two 32-bit floating-

point model parameters 5, two 8-bit min- and max-error, and

a 32-bit TT size. Thus, XMODEL with 500K sub-models

only needs less than 6.7MB. In contrast, TT might domi-

nate the memory usage of XCACHE. For 100M keys, sup-

pose each leaf node has 16 slots (N) and is half-full, TT re-

quires nearly 100MB (15% of the tree-based index). In prac-

tice, each client could cache sub-models and TT entries on

demand, and even just cache XMODEL to save 99% memory

at the cost of 20% performance (using one RDMA READ to

fetch a few TT entries).

5.2 Client-direct Operations

In the left part of Fig. 4, XSTORE uses the client-direct de-

sign for read requests, namely GET(K) and SCAN(K,N).

5.2.1 GET

Given a key, the client uses XCACHE to lookup the remote

position of value using one RDMA READ commonly, re-

placing RDMA-based traversal in a tree-based index. As

shown in Fig. 7, the client first uses XMODEL to predict

leaf nodes that cover the lookup key (from start to end)

and then calculates the actual (remote) address of these leaf

nodes with TT (line 11). The client can use one RDMA

READ with doorbell batching to fetch disjoint memory re-

gions if necessary (line 13).6 Note that the unit of remote

5LR may use more floating-points for prediction.
6One RDMA READ can only read a continuous memory region. Yet, we

can use an RDMA-aware optimization called doorbell batching [27] to read

122 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

read is a leaf node (N keys with a 64-bit header); it is the

most likely to read just one leaf node due to the low predic-

tion error of XMODEL. Next, the client uses a local search

(e.g., scanning) to find the key from leaf nodes retrieved (line

20-23) and calculates the remote address of the value if it

is found (line 22). Finally, the client uses another RDMA

READ to fetch the value. Note that any invalid TT entry (line

9 and 17) would result in a fallback path, which ships the

GET operation to the server and fetches updated models and

TT entries using a single request (i.e., server-centric design).

5.2.2 SCAN

SCAN(K,N) implements a form of range query that returns

first (up to) N key-value pairs (in order by key), starting with

the next key at or after K. The client first uses the lookup

operation with K to determine the remote address of the first

key-value pair (larger than or equal to K) and then predicts

the leaf nodes that contain the next N key-value pairs, with

the help of TT. The translation table provides the number of

key-value pairs (CNT) and the actual remote address (ALN)

of adjacent leaf nodes (LLN) in sorted order by key. Thus,

the client can use one RDMA READ with doorbell batching

to fetch these leaf nodes, including keys and values. In gen-

eral, XSTORE only requires two RDMA READs for each

range query. In the rare case, the unexpected result, such as

an invalid leaf node (incarnation mismatch) due to dynamic

workloads, would cause a fallback path, similar to GET. Note

that the range query in XSTORE is also not atomic with re-

spect to updates and inserts as usual [33, 35]; it could be

implemented by applications (e.g., transaction [17, 38]).

5.2.3 Non-existent Keys

Intuitively, the ML model guarantees to find all keys have

been trained since it stores the worst over- and under-

prediction for a CDF (i.e., min- and max-error). However,

for non-existent keys, the model should be monotonic to

guarantee the correct upper and lower bound of a predic-

tion [21, 54], so that a local search could make sure the

lookup key does not exist (see line 24 in Fig. 7). Hence,

XMODEL adopts monotonic models (e.g., linear regression).

As shown in Fig. 8, for a non-existent key (KEY=6), the sub-

model LR0 can provide a proper prediction (LR0(6)=[3,4])

that covers the non-existent key (KEYS={5,7}).

However, a hierarchy of models might leave a gap of non-

existent keys between neighboring models. Consequently, it

still might provide a wrong prediction for these non-existent

keys, even if every model is monotonic. For example, the top

model selects LR0 for KEY=10 (non-existent), and then LR0

will return a wrong prediction (LR0(10)=[6,7]) that cannot

determine whether the key does not exist or the model is out

of date from the results (KEYS={17,18}). Worse yet, the non-

existent key is common in the range query (e.g., SCAN(K,N)),

which demands to retrieve first (up to) N keys larger than or

equal to K. As illustrated in Fig. 8, the lookup (LR0(10)) for

multiple disjoint memory regions in one network roundtrip.

4 75 8 13 171 18 20113

0

1

2

3

4

5

6

7

9

LR0(6):[3,4]=>{5,7}

max

LR0(2):[0,1]=>{1,2}

pos

min

12 14 15

8

LR1(19):[7,8]=>{18,20}

key

{1,2,4,5,7} LR0 LR1 {13,17,18,20}

keys={1,2,4,5,7,13,17,18,20}

min

max

LR1

LR0

Non-existent

NN

16 196

CDF

LR0(10):[6,7]=>{17,18}

102

Augmentation

Examples:

Fig. 8. An example of the prediction for non-existent keys.

a range query SCAN(10,3) will miss a key (KEY=13), so the

result (KEYS={17,18,20}) is also wrong.

Data augmentation. To remedy this, we augment the train-

ing set of sub-models to cover the gap of non-existent

keys between neighboring models. However, data augmen-

tation would increase the prediction error. We thus carefully

add a boundary key to both sub-models, which can fill the

gaps with minimal overlap between models. For example, in

Fig. 8, we add a non-existent key in the gap (KEY=10) with

the position of a previous KEY=4 into both sub-models (LR0

and LR1). After that, the lookup of non-existent keys would

always return a correct prediction. Further, since the keys in

the leaf node across sub-models have been trained by both,

there is no need for data augmentation in most cases.

5.3 Server-centric Operations

As shown in the right part of Fig. 4, clients communicate

with the server to perform UPDATE(K,V), INSERT(K,V), and

DELETE(K) operations; the server updates XTREE concur-

rently and retrains XMODEL in the background.

Correctness. The correctness condition in XSTORE follows

no lost keys [33]: the reader must return a correct value for a

given key, regardless of concurrent writers. More specifically,

when a reader and a writer run concurrently, the reader can

return either the old or the new value, while both of them

should be atomic.

Concurrency. The hybrid architecture behind XSTORE not

only provides separate and appropriate execution paths for

static and dynamic workloads (see Fig. 4), but also simplifies

the mechanism to guarantee the correctness of concurrent op-

erations. It is critical to the performance of RDMA-based

systems due to the lack of richness of RDMA primitives [51].

In Fig. 9a, by using the learned cache (XCACHE), XSTORE

restricts (client-direct) remote accesses to the leaf nodes (the

dotted red arrow). Thus, we can avoid using sophisticated

mechanisms to retrofit a concurrent tree-based index [35].

XTREE reuses an HTM-based concurrent B+tree [50]7

to support concurrent index updates (e.g., node splits) and

7The implementation is based on Intel’s restricted transactional memory

(RTM) that is available as a mature feature in Intel’s CPUs (e.g., Skylake).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 123

RDMA

LN

GET(k)

INSERT(k,v)

B+Tree

Client

LN

Server

SCAN(k,n)

read

UPDATE(k,v)
DELETE(k)

LN

XCache
w
r
i
t
e

Network

r
e
a
d

K..K K..K

Client

LLN:

Server

0 1

KKK K..K

2 3 9

KKKK

0 1 2 8

1001 1011 3271 1021 1041

LLN:

100 101 102 104ALN:

I

I

INCA I

I

I

IINCA

1001 1010 1021 1081I INCA I I

INCA

INCA

327

Leaf Nodes:

re-training LR8

XTree

LR0

NN

TT

LR8

TT

RDMA
SPECULATIVE

EXECUTION

split

sub-model

KA

KB

ALNINCA

valid

GET(KA)

Fig. 9. (a) The access types of different operations for the main components in XSTORE. Red and blue arrows denote read and write accesses.

(b) An example of model retraining for LR8 due to a split of LN101. The leaf node is named by its actual leaf-node number (ALN).

lookups on internal nodes, without the concern of RDMA-

based remote accesses. For leaf nodes, XSTORE follows the

technique proposed in DrTM+R [11]. Each tree operation at

the server is enclosed within an HTM region, that provides

strong atomicity in a single machine [5]. In addition, the

strong consistency feature of RDMA (where an RDMA op-

eration will abort an HTM transaction that accesses the same

memory location [52]) further extends the atomicity when

encountering remote accesses. Moreover, as the RDMA op-

eration is only cache-coherent within a cache line, XSTORE

adopts versioning [16] for consistent remote reads across

multiple cache lines. For the data stored in the leaf node

across multiple cache lines, a 16-bit version number is stored

both in the header of data and at the start of each cache line.

The remote reader matches these versions to detect inconsis-

tent read and must retry if the versions differ. Note that XS-

TORE hides these versions to applications by automatically

converting the data on reads and writes. Finally, the key is

also stored in the header of its value, which guarantees con-

sistent remote reads to the key and the value separately.

5.3.1 UPDATE

For UPDATE(K,V), the server first traverses XTREE to the

leaf node and updates the value with V if the key (K) exists.

Note that the update to the value will not change the index, so

that it will also not influence the learned cache and belongs

to static workloads.

Optimization: position hint. Although UPDATE(K,V) is a

server-side operation, it can still benefit from the learned

cache, especially when the server CPU becomes a bottle-

neck. The client could use XCACHE to predict a position

(the remote address of leaf nodes) for the key (see line 1-12

in Fig. 7) and then ship the update request together with the

position hint to the server. The server first checks the leaf

nodes (by matching incarnation) according to the hint and

updates the value if successful. It might skip index traver-

sal and relax the burden on server CPUs. The optimization

would increase the performance of update-heavy workloads,

like YCSB A (50% update and 50% read).

5.3.2 INSERT and DELETE

INSERT(K,V) and DELETE(K) are shipped to the server and

performed on XTREE, as is usual on B+tree. The in-place in-

serts and deletes require moving many key-value pairs within

a leaf node to preserve the order of keys. Thus, XTREE

chooses not to keep key-value pairs sorted within a leaf node,

which can avoid moving key-value pairs and reduces work-

ing set in the HTM region. Note that the lookup based on

the learned cache will not be affected since it fetches all keys

(N) of a leaf node. For DELETE(K), we always overwrite the

key and value slot for K with the last key-value pair in the

leaf node and update the counter (CNT). Further, the empty

leaf node will not be reclaimed to avoid thrashing and model

retraining. For INSERT(K,V), we directly append K and V to

the key and value slots in the leaf node if K does not exist

(see KA in Fig. 9b). Inserting a key-value pair into a full leaf

node will result in a node split (see KB in Fig. 9b). A new

leaf node is allocated, and all key-value pairs (plus the new

one) are evenly assigned to two leaf nodes in sorted order by

key. The original leaf node should increment its incarnation,

which makes the clients realize the split. The rest of the split

process will execute on the tree index as well as usual.

Retraining and invalidation. The insert of a new leaf node

(aka a split) will break the sorted (logical) order of leaf nodes

and cause model retraining. An interesting observation be-

hind our solution is that TT decouples model retraining from

index updating and allows a stale combination of XMODEL

and TT to provide a correct prediction for the lookup key

as long as it is not overlapped with a split. This is because

any insert will not cause data movement across leaf nodes,

except the split node. For example, LR8 initially maps KA

to logical node number LN2, which stores the leaf’s physical

address 102. After leaf node LN1 splits due to inserts (a new

leaf node with physical address 327), the latest logical node

number for KA is LN3 after retraining. Yet, the stale TT still

maps KA to physical address 102, the correct position of KA.

Thus, the client can still use a combination of stale models

and TTs to find the keys as long as they are not overlapped

with split leaf nodes.

Based on this, after a split, the server will individually

retrain the sub-model and its translation table in the back-

ground (see TRAIN_SUBMODEL in Fig. 6) and perform all

kinds of operations as usual based on XTREE. Meanwhile,

the clients can still directly perform read-only operations

based on XCACHE. The incorrect prediction can be detected

124 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

by incarnation mismatch between the leaf node and cached

TT entry (line 17 in Fig. 7) and results in a fallback, which

ships the operation to the server. The client will update

XCACHE with a retrained model and its translation table

fetched by the fallback. Noted that concurrent splits will not

affect model retraining in progress and just make it stale.

The new incarnation of the split leaf node ensures the client

with this new (stale) model to realize the change of concur-

rent splits. Each split will issue a retraining task. The train-

ing thread currently does not merge or optimize the pending

tasks to the same sub-model since it happens very rarely.

Optimization: speculative execution. A split of leaf node just

moves the second half of key-value pairs (sorted by key) to

its new sibling leaf node. Therefore, the prediction to the split

node must still be mapped to this node or its new sibling, like

LN101 and LN327 in Fig. 9b. Based on this observation, specu-

lative execution is enabled to handle the lookup operation on

a stale TT entry (i.e., incarnation check is failed). The client

will still find the lookup key in the keys fetched from the

split leaf node. If not found, the client will use its right-link

pointer to fetch (the second half) keys from its sibling (one

more RDMA READ). It means there is roughly half of the

chance to avoid incurring a performance penalty. Currently,

we only consider one sibling before using a fallback since

a cascading split happens rarely. This optimization is impor-

tant for insert-dominate workloads (e.g., YCSB D) since in-

sert operations and retraining tasks might keep server CPUs

busy; the fallbacks will also take server CPU time.

Model expansion. The growing size of key-value pairs in the

ML model will likely increase the prediction error, resulting

in performance degradation. Prior work [44] uses a sophisti-

cated model split to adapt its learned structure for dynamic

workloads, which demands physical data moving and atomic

top-model replacement. In response to this problem, XS-

TORE supports model expansion that increases the number of

sub-models in XMODEL at once (e.g., doubling) when neces-

sary (e.g., exceeding a threshold of min- and max-error). The

model expansion requires a complete training (see Fig. 6) on

XTREE to build a new version of XMODEL and TT. Note

that model expansion will not affect any requests performed

by both the server and the client for several reasons. First,

training models will not change or move data. Second, the

top model can be trained over incomplete data. Third, the

conflicting sub-model retraining could be made up later. Fi-

nally, the client can use the originally learned cache during

model expansion. Moreover, after deleting a large number of

key-value pairs, XSTORE can also resize XMODEL to shrink

the number of sub-models using a similar process.

5.4 Durability

XSTORE should log writes (updates, inserts, and deletes) to

log files stored in reliable storage for persistence and failure

recovery (e.g., server’s local disk). As RDMA-based remote

accesses are restricted to reads (lookups, gets, and scans),

they will not involve in logging and recovery. In addition,

XMODEL and TT are tightly associated with XTREE (e.g.,

virtual address). Thus, they should be rebuilt after recovery.

To ensure correct recovery from a machine failure, XS-

TORE can reuse the existing durability mechanism in the con-

current tree-based index extended by XTREE, like version

numbers [50, 33]. Each worker thread at the server appends

the log (key, value, and version) to its in-memory log buffer.

A corresponding logging thread, sharing the same core with

the worker thread, writes out the log buffer to its log file in

the background. The logger batches the log entries to avoid

the storage backend becoming the bottleneck. During recov-

ery, XSTORE scans log files to sort logs of the same key by

its version number and applies the latest log of keys in paral-

lel. Finally, XSTORE rebuilds XMODEL and TT by training

over recovered XTREE.

5.5 Scaling out XSTORE

XSTORE follows a coarse-grained scheme [57], the domi-

nant solution, to distribute an ordered key-value store span

multiple servers (scale-out). XSTORE first assigns key-value

pairs to the servers based on a range-based partitioning func-

tion for the keys. Then each server constructs XTREE indi-

vidually for its assigned key-value pairs and further trains

a corresponding XMODEL and TT. Note that the boundary

keys should be added to the training set to cover the gap of

non-existent keys between neighboring servers.

The client maintains a separate learned cache for each

server and uses the same partitioning function to decide

which server should perform a given request. Based on it, the

client can perform requests as mentioned in §5.2 and §5.3,

with one exception—SCAN(K,N) reads a range of key-value

pairs span multiple servers. After the lookup of K on a speci-

fied server, the client might find that the expected number (N)

exceeds the remaining key-value pairs in this server. Starting

from the first logical leaf node on the next server, the client

can predict the leaf nodes that contain the rest of key-value

pairs. Finally, the client uses one RDMA READ for each

server involved to fetch these leaf nodes.

6 Discussion

Support variable-length keys. XSTORE currently supports

fixed-length key and variable/fixed-length value. To support

variable-length key, XSTORE should store a fat pointer in

the leaf node of XTREE (instead of the actual key), which

encodes the size and position of the key. This scheme can

traverse variable-length key locally by CPUs (i.e., server-

centric design), while it would be hard to do it efficiently by

using one-sided RDMA READs (i.e., client-direct design).

XSTORE has to retrieve the actual keys using an additional

RDMA READ for each (Line 21 in Fig. 7). Therefore, XS-

TORE further stores a fixed hash code of the key within the fat

pointer. Consequently, the client could directly compare the

hash codes instead of keys, after fetching the leaf node for a

given key. Note that the actual (variable-length) key should

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 125

Table 1: YCSB workload description. R, U, I, M, and S denote

read, update, insert, read-modify-update, and scan, respectively.

Scan accesses N values, where N is uniformly distributed in [1,100].

YCSB A B C D E F

Type R : U R : U R R : I S : I R : M

Ratio (%) 50 : 50 90 : 10 100 95 : 5 95 : 5 50 : 50

be checked to avoid a hash collision. For example, the client

can fetch the value associated with the key. We plan to extend

XSTORE to support variable-length keys in future work.

Data distribution. XSTORE assumes machine learning (ML)

models can effectively learn various data distributions (e.g.,

log-normal [29, 44, 15]). Based on it, we believe there is a

trade-off among the memory consumption of XCACHE, the

retraining costs of XMODEL, and the performance of XS-

TORE. When using simple models (e.g., linear regression)

for fast model retraining, XSTORE has to use many models

to achieve high accuracy for irregular data distributions. For

such a scenario, clients can only cache partial sub-models

due to the increased model memory consumptions. On the

other hand, XSTORE could use complex models (e.g., neu-

ral network (NN)) to achieve high accuracy with few models.

Yet, NN is slow on model retraining and may impact the per-

formance under dynamic workloads (e.g., inserts), since the

client may fall back more often due to stale XCACHE.

7 Evaluation

7.1 Experimental Setup

Testbed. Without explicit mention, we use one server ma-

chine and (up to) 15 client machines. Each machine has

two 12-core Intel Xeon CPUs, 128GB of RAM, and two

ConnectX-4 100Gbps IB RNICs. Each RNIC is used by

threads on the same socket and connected to a Mel-

lanox 100Gbps IB Switch. The server registers the memory

with huge pages to reduce RNIC’s page translation cache

misses [16].

Workloads. We use YCSB [13] and two production work-

loads from Nutanix [30]. We mainly focus on YCSB as it

contains various types of workloads [12]: update heavy (A),

read mostly (B), read only (C), read latest (D), short ranges

(E), and read-modify-write (F). Table 1 shows a summary

of YCSB workloads (A-F). Since small requests dominate

in real-life workloads [4], we evaluate KV stores with 100

million KV pairs initially (a 7-level tree-based index and a

leaf level), where 8-byte key and 8-byte value are used, simi-

lar to prior work [33, 35, 24, 44]. Both Uniform and Zipfian

key distributions are evaluated for all YCSB workloads. Note

that YCSB D only has Uniform and Latest key distributions;

the client is likely to query its recently inserted keys in Latest

distribution. In addition, each client generates their insert key

uniformly and randomly in YCSB D and E. The two produc-

tion workloads both have a profile of 57:41:2 write:read:scan

ratio, while the access patterns of them are relatively uniform

(Prod1) and skewed (Prod2), respectively. Both of them have

500 million KV pairs with 8-byte key and 64-byte value. Fi-

Table 2: Data distribution description for evaluating datasets.

Name Description Workloads

L Linear YCSB[13], Nutanix[30]

NL Noised linear YCSB[13]

OSM Longitude location Open Street Map[2]

nally, besides the default data distribution of the above work-

loads, we also use two synthetic and one real-life datasets

(see Table 2) to study the behavior of learned cache in depth.

Comparing targets. We compare XSTORE to three state-of-

the-art RDMA-based ordered KV stores: DrTM-Tree [11]

and eRPC+Masstree [24] (server-centric design), as well

as Cell [35] (client-direct design). eRPC+Masstree (EMT)

adopts eRPC [24] (RDMA-based RPC library) to extend

Masstree [33] (in-memory ordered KV store). We implement

DrTM-Tree and Cell in the same framework to provide an

apple-to-apple comparison with two typical designs, but also

because DrTM-Tree uses similar B+tree [50] and RDMA

library [51] with XSTORE, and Cell is not open-source.8

We further consider RDMA-Memcached v0.9.6 [22] (RMC)

in our experiments, which is an RDMA version of mem-

cached [1], a widely used network-attached KV in industry.

All systems fully utilize all of the 24 CPU cores (with hy-

perthreading disabled) and two RNICs. As EMT and RMC

cannot use multiple NICs simultaneously, we deploy two

instances at the server on different sockets, and each in-

stance uses the RNIC attached to that socket. This actually

makes them faster during experiments since it avoids cross-

socket synchronizations. XSTORE uses (up to) two auxil-

iary threads to train ML models in the background for dy-

namic workloads. XTREE is configured with a fanout of 16.

XMODEL uses 500K sub-models for static workloads and

2M models for dynamic workloads to avoid model expan-

sion during evaluation (because XSTORE can insert more

than 150M KV pairs in 60s). In addition, logging is disabled

in all systems, and the server hosts all data in main memory.

7.2 YCSB Performance

Fig. 10 compares the peak throughput of various RDMA-

based key-value stores for YCSB with Uniform and Zip-

fian distributions, where all systems are saturated by up

to 15 client machines. Note that RMC performs poorly in

all experiments as it is bottlenecked by CPU synchroniza-

tions [43, 31]. Due to space limitations, we skip detailed dis-

cussion of experimental results on it.

Read-only workload (YCSB C). For Uniform distribution,

XSTORE can achieve 82 million requests per second, even

a little higher than the optimal throughput (a whole-index

8For DrTM-Tree, our experimental results were confirmed by the authors.

For Cell, we follow the same caching strategy—the client caches nodes

at least four levels above the leaf node at the clients with LRU policy to

minimize churn and maximize hits. Based on a comparison against pub-

lished numbers, we believe that the large performance difference between

XSTORE and other systems (e.g., 27M reqs/s from our implementation vs.

0.95M reqs/s from Cell [35] for YCSB A with Zipfian distribution) offsets

performance variations due to system and implementation details.

126 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 20

 40

 60

 80

 100

YCSB-A YCSB-B YCSB-C YCSB-D YCSB-E YCSB-F

7
.5

6
.7

1
0

.2

Uniform

5
.7

P
e

a
k
 T

h
p

t
(M

 r
e

q
s
/s

)

DrTM-Tree

Cell

XStore

EMT

RMC

 0

 20

 40

 60

 80

 100

YCSB-A YCSB-B YCSB-C YCSB-D YCSB-E YCSB-F

7
.3

6
.7

1
0

.3

Zipf/Latest

5
.7

P
e

a
k
 T

h
p

t
(M

 r
e

q
s
/s

)

DrTM-Tree

Cell

XStore

EMT

RMC

Fig. 10. Comparison of throughput on various RDMA-based KVs

using YCSB. Note that RMC does not support range queries.

cache), since it only uses one RDMA READ to fetch one

leaf node per lookup; the payload is 16B smaller by avoid-

ing a sophisticated mechanism for consistency (i.e., min-max

fence keys [35]). The prediction error of XCACHE is just

0.74. This number outperforms EMT, DrTM-Tree, and Cell

by 3.9×, 3.7×, and 5.9×, respectively. Both DrTM-Tree and

EMT are bottlenecked by server CPUs, while Cell is bottle-

necked by RDMA amplifications; it still needs four RDMA

READs to traverse tree nodes even index caching is enabled.

For Zipfian distribution, XSTORE can still outperform

EMT, DrTM-Tree, and Cell by 2.4×, 2.5×, and 4.6×, re-

spectively. The systems with server-centric design perform

better due to better CPU cache locality. However, the peak

throughput of XSTORE drops by 18% since RDMA has rel-

atively poor performance when massive clients read a small

range of memory simultaneously. We suspect that our cur-

rent RNIC (ConnectX-4) checks conflicts between one-sided

RDMA operations based on request’s address [27], so that

these operations may compete for NIC’s internal processing

resources, even if there is no conflict.

Static read-write workloads (YCSB A, B, and F). For

update-heavy workloads (YCSB A), XSTORE is still bottle-

necked by server CPUs for handling updates. However, com-

pared to server-centric KVs (e.g., DrTM-Tree and EMT), the

clients in XSTORE can directly perform read requests with

the help of learned cache, which completely bypasses server

CPUs. Therefore, XSTORE can still provide up to 2.2× and

2.3× (from 1.5× and 2.0×) throughput improvements for

Uniform and Zipfian distributions, respectively, compared

to other KVs. For read-mostly workloads (YCSB B), the

speedup of throughput in XSTORE further reaches up to

5.3× (from 3.1×). There are two reasons: (1) the read re-

quests are less skewed interleaved with (10%) updates, com-

pared to read-only workloads (YCSB C); (2) the server of

XSTORE has not been saturated (less than 40% of CPU uti-

lizations); thus it is still sufficient to perform updates, com-

pared to update-heavy workloads (YCSB A). The perfor-

mance of XSTORE on YCSB F is somewhere in between

since it has about 75% reads.

 0

 20

 40

 60

 80

 0 10 20 30 40 50 60T
h

ro
u

g
h

p
u

t
(M

 t
x
n

s
/s

)

Time (s)

 0

 20

 40

 60

 80

 0 10 20 30 40 50 60T
h

ro
u

g
h

p
u

t
(M

 t
x
n

s
/s

)

Time (s)

DrTM-Tree

Cell

XStore

Optimal

Fig. 11. The performance timeline of YCSB D with (a) Uniform

and (b) Latest workloads.

Dynamic workloads (YCSB D and E). The throughput of ev-

ery system is impacted by dynamic workloads due to the con-

tention between reads and inserts. For DrTM-Tree and EMT,

the contention happens on the tree-based index. For XSTORE

and Cell, the performance slowdown is mainly due to cache

invalidations. However, Cell only caches the top four levels,

where node split is rare. The overhead in XSTORE mainly

comes from two parts: (1) cache invalidations would increase

RDMA operations due to fallbacks (RDMA-based RPC) and

speculative execution (50% one more RDMA READ); (2) a

dynamic dataset is always harder to learn than a static dataset

due to the randomly inserted new keys; the prediction error

would stably increase to 8.3 for YCSB D.9 Fortunately, the

clients can still use stale learned cache for most read requests,

and model retraining is also very fast. Thus, for YCSB D,

XSTORE can provide up to 3.5× and 3.2× (from 2.7× and

1.9×) speedup and achieve 53M and 48M reqs/s throughput

for Uniform and Latest distributions, respectively. For YCSB

E, the performance is dominated by scanning a large range of

KV pairs. Thereby the difference is relatively small, and XS-

TORE outperforms other systems by up to 1.8× (from 1.4×).

Fig. 11 further shows the timelines for YCSB D with Uni-

form and Latest workloads. The optimal throughput of tree-

based index cache can only achieve about 25M reqs/s, more

than 3× lower than its read-only throughput (78M reqs/s),

and suffers from severe performance fluctuations due to fre-

quent cache invalidations, especially for Uniform distribu-

tion. For Latest distribution, each client will focus on a small

range of KV pairs (latest inserted by itself), which signifi-

cantly reduces cache misses and invalidations due to access-

ing internal nodes split by other clients. XSTORE preserves

relatively high throughput and has steady cache invalidation

rates, 5% for Uniform, and 21% for Latest. It is mainly be-

cause stale learned cache can still provide a correct predic-

tion for most read requests. The speculative execution also

helps to halve the rate (from 10% to 5%). In addition, in Lat-

est distribution, each client will frequently access KV pairs

just inserted. If the insert incurs a node split, XSTORE might

not fetch a new model immediately (wait for model retrain-

ing) and would increase cache misses.

CPU utilizations of XSTORE. Note that XSTORE uses two

auxiliary threads to retrain XMODEL for dynamic work-

9The data distribution of dynamic workloads (i.e., YCSB D and E) is close

to noised linear (NL). Hence, XSTORE can only achieve 61M reqs/s for

YCSB D with 2M models even no inserts (see Fig. 14b and Fig. 15d).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 127

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

M
e

d
ia

n
 l
a

te
n

c
y
 (

µ
s
)

Throughput (M reqs/s)

DrTM-Tree

Cell

XStore

EMT

RMC

 0 5 10 15 20

Median Latency (µs)

NIC RPC

NIC IDX CPU IDX

NIC VAL

Optimal

RMC

EMT

XStore

Cell

DrTM-Tree

Fig. 12. Comparison of (a) throughput-latency and (b) end-to-end

median latency at low load for YCSB-C with a uniform distribution.

loads, causing increased server CPU usage. Yet, XSTORE

still saves server CPUs compared to server-centric KVs

(e.g., DrTM-Tree) due to handling read requests in the

clients. For example, DrTM-Tree saturates all CPUs (24 ×

100%) for YCSB D, while XSTORE just consumes under

half for serving insert requests and retraining sub-models.

End-to-end latency. Fig. 12a shows the throughput-latency

curves for YCSB C with a uniform distribution. Due to space

limitations, we omit other workloads that are similar. When

using few clients (low load), server-centric KVs have lower

latency, as one RPC round trip is faster than two one-sided

RDMA operations, namely DrTM-Tree (NIC_RPC) vs. XS-

TORE (NIC_IDX and NIC_VAL) in Fig. 12b. However, the

throughput of them (e.g., DrTM-Tree) is saturated by CPUs

much earlier (about 20M reqs/s), and the latency would

rapidly collapse. On the other hand, the latency of Cell is

limited by multiple RDMA READs for each lookup (NIC_-

IDX) even at low load. In contrast, XSTORE only needs one

RDMA READ, thanks to the learned cache. As a reference,

we provide the latency of using whole-index cache (Optimal)

that also takes just one RDMA READ. However, travers-

ing tree-based index locally still takes more time (2.14µs

in CPU_IDX) due to many random memory accesses, com-

pared to XSTORE (0.35µs). Moreover, XSTORE can keep

low latency at much high load (82M reqs/s with median la-

tency of 16µs) by eliminating CPU bottleneck at the server.

 0

 20

 40

 60

Prod1 Prod2

P
e

a
k
 T

h
p

t
(M

 r
e

q
s
/s

)

DrTM-Tree

Cell

XStore

EMT

Nutanix

 0

 60

 120

 180

 0 1 2 3 4 5 6P
e

a
k
 T

h
p

t
(M

 r
e

q
s
/s

)

Number of server RNICs

Uniform

Zipfian

YCSB C

Fig. 13. (a) Performance comparison with production workloads.

(b) Scalability of XSTORE on YCSB C with the increase of RNICs.

7.3 Production Workload Performance

Fig. 13a shows the peak throughput of XSTORE and other

systems on two write-intensive production workloads, simi-

lar to YCSB A. The performance is also mainly bottlenecked

by server CPUs due to 57% of writes. In the first workload

(Prod1), XSTORE outperforms DrTM-Tree, EMT, and Cell

by 1.44×, 1.55×, and 1.35×, respectively. The speedup in

the second workload (Prod2) increases to 1.75×, 1.80×, and

1.60× since this workload is more skewed.

 0

 300

 600

 900

 1200

 1500

 1800

5 10 20 100 200

S
p

e
e

d
 (

K
 m

o
d

e
ls

/s
)

Average keys per model

1 thread

2 threads

YCSB E invalidation

YCSB D invalidation

 0

 15

 30

 45

 60

 75

 90

 0 0.4 0.8 1.2 1.6 2 2.4 2.8

P
e

a
k
 T

h
p

t
(M

 r
e

q
s
/s

)

Insertion speed (M reqs/s)

2 threads

1 thread

 0

 20

 40

 60

 80

-40 -30 -20 -10

#models: 100K
#keys: 10M

T
h

p
t

(M
 r

e
q

s
/s

)

-2 -1 0 1 2 3 4 5 6 7 8

training-start model-commit: 4s

#keys: 20M #models: 200K

Model Expansion

Time (s)
20 30 40

Fig. 14. (a) Comparison between sub-model retraining and invali-

dation speed. (b) Performance of XSTORE with the increase of in-

sertion speed. (c) Performance timeline with model expansion.

7.4 Scale-out Performance

Fig. 13b shows the scalability of XSTORE with up to 6

server RNICs (3 server machines). We scale XSTORE by

range-based partitioning a YCSB dataset with 600M keys

into different numbers of RNICs. The performance is mea-

sured using up to 13 client machines (26 RNICs) with a

read-only workload. For a uniform request distribution, XS-

TORE achieve a peak throughput of 145M reqs/s, which is

limited by the number of client machines. Note that, on our

testbed, XSTORE needs about eight client RNICs to saturate

one server RNIC. XSTORE scales to 1.97× and 2.81× by us-

ing 2 and 3 server RNICs, respectively. For a skewed request

distribution (Zipfian), XSTORE just reaches 92M reqs/s by

using 6 server RNICs since most requests (more than 35%)

are sent to one RNIC. It throttles the entire system.

7.5 Model (Re-)Training and Expansion

Fig. 14a shows the throughput of training models using one

or two threads and model invalidation speed for dynamic

workloads (YCSB D and E). Empirically, using two threads

for model retraining is sufficient for XSTORE to reach a

throughput of 53M reqs/s (YCSB D). XSTORE can retrain

sub-models individually and takes 8µs on average to retrain

a model with 200 keys. Note that the insertion speed reaches

about 2.65M reqs/s for YCSB D (5% inserts). For dynamic

workloads, the throughput of XSTORE would decrease when

stale sub-models can not retrained in time. To quantify the

performance overhead, we evaluate XSTORE with the in-

crease of insertion speed, similar to YCSB D (except that

one client is dedicated to insert key-value pairs with a given

speed, and the rest of clients still issue reads). As shown in

Fig. 14b, the throughout drops below 40% (61M vs. 37M

reqs/s) under the peak insertion speed (2.8M reqs/s, limited

by server CPUs) when using a single retraining thread. Fur-

ther, when using two threads, the performance degradation is

limited to 13%.

Finally, the growing size of KV pairs in the ML model

128 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 200

 400

 600

 800

 1000

500K 1M 5M 10M 20M

A whole-tree index
(optimal)

M
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

Number of models

TT

XModel

XCache

 0

 20

 40

 60

 80

 100

 0 30 60 90 120 150

Uniform

P
e

a
k
 T

h
p

t
(M

 r
e

q
s
/s

)

Memory usage (MB)

Learned cache

Tree-based cache

 0

 20

 40

 60

 80

 100

 0 30 60 90 120 150

Zipfian

P
e

a
k
 T

h
p

t
(M

 r
e

q
s
/s

)

Memory usage (MB)

Learned cache

Tree-based cache
 0

 20

 40

 60

 80

 100

500K 1M 5M 10M 20M

P
e

a
k
 T

h
p

t
(M

 r
e

q
s
/s

)

Number of models

L

NL

OSM
 0

 2

 4

 6

 8

 10

500K 1M 5M 10M 20MM
e

d
ia

n
 L

a
te

n
c
y
 (

µ
s
)

Number of models

L

NL

OSM

Fig. 15. (a) Memory usage of learned cache (XCACHE). Comparison of peak throughput between learned cache and tree-based cache with

different memory footprint at the client for YCSB C using (b) Uniform and (c) Zipfian distributions. Comparison of (d) peak throughput and

(e) median latency on XSTORE with the increase of models for various data distributions (see Table 2).

will likely increase the prediction error, resulting in perfor-

mance degradation. XSTORE supports model expansion to

increase models in the background if needed. As shown in

Fig. 14c, starting from 10M keys and 100K models, several

clients continuously insert KV pairs, and the performance of

XSTORE slowly degrades for read requests. When the aver-

age number of keys per model exceeds 200 (a user-defined

threshold), the server starts to train a new XMODEL with

double sub-models (200K) in the background from 0s to 4s,

with negligible overhead. After that, the server will commit

the new model, and clients could individually fetch new sub-

models on demand. The performance resumes rapidly in 2s.

7.6 Memory Footprint of XCACHE

Fig. 15a presents the memory usage of XCACHE with the

increase of sub-models for 100M KV pairs. Note that the

entire XTREE has 654MB internal nodes. The size of TT

depends on the number of leaf nodes. Since each leaf node

has 16 slots for KV pairs, TT occupies around 98MB as the

tree-based index is half-full. Thus, TT would dominate the

memory usage for a small XMODEL since each sub-model

is 14B large. To achieve peak throughput, XMODEL with

500K sub-models is enough for read-only workloads (YCSB

C) with 100M KV pairs, while it needs 2M sub-models for

dynamic workloads (YCSB D) with 250M KV pairs.

As shown in Fig. 15b and Fig. 15c, compared to conven-

tional tree-based index cache, XSTORE can provide compet-

itive performance with much lower memory footprint at the

clients, even (almost) no memory footprint. XCACHE prefers

to store XMODEL, which may only occupy 1% memory

(6.8M vs. 654MB). It means that, for YCSB C with Uniform

and Zipfian distributions, XSTORE can achieve 74% and

87% of optimal throughput (a whole-index cache), where the

client uses one additional RDMA READ to fetch several 8-

byte TT entries for each lookup. Even if the client only stores

a 16-byte top model, XSTORE can still achieve about 40M

reqs/s by using one RDMA READ to fetch a 14-byte sub-

model first.

7.7 Data Distribution

We further evaluate XSTORE on a 100M-key dataset with

different data distributions in Table 2 using a read-only work-

load (YCSB C). The throughput of XSTORE is sensitive to

the prediction error due to bandwidth amplification for re-

trieving more keys. Thus, XSTORE requires more simple

sub-models (e.g., LR) to learn complex data distributions

(e.g., OSM) for the same prediction error. For example, as

shown in Fig. 15d, XSTORE requires about 20M sub-models

for OSM to achieve a peak throughput of 80M reqs/s. How-

ever, as shown in Fig. 15e, the median latency at a low load is

relatively stable for various data distributions, as the latency

of RDMA is insensitive to payload sizes when the network

is not saturated [39].

Table 3: The impact of durability on throughput (M reqs/s).

YCSB /Uniform A B C D E F

w/o logging 41 80 82 53 10.2 36

w logging 31 78 82 51 9.9 33

7.8 Durability

To study the overhead of logging for durability, we evalu-

ate the peak throughput of XSTORE for various YCSB work-

loads with logging to SSD enabled. As shown in Table 3,

the performance drops by up to 24% for update-heavy work-

loads (e.g., YCSB A) due to additional writes to SSD for

write operations (e.g., UPDATE). On the other hand, it does

not degrade the performance of read-heavy workloads much

(e.g., YCSB C). First, XSTORE executes read operations

(e.g., GET) using one-sided RDMA primitives, bypassing the

logging threads thoroughly. Second, XSTORE flushes the

logs in a batched manner [33], which hides the impact of

slow storage (§5.4).

7.9 Variable-length Value

By default, XSTORE directly stores the value in leaf nodes

(inline value). To support variable-length values, XSTORE

stores a 64-bit fat pointer (the size and the position of value)

in leaf nodes (indirect value). Consequently, the client needs

an additional RDMA READ to retrieve the variable-length

value (Line 13 in Fig. 7). Fig. 16a shows the performance of

XSTORE by using inline and indirect value. Using indirect

value causes up to 43% (from 8%) performance degradation,

compared to using inline value. The performance gap is clos-

ing with the increase of values (e.g., 1KB) since the cost of

one additional RDMA READ becomes trivial.

7.10 Application Performance

To demonstrate the effectiveness of XSTORE in application

workloads, we have integrated it into DrTM+H [51], a state-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 129

 0

 20

 40

 60

 80

 100

16 32 64 128 256 512 1K 2K

P
e

a
k
 T

h
p

t
(M

 r
e

q
s
/s

)

Value size (Bytes)

Inline value

Indirect value

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0 100 200 300 400 500 600

M
e

d
ia

n
 l
a

te
n

c
y
 (

m
s
)

Thpt per machine (K reqs/s)

DrTM+X

DrTM+H

Fig. 16. (a) Performance of XSTORE by using inline and indirect

value. (b) Comparison of DrTM+H on TPC-C w/ and w/o XSTORE.

of-the-art distributed OLTP system that leverages RDMA-

enabled KVS to store tuples. The vanilla DrTM+H only

performs unordered index lookups (hash table) by using

one-sided RDMA primitives [52]. DrTM+H with XSTORE

(called DrTM+X) can further perform ordered index lookups

(B+tree) through one-sided RDMA operations.

Experimental setup. We use TPC-C [45] to compare the per-

formance of DrTM+H and DrTM+X. Note that both of them

run in an asymmetric setting, which is widely adopted in

cloud databases [55, 47, 7].10 More specifically, we deploy

96 warehouses on four data servers and use the rest of the ma-

chines in our testbed as clients. Both DrTM+H and DrTM+X

rely on the data server to update tuples, while DrTM+X uses

one-sided RDMA READs to retrieve tuples from the data

server. Therefore, we use a read-heavy TPC-C workload in

the experiment, which consists of NEW-ORDER transactions

(10%) and ORDER-STATUS transactions (90%). NEWORDER

transaction inserts a new order with five to fifteen order lines;

ORDERSTATUS transaction retrieves the recently inserted or-

ders first and then scans related order lines.

Performance. As shown in Fig. 16b, XSTORE improves the

peak throughput of DrTM+H by 2.27×, reaching 490K re-

qs/s. DrTM+H is bottlenecked by server CPUs since the

data server traverses the index and performs the read request

locally. Consequently, the read requests of ORDERSTATUS

transactions would compete CPUs with the write requests of

NEWORDER transactions at the servers. Differently, DrTM+X

relies on RNICs at the clients to lookup and retrieve tu-

ples for ORDERSTATUS transactions. It relaxes the burden on

server CPUs and improves performance significantly.

8 Related Work

RDMA-enabled key-value stores. XSTORE continues the

line of research of RDMA-based in-memory key-value

stores [31, 34, 25, 16, 52, 35, 43, 57, 8, 48], but explores

a new design point, namely learned cache, that leverages

machine learning (ML) models as index cache for RDMA-

based, tree-backed key-value store. There have been many

efforts to investigate RDMA-based unordered in-memory

KVs which focus on such as improving the communication

layer (e.g.,RPC) [25, 24, 10], selecting appropriate hash ta-

bles [34, 16, 52], supporting index caching [52, 48], and en-

abling in-network processing [31, 40].

10Prior work [51] has shown that using (two-sided) RDMA-based RPC is a

better choice for GET operations in a symmetric setting [17].

There is an increasing interest in optimizing tree-backed

in-memory key-value stores with RDMA. Cell [35] allows

clients to traverse server’s B+Tree using RDMA READs and

caches the top three levels of tree index. FaRM B-Tree [17]

caches B-tree’s internal nodes at each server to accelerate

lookups using RDMA, while it is costly and error-prone for

dynamic workloads [38]. Ziegler et al. [57] studies differ-

ent RDMA-based design alternatives for tree-based index, in-

cluding how the tree should be distributed and the choices of

RDMA primitives for tree operations.

Learned indexes and their applications in systems. Kraska

et al. [29] argue that all existing index structures can be

replaced with machine learning (ML) models, which are

termed “learned index”, and further propose several example

learned indexes to replace various index structures, includ-

ing tree-based range index. There have been several recent

efforts of adapting learned indexes to handle dynamic work-

loads [44, 15, 36]. XIndex [44] adds a delta index to each

sub-model in a learned index and proposes a new concur-

rent compaction scheme to split models. ALEX [15] uses a

gapped array to accommodate new key-value pairs, similar to

the leaf node of XTREE. However, it is non-trivial to enable

the gapped array in a distributed system since it requires com-

plex coordinations when expanding the array upon full. Bour-

bon [14] is a log-structured merge (LSM) tree that leverages

the learned index to speedup lookups. FITING-TREE [18]

is a form of a learned index to balance prediction error and

memory cost. It uses extra sorted buffers to store inserts and

merges them back when reaching a threshold. SIndex [49]

is a concurrent learned index for variable-length string keys.

Differently, XSTORE proposes a hybrid architecture to lever-

age ML models as RDMA-based index cache, instead of re-

placing or augmenting traditional index structures.

9 Conclusion

This paper presents XSTORE, an RDMA-based in-memory

ordered key-value store with a new hybrid architecture to

leverage ML model as RDMA-based index cache. Our ex-

perimental results show the high performance of XSTORE.

10 Acknowledgment

We sincerely thank our shepherd Andrea C. Arpaci-Dusseau

and the anonymous reviewers for their insightful sugges-

tions. We also thank Zhaoguo Wang, Chuzhe Tang, Zhiyuan

Dong and Youyun Wang for sharing their experience on

learned index, and Xiating Xie for the valuable feedback.

This work was supported in part by the Key-Area Research

and Development Program of Guangdong Province (No.

2020B010164003), the National Natural Science Foundation

of China (No. 61772335, 61925206, 61732010), the High-

Tech Support Program from Shanghai Committee of Science

and Technology (No. 19511121100), and a research grant

from Huawei Technologies. Corresponding author: Rong

Chen (rongchen@sjtu.edu.cn).

130 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Memcached. https://memcached.org/.

[2] OpenStreetMap (OSM) on AWS. https://aws.amazon.

com/public-datasets/osm, 2020.

[3] AGUILERA, M. K., KEETON, K., NOVAKOVIC, S., AND

SINGHAL, S. Designing far memory data structures: Think

outside the box. In Proceedings of the Workshop on Hot Top-

ics in Operating Systems (New York, NY, USA, 2019), HotOS

’19, Association for Computing Machinery, p. 120–126.

[4] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S.,

AND PALECZNY, M. Workload analysis of a large-scale key-

value store. In Proceedings of the 12th ACM SIGMETRIC-

S/PERFORMANCE Joint International Conference on Mea-

surement and Modeling of Computer Systems (New York, NY,

USA, 2012), SIGMETRICS ’12, ACM, pp. 53–64.

[5] BLUNDELL, C., LEWIS, E. C., AND MARTIN, M. M. Sub-

tleties of Transactional Memory Atomicity Semantics. IEEE

Computer Architecture Letters 5, 2 (2006).

[6] BRONSON, N., AMSDEN, Z., CABRERA, G., CHAKKA,

P., DIMOV, P., DING, H., FERRIS, J., GIARDULLO, A.,

KULKARNI, S., LI, H. C., ET AL. Tao: Facebook’s dis-

tributed data store for the social graph. In USENIX Annual

Technical Conference (2013), pp. 49–60.

[7] CAO, W., LIU, Z., WANG, P., CHEN, S., ZHU, C., ZHENG,

S., WANG, Y., AND MA, G. Polarfs: an ultra-low latency

and failure resilient distributed file system for shared storage

cloud database. Proceedings of the VLDB Endowment 11, 12,

1849–1862.

[8] CASSELL, B., SZEPESI, T., WONG, B., BRECHT, T., MA, J.,

AND LIU, X. Nessie: A decoupled, client-driven key-value

store using rdma. IEEE Transactions on Parallel and Dis-

tributed Systems 28, 12 (2017), 3537–3552.

[9] CHEN, H., CHEN, R., WEI, X., SHI, J., CHEN, Y., WANG,

Z., ZANG, B., AND GUAN, H. Fast in-memory transaction

processing using rdma and htm. ACM Trans. Comput. Syst.

35, 1 (July 2017).

[10] CHEN, Y., LU, Y., AND SHU, J. Scalable rdma rpc on reli-

able connection with efficient resource sharing. In Proceed-

ings of the Fourteenth EuroSys Conference 2019 (New York,

NY, USA, 2019), EuroSys ’19, Association for Computing

Machinery.

[11] CHEN, Y., WEI, X., SHI, J., CHEN, R., AND CHEN, H. Fast

and general distributed transactions using rdma and htm. In

Proceedings of the Eleventh European Conference on Com-

puter Systems (2016), ACM, p. 26.

[12] COOPER, B. F. YCSB Core Workloads. https://

github.com/brianfrankcooper/YCSB/wiki/

Core-Workloads.

[13] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISH-

NAN, R., AND SEARS, R. Benchmarking cloud serving sys-

tems with YCSB. In Proceedings of the 1st ACM Symposium

on Cloud Computing (2010), SoCC’10, ACM, pp. 143–154.

[14] DAI, Y., XU, Y., GANESAN, A., ALAGAPPAN, R., KROTH,

B., ARPACI-DUSSEAU, A., AND ARPACI-DUSSEAU, R.

From wisckey to bourbon: A learned index for log-structured

merge trees. In 14th USENIX Symposium on Operating Sys-

tems Design and Implementation (2020), OSDI ’20, USENIX

Association.

[15] DING, J., MINHAS, U. F., YU, J., WANG, C., DO, J., LI,

Y., ZHANG, H., CHANDRAMOULI, B., GEHRKE, J., KOSS-

MANN, D., LOMET, D., AND KRASKA, T. Alex: An updat-

able adaptive learned index. In Proceedings of the 2020 ACM

SIGMOD International Conference on Management of Data

(New York, NY, USA, 2020), SIGMOD ’20, Association for

Computing Machinery, p. 969–984.

[16] DRAGOJEVIĆ, A., NARAYANAN, D., HODSON, O., AND

CASTRO, M. FaRM: Fast remote memory. In Proceedings of

the 11th USENIX Conference on Networked Systems Design

and Implementation (2014), NSDI’14, USENIX Association,

pp. 401–414.

[17] DRAGOJEVIĆ, A., NARAYANAN, D., NIGHTINGALE, E. B.,

RENZELMANN, M., SHAMIS, A., BADAM, A., AND CAS-

TRO, M. No compromises: Distributed transactions with con-

sistency, availability, and performance. In Proceedings of the

25th Symposium on Operating Systems Principles (New York,

NY, USA, 2015), SOSP’15, ACM, pp. 54–70.

[18] GALAKATOS, A., MARKOVITCH, M., BINNIG, C., FON-

SECA, R., AND KRASKA, T. Fiting-tree: A data-aware in-

dex structure. In Proceedings of the 2019 International

Conference on Management of Data (New York, NY, USA,

2019), SIGMOD ’19, Association for Computing Machinery,

p. 1189–1206.

[19] GRAEFE, G. Write-optimized b-trees. In Proceedings of the

Thirtieth International Conference on Very Large Data Bases

(2004), VLDB ’04, VLDB Endowment, p. 672–683.

[20] GUO, C., WU, H., DENG, Z., SONI, G., YE, J., PADHYE,

J., AND LIPSHTEYN, M. Rdma over commodity ethernet

at scale. In Proceedings of the 2016 ACM SIGCOMM Con-

ference (New York, NY, USA, 2016), SIGCOMM’16, ACM,

pp. 202–215.

[21] GUPTA, M., COTTER, A., PFEIFER, J., VOEVODSKI, K.,

CANINI, K., MANGYLOV, A., MOCZYDLOWSKI, W., AND

VAN ESBROECK, A. Monotonic calibrated interpolated look-

up tables. J. Mach. Learn. Res. 17, 1 (Jan. 2016), 3790–3836.

[22] HIGH-PERFORMANCE BIG DATA (HIBD). RDMA-based

Memcached (RDMA-Memcached). http://hibd.cse.

ohio-state.edu.

[23] JONAS, E., SCHLEIER-SMITH, J., SREEKANTI, V., TSAI,

C.-C., KHANDELWAL, A., PU, Q., SHANKAR, V., CAR-

REIRA, J., KRAUTH, K., YADWADKAR, N., ET AL. Cloud

programming simplified: A berkeley view on serverless com-

puting. arXiv preprint arXiv:1902.03383 (2019).

[24] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. Datacen-

ter rpcs can be general and fast. In 16th {USENIX} Sym-

posium on Networked Systems Design and Implementation

({NSDI} 19) (2019), pp. 1–16.

[25] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Us-

ing rdma efficiently for key-value services. In Proceedings

of the 2014 ACM Conference on SIGCOMM (2014), SIG-

COMM’14, ACM, pp. 295–306.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 131

[26] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Fasst:

fast, scalable and simple distributed transactions with two-

sided (rdma) datagram rpcs. In 12th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 16)

(2016), USENIX Association, pp. 185–201.

[27] KAMINSKY, A. K. M., AND ANDERSEN, D. G. Design

guidelines for high performance rdma systems. In 2016

USENIX Annual Technical Conference (2016), p. 437.

[28] KLIMOVIC, A., WANG, Y., STUEDI, P., TRIVEDI, A., PFEF-

FERLE, J., AND KOZYRAKIS, C. Pocket: Elastic ephemeral

storage for serverless analytics. In Proceedings of the 13th

USENIX Conference on Operating Systems Design and Im-

plementation (USA, 2018), OSDI’18, USENIX Association,

p. 427–444.

[29] KRASKA, T., BEUTEL, A., CHI, E. H., DEAN, J., AND

POLYZOTIS, N. The case for learned index structures. In

Proceedings of the 2018 International Conference on Man-

agement of Data (2018), ACM, pp. 489–504.

[30] LEPERS, B., BALMAU, O., GUPTA, K., AND ZWAENEPOEL,

W. Kvell: the design and implementation of a fast persistent

key-value store. In Proceedings of the 27th ACM Symposium

on Operating Systems Principles (2019), pp. 447–461.

[31] LI, B., RUAN, Z., XIAO, W., LU, Y., XIONG, Y., PUT-

NAM, A., CHEN, E., AND ZHANG, L. Kv-direct: High-

performance in-memory key-value store with programmable

nic. In Proceedings of the 26th Symposium on Operating Sys-

tems Principles (2017), ACM, pp. 137–152.

[32] LIM, H., HAN, D., ANDERSEN, D. G., AND KAMINSKY, M.

Mica: A holistic approach to fast in-memory key-value stor-

age. In Proceedings of the 11th USENIX Conference on Net-

worked Systems Design and Implementation (Berkeley, CA,

USA, 2014), NSDI’14, USENIX Association, pp. 429–444.

[33] MAO, Y., KOHLER, E., AND MORRIS, R. T. Cache crafti-

ness for fast multicore key-value storage. In Proceedings

of the 7th ACM European Conference on Computer Systems

(2012), EuroSys’12, ACM, pp. 183–196.

[34] MITCHELL, C., GENG, Y., AND LI, J. Using one-sided rdma

reads to build a fast, cpu-efficient key-value store. In Proceed-

ings of the 2013 USENIX Conference on Annual Technical

Conference (2013), USENIX ATC’13, USENIX Association,

pp. 103–114.

[35] MITCHELL, C., MONTGOMERY, K., NELSON, L., SEN, S.,

AND LI, J. Balancing cpu and network in the cell distributed

b-tree store. In 2016 USENIX Annual Technical Conference

(USENIX ATC 16) (2016).

[36] NATHAN, V., DING, J., ALIZADEH, M., AND KRASKA, T.

Learning multi-dimensional indexes. In Proceedings of the

2020 ACM SIGMOD International Conference on Manage-

ment of Data (New York, NY, USA, 2020), SIGMOD ’20, As-

sociation for Computing Machinery, p. 985–1000.

[37] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI,

M., LEE, H., LI, H. C., MCELROY, R., PALECZNY, M.,

PEEK, D., SAAB, P., ET AL. Scaling memcache at facebook.

In nsdi (2013), vol. 13, pp. 385–398.

[38] SHAMIS, A., RENZELMANN, M., NOVAKOVIC, S., CHAT-

ZOPOULOS, G., DRAGOJEVIĆ, A., NARAYANAN, D., AND

CASTRO, M. Fast general distributed transactions with opac-

ity. In Proceedings of the 2019 International Conference on

Management of Data (New York, NY, USA, 2019), SIGMOD

’19, Association for Computing Machinery, p. 433–448.

[39] SHI, J., YAO, Y., CHEN, R., CHEN, H., AND LI, F. Fast

and concurrent rdf queries with rdma-based distributed graph

exploration. In Proceedings of the 12th USENIX Conference

on Operating Systems Design and Implementation (Berkeley,

CA, USA, 2016), OSDI’16, USENIX Association, pp. 317–

332.

[40] SIDLER, D., WANG, Z., CHIOSA, M., KULKARNI, A., AND

ALONSO, G. StRoM: Smart Remote Memory. In Proceed-

ings of the Fifteenth European Conference on Computer Sys-

tems (New York, NY, USA, 2020), EuroSys ’20, Association

for Computing Machinery.

[41] SOWELL, B., GOLAB, W., AND SHAH, M. A. Minuet: A

scalable distributed multiversion b-tree. Proc. VLDB Endow.

5, 9 (May 2012), 884–895.

[42] SREEKANTI, V., WU, C., LIN, X. C., SCHLEIER-SMITH, J.,

GONZALEZ, J. E., HELLERSTEIN, J. M., AND TUMANOV,

A. Cloudburst: Stateful functions-as-a-service. Proc. VLDB

Endow. 13, 12 (jul 2020), 2438–2452.

[43] SU, M., ZHANG, M., CHEN, K., GUO, Z., AND WU, Y. Rfp:

When rpc is faster than server-bypass with rdma. In Proceed-

ings of the Twelfth European Conference on Computer Sys-

tems (2017), ACM, pp. 1–15.

[44] TANG, C., WANG, Y., DONG, Z., HU, G., WANG, Z.,

WANG, M., AND CHEN, H. Xindex: A scalable learned index

for multicore data storage. In Proceedings of the 25th ACM

SIGPLAN Symposium on Principles and Practice of Parallel

Programming (New York, NY, USA, 2020), PPoPP ’20, Asso-

ciation for Computing Machinery, p. 308–320.

[45] THE TRANSACTION PROCESSING COUNCIL. TPC-C Bench-

mark V5.11. http://www.tpc.org/tpcc/.

[46] TSAI, S.-Y., AND ZHANG, Y. Lite kernel rdma support for

datacenter applications. In Proceedings of the 26th Sympo-

sium on Operating Systems Principles (New York, NY, USA,

2017), SOSP ’17, ACM, pp. 306–324.

[47] VERBITSKI, A., GUPTA, A., SAHA, D., BRAHMADESAM,

M., GUPTA, K., MITTAL, R., KRISHNAMURTHY, S., MAU-

RICE, S., KHARATISHVILI, T., AND BAO, X. Amazon au-

rora: Design considerations for high throughput cloud-native

relational databases. In Proceedings of the 2017 ACM Interna-

tional Conference on Management of Data (2017), pp. 1041–

1052.

[48] WANG, Y., MENG, X., ZHANG, L., AND TAN, J. C-hint: An

effective and reliable cache management for rdma-accelerated

key-value stores. In Proceedings of the ACM Symposium on

Cloud Computing (2014), SoCC’14, ACM, pp. 23:1–23:13.

[49] WANG, Y., TANG, C., WANG, Z., AND CHEN, H. Sindex: A

scalable learned index for string keys. In Proceedings of the

11th ACM SIGOPS Asia-Pacific Workshop on Systems (New

York, NY, USA, 2020), APSys ’20, Association for Comput-

ing Machinery, p. 17–24.

132 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[50] WANG, Z., QIAN, H., LI, J., AND CHEN, H. Using restricted

transactional memory to build a scalable in-memory database.

In Proceedings of the Ninth European Conference on Com-

puter Systems (2014), EuroSys’14, ACM, pp. 26:1–26:15.

[51] WEI, X., DONG, Z., CHEN, R., AND CHEN, H. Deconstruct-

ing rdma-enabled distributed transactions: Hybrid is better! In

13th USENIX Symposium on Operating Systems Design and

Implementation (2018), OSDI ’18, pp. 233–251.

[52] WEI, X., SHI, J., CHEN, Y., CHEN, R., AND CHEN, H. Fast

in-memory transaction processing using rdma and htm. In

Proceedings of the 25th Symposium on Operating Systems

Principles (New York, NY, USA, 2015), SOSP ’15, ACM,

pp. 87–104.

[53] XIE, X., WEI, X., CHEN, R., AND CHEN, H. Pragh:

Locality-preserving graph traversal with split live migration.

In 2019 USENIX Annual Technical Conference (USENIX ATC

19) (Renton, WA, July 2019), USENIX Association, pp. 723–

738.

[54] YOU, S., DING, D., CANINI, K., PFEIFER, J., AND GUPTA,

M. Deep lattice networks and partial monotonic functions.

In Advances in neural information processing systems (2017),

pp. 2981–2989.

[55] ZAMANIAN, E., BINNIG, C., HARRIS, T., AND KRASKA, T.

The end of a myth: Distributed transactions can scale. Proc.

VLDB Endow. 10, 6 (Feb. 2017), 685–696.

[56] ZHANG, H., ANDERSEN, D. G., PAVLO, A., KAMINSKY,

M., MA, L., AND SHEN, R. Reducing the storage overhead

of main-memory oltp databases with hybrid indexes. In Pro-

ceedings of the 2016 International Conference on Manage-

ment of Data (2016), ACM, pp. 1567–1581.

[57] ZIEGLER, T., TUMKUR VANI, S., BINNIG, C., FONSECA,

R., AND KRASKA, T. Designing distributed tree-based index

structures for fast rdma-capable networks. In Proceedings of

the 2019 International Conference on Management of Data

(New York, NY, USA, 2019), SIGMOD ’19, ACM, pp. 741–

758.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 133

A Artifact Appendix

A.1 Abstract

This artifact provides the source code of XSTORE and scripts to

reproduce the main experimental results. XSTORE is an RDMA-

based ordered key-value store that adopts the client-server model

(network-attached) and range index structures (tree-backed). To re-

produce the results, we provide instructions to build binaries (§A.3)

and run experiments (§A.4). The source code of XSTORE can be

retrieved from a public open-source repository (§A.2.1). The repos-

itory also contains scripts to generate the main results in §7 (see

Table 4). Though the scripts target our testbed (§7.1), readers can

simply change them for other platforms (§A.6).

A.2 Artifact Check-list

• Program: fserver, ycsb, and micro.

• Compilation: g++ and cmake.

• Hardware: Intel CPU with RTM and Mellanox NIC with

RDMA.

• Execution: Python scripts.

• Metrics: Throughput and median latency.

• Expected experiment run time: 1 minute each experiment.

• Public link:

https://github.com/SJTU-IPADS/xstore.

• Code licenses: Apache License 2.0.

A.2.1 How to Access

The artifact is publicly available at our Github repository.

$ git clone https://github.com/SJTU-IPADS/xstore

$ git checkout c9f38188

A.2.2 Hardware Dependencies

To reproduce the experiment results, each machine must have at

least one Mellanox RDMA network card (e.g., Mellanox ConnectX-

4 MT27700 100Gbps InfiniBand NIC), and the server machine

must have Intel processors with Restricted Transactional Memory

(RTM) (e.g., Xeon E5-2650 v4). It should be noted that the through-

put of read operations (e.g., gets) is mainly bottlenecked by the

RDMA network, while the throughput of write operations (e.g., up-

dates) is mainly bottlenecked by the server CPU.

A.2.3 Software Dependencies

Operating system: Ubuntu ≥ 16.04.

Compile toolchain: g++ ≥ 5.4.4 and cmake ≥ 3.5.1.

Other software dependencies: Intel MKL, Mellanox OFED,

boost 1.6.1, and jemalloc.

A.3 Installation

Intel MKL (Math Kernel Library).

$ apt-get install -y intel-mkl-2019.1-053

Listing 1: A sample evaluating script (sample.toml).

[[pass]]

host = server_host ## host name of the server

path = /cock/fstore

cmd = "./fserver -db_type ycsb -model_config=

ycsb-model.toml"

[[pass]]

host = client_host ## host name of the client

path = /cock/fstore

cmd = "./ycsb -threads 1 -server_host

server_host"

[[pass]]

host = master_host ## host name of the client

path = /cock/fstore

cmd = "./master -client_config cs.toml -epoch 60

-nclients 1"

Mellanox OFED.

$ wget latest_ofed_for_the_OS.

$./mlnxofedinstall -without-iser-dkms

-without-srp-dkms -without-srptools -force

Boost and jemalloc.

$ cd path_to_xstore

$ pip3 install -r requirements.txt

$./magic.py config -f build-config.toml

$ cmake .

$ cd deps/jemalloc

$ autoconf

$ cd path_to_xstore

$ make boost jemalloc

XSTORE.

$ make fserver ycsb micro master

A.4 Experiment Workflow

Launch XSTORE server.

$ ssh server_host

$./fserver -db_type ycsb -model_-

config=ycsb-model.toml

Launch XSTORE clients.

$ ssh client_host

$./ycsb -threads 1 -server_host server_host

Launch a master to collect results from clients.

$ ssh master_host

$./master -client_config cs.toml -epoch 60

-nclients 1

Automatic experiment workflow. Optionally, readers could use

our script (bootstrap.py) to automate the above three steps.

It takes a configuration file (e.g., Listing 1) to execute the above

three steps required for the experiments. Specifically, the following

command should launch the server, the clients, and the master ac-

cordingly:

$./bootstrap.py -f sample.toml

134 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 4: The evaluating scripts to reproduce the results in §7. Note

that the scripts are in the ae_scripts folder in our repository.

Figure Description Evaluating script

Fig. 10 YCSB A ycsba.toml

Fig. 11 YCSB B ycsbb.toml

Fig. 12 YCSB C ycsbc.toml

YCSB D ycsbd.toml

YCSB E ycsbe.toml

Fig. 14c Model expansion expan.toml

Fig. 15d,e Data distribution ln.toml

Fig. 15b,c Memory footprint cached_ycsbc.toml

A.5 Evaluation and Expected Result

The experimental results mainly include throughput and meidan la-

tency. By default, the master is responsible for printing the results.

It should be noted that it is difficult to compare the performance

results across different machines. Therefore, we only show the re-

ported numbers on our testbed as an example here. For instance,

to evaluate YCSB C on XSTORE, readers could run the script as

follows:

$./bootstrap.py -f ae_scripts/ycsbc.toml

The master would print throughput (thpt) and median la-

tency (lat) per second:

...

At epoch 1 thpt: 79.4M/s, ..., lat: 19.5 us

At epoch 2 thpt: 79.3M/s, ..., lat: 19.6 us

At epoch 3 thpt: 79.8M/s, ..., lat: 19.4 us

...

A.6 Experiment Customization

Table 4 lists the configuration files used to produce the ex-

perimental results in our paper. However, the scripts mainly

target our testbed (§7.1). To execute them on other plat-

forms, readers need to make minor changes to the scripts.

The README in our repository provides detailed information

about how to customize them for the experiments.

A.7 Notes

The source code and scripts for the artifact evaluation are

used to reproduce the main results in XSTORE. To use XS-

TORE in your research, we recommend the main branch of

our repository (§A.2.1), which would be maintained by mem-

bers of the Institute of Parallel and Distributed Systems.

A.8 AE Methodology

Submission, reviewing and badging methodology:

• https://www.usenix.org/conference/osdi20/

call-for-artifacts

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 135

	Introduction
	RDMA-based Key-Value Store
	Analysis of RDMA-based Ordered KVs
	Approach and Overview
	Design and Implementation
	Data Structures
	Client-direct Operations
	Get
	Scan
	Non-existent Keys

	Server-centric Operations
	Update
	Insert and Delete

	Durability
	Scaling out XStore

	Discussion
	Evaluation
	Experimental Setup
	YCSB Performance
	Production Workload Performance
	Scale-out Performance
	Model (Re-)Training and Expansion
	Memory Footprint of XCache
	Data Distribution
	Durability
	Variable-length Value
	Application Performance

	Related Work
	Conclusion
	Acknowledgment
	Artifact Appendix
	Abstract
	Artifact Check-list
	How to Access
	Hardware Dependencies
	Software Dependencies

	Installation
	Experiment Workflow
	Evaluation and Expected Result
	Experiment Customization
	Notes
	AE Methodology

