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Abstract—While hardware and software improvements greatly
accelerated modern database systems’ internal operations, the
decades-old stream-based Socket API for external communication
is still unchanged. We show experimentally, that for modern
high-performance systems networking has become a performance
bottleneck. Therefore, we argue that the communication stack
needs to be redesigned to fully exploit modern hardware—as has
already happened to most other database system components.

We propose L5, a high-performance communication layer for
database systems. L5 rethinks the flow of data in and out of the
database system and is based on direct memory access techniques
for intra-datacenter (RDMA) and intra-machine communication
(Shared Memory). With L5, we provide a building block to
accelerate ODBC-like interfaces with a unified and message-
based communication framework. Our results show that using
interconnects like RDMA (InfiniBand), RoCE (Ethernet), and
Shared Memory (IPC), L5 can largely eliminate the network
bottleneck for database systems.

I. INTRODUCTION

Modern main-memory database systems can process hun-

dreds of thousands of TPC-C transactions per second [51],

and for key/value-style workloads, millions of transactions per

second are possible [53], [51]. Such benchmark results are,

however, virtually always measured by generating the workload

within the database system itself—ignoring the question of

how to get the load into the system in the first place.

For decades, the standard approach for communication

between different processes has been (and still is) the operating

system’s Socket API. Sockets are well-understood, widely-

available, fairly portable, and fast enough for traditional

database systems. For example, using OLTP-Bench [14]

we measured that PostgreSQL achieves around 220 TPC-

C transactions per second using one thread. At these low

transaction rates, standard Sockets are not the bottleneck—

even though OLTP-Bench does not use stored procedures but

rather sends each SQL statement separately over the network.

For modern in-memory database systems the situation is very

different: We found that the backend of Silo [51] can process 58

thousand transactions per second using a single thread (more

than 200× faster than PostgreSQL). However, unlike OLTP-

Bench, this number does not include communication (the very

thread processing transactions also generates the workload).

As Figure 1 shows, once we send each SQL statement through

the operating system’s network stack, the performance drops to

1,497 using TCP (39× slower) or 2,710 using Domain Sockets

(21× slower). These numbers show that for high-performance
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Fig. 1. Communication Bottleneck. TPC-C throughput using Silo.

database systems, networking and inter-process communication

have become the performance bottleneck.

It is important to realize that slow communication is not
due to fundamental limitations of the networking hardware.

To achieve Silo’s backend transaction processing performance,

the communication would need to support roughly one million

round trips per second. On a hardware level, both Ethernet and

InfiniBand have this capability with single-digit microsecond

latencies—corresponding to hundreds (rather than tens) of

thousands of round trips per second. Furthermore, using Shared

Memory, modern processors can exchange more than one

million messages per second.

Given these hardware characteristics, one may wonder why

most systems still rely on Sockets. After all, several cloud

providers already provide RDMA-capable instances [10], [2]

and Shared Memory is available on any system. We believe

that the main reason, as is often the case when a technically

superior solution fails to become widely adopted, is ease of

use. To fully exploit today’s networking hardware, one has to

use hard-to-use APIs like InfiniBand’s Remote Direct Memory

Access (RDMA) or its Ethernet pendant RDMA over Con-

verged Ethernet (RoCE). For fast inter-process communication

on the same machine, one has to implement concurrent message

passing in Shared Memory. Finally, one also has to orchestrate

and coordinate client and server processes to set up and use

these low-level techniques. Needless to say, this is much harder

and less portable than simply using Sockets.

To address these problems, we propose the Low-Level, Low-
Latency messaging Library (L5). L5 replaces traditional Sockets

and can transparently be configured to use RDMA (InfiniBand),

RoCE (Ethernet), or Shared Memory (IPC) as a communication

channel. For both remote communication over InfiniBand, as

well as between isolated processes on the same machine, L5

improves throughput and latency by over an order of magnitude.
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This paper’s contributions are as follows:

1) We introduce L5 as a unified communication interface

to address the problems with adaptive switching of tradi-

tional protocols with direct memory access (Section II).

2) We provide an efficient implementation of local commu-

nication using Shared Memory (Section III).

3) We show that a high-performance implementation using

RDMA can provide similar performance within a data

center (Section IV).

4) We demonstrate in microbenchmarks and in an end-to-

end evaluation based on YCSB [13] that we can reach

one million transactions per second with just a single

client (Section V).

II. L5: LOW-LEVEL, LOW-LATENCY MESSAGING LIBRARY

The network bottleneck makes it necessary to redesign

the communication stack of data management systems. As a

core building block, we present L5 (Low-Level, Low-Latency

Library). L5 provides (1) high transaction throughput for small

payloads, (2) optimal performance with few clients, and (3) a

unified interface for adaptive selection of the best available

communication technology. Furthermore, L5 provides very low

latency without relying on batching at the application level.

L5 achieves this by bootstrapping high-performance con-

nections via regular Sockets, but then switches to a faster

communication channel. For intra-machine communication,

e.g., on a container host, L5 upgrades the connection to

use Shared Memory. For intra-datacenter communication, we

instead upgrade the connection to RDMA, all while providing

the same interface, no matter the underlying implementation.

In the following, we provide an extensive analysis and

evaluation of database interconnects and document an

optimized direct memory access protocol for low latency

database system communication. L5 is publicly available:

https://github.com/pfent/L5RDMA

A. Messaging Layer

L5 provides a message-based communication layer, designed

after the protocols which we found to be the default for all

database systems. This accelerates the synchronous use-case:

Applications send statements to a database server, wait for a

reply, and then (based on the reply) continue their execution.

Traditionally, database systems would avoid this problem

by giving applications the possibility to move most of the

interactive logic inside the database system using stored

procedures. However, empirical evidence shows that many

applications are not willing to move their business logic to the

database. Andrew Pavlo [38], for example, presented results of

a database administrator survey on real-world database system

usage. More than half of the DBAs reported that they do

not use stored procedures or only very rarely. By neglecting

communication performance, current database systems cannot

cater the needs of one half of their users.

This is especially limits applications with data dependencies

between statements. While techniques such as batching can

help for the simplest data dependencies like issuing queries
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Fig. 2. Communication Technologies. An overview of network and IPC
technologies. L5 brings ease of use to high-performance interconnects.

in a loop to load a set of values, transactional workloads like

the TPC-C payment already need multiple dependent round-

trips for each transaction. Inherently data-dependent workloads

such as graph traversals even need a round-trip per node,

extremely amplifying communication overhead. This leads

to the somewhat paradoxical situation that, while clients are

starved due to communication overhead, DBMS load is still

low. With L5, data-dependent applications can instead make

use of the otherwise idle DBMS resources.

Additionally, there are also applications that have real-time

requirements. One example are financial transactions, similar

to the brokerage described in TPC-E [11]. Depending on the

outcome of analyzing transactions, client decision systems

execute or abort Trade-Order transactions. For clients, the

system response time is crucial, since faster issuing of buys or

sells at market value might give better prices.

While higher parallel throughput (and generally more band-

width) can always be achieved by using more network hardware,

reducing response times actually needs careful optimization.

For the size of the messages, L5 targets around 100Byte,

which is based on the fact that the commonly used TPC-

C benchmark [27] has a weighted average of around 49Byte

payloads per transaction1.

B. System Integration

Existing implementations and installations make it necessary

to design a system that can be integrated into database systems.

One way to allow for a higher transaction ingestion rate would

be to simply eliminate expensive context switches between

kernel and user space by using a user-space network library

such as mTCP [21].

However, we found that mTCP offers minimal performance

benefit for single client scenarios and is inferior to RDMA for

a larger number of clients (cf. Section IV). In fact, it takes

over 100 clients to saturate an mTCP interface with 1.2 million

msgs/s. Instead, we want to be able to saturate a system with

only a handful of clients, which is not possible with current

TCP-based interfaces.

If we instead use communication based on direct memory

access, we can also partially relax the strong guarantees of TCP

1TPC-C uncompressed payload literals profile: 45% new-order with an
average of 82Byte, 43% payment with 24Byte, 4% delivery with 8Byte, 4%
order-status with an average of 19.2 Byte, and 4% stock-level with 12Byte.
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and the Socket API. When sending data over a Socket, it is

impossible to retroactively interact with the message contents.

On the contrary, in a shared-access message buffer, data can

still be read back and even be changed while the remote side

reads it. While this has the new potential for “time-of-check to

time-of-use” bugs, simply copying the data out of the message

buffer (similar to how Sockets work under the hood) alleviates

this problem, while still providing excellent performance. On

the other hand, using direct memory access does not need to

relax the more serious guarantees of strong isolation between

client and server, and between different clients connected to

the same server, since it only needs to have the message buffer

as a shared object between one client and the server.

We categorize the complexity of the different connection

technologies compared to the potential benefit in Figure 2:

While TCP has the lowest barrier of entry and is used almost

everywhere, mTCP is only a moderate improvement for each

connection. UDP and protocols on top of it, like QUIC [20],

also have the potential to improve performance, but currently

lack hardware acceleration. Local communication options like

Domain Sockets and Shared Memory are more efficient, but

can obviously only be used between processes on the same

machine. When using RDMA for remote communication, the

potential of modern database management systems can be

leveraged almost as if they run on the same machine, and

maximum remote throughput can be reached with few clients.

In summary, L5 can significantly increase the ease of use

for complex direct memory access protocols: Bootstrapping

over regular sockets allows zero configuration and setup

overhead, and L5’s unified interface eliminates the need to

write thousands of lines of codes for RDMA and Shared

Memory. In combination, this allows effortless integration of

high-performance interconnects into the ODBC driver or the

database connectivity library of existing systems.

C. Why Sockets are Slow

The implementation of operating system interfaces has seen

a lot of development and its implementation is generally very

optimized. We argue that the reason behind Sockets lying in

the lower half of the performance spectrum is their fundamental

requirement of interoperability between architectures and

operating systems. A database system, on the other hand, has

more freedom to optimize the common case. Nevertheless,

they still use the operating system’s TCP Sockets, which is

the only protocol that allows reliable communication with a

wide interoperability, and is the de-facto standard for a wide

variety of different use-cases.

This interoperability is also the main source for TCP’s

complexity, which needs to support a wide variety of networks.

Contrarily, data management systems are often located in

datacenters where connection endpoints are as close to each

other as physically possible, either on the same network, or

even the same machine, only separated by thin virtualization

layers. TCP needs to deal with many edge cases, which simply

never appear in such environments and uses byte streams,

which do not fit the use-case of database systems, where both

DBMS

write()

Kernel

read()

Client
syscall

> 10 k cycles
syscall

> 10 k cycles

(a) Kernel based

DBMS

1×mmap() 1×mmap()

Client

Message buffer

Kernel

memcpy()
≈ 100 cycles

memcpy()
≈ 100 cycles

(b) Direct memory access

Fig. 3. Communication Concepts. Kernel based communication requires ex-
pensive system calls, while direct memory access allows cheap communication.

queries and transactional statements follow a request-reply

pattern with clear message semantics. This mismatch manifests

in most database access protocols in use today, where all

implementations we know of use messages on top of TCP’s

byte stream semantics.

Local alternatives like Domain Sockets can solve many of

TCP’s problems and significantly improve performance. But

even after shedding most overhead, they still bottleneck modern

in-memory database systems. In addition to TCP’s complexity,

system call overhead causes each message to consume more

than 10 000 cycles [47]. Recent mitigations for side channel

attacks like Meltdown [31] additionally amplify this effect. We

can instead use direct memory access, to which we will refer

in Unix terms as Shared Memory (SHM) and use a common

memory area to exchange messages. Figure 3 visualizes this

way of bypassing the kernel, where reading and writing data

only takes about 100 cycles.

L5 provides a way to use direct memory access for commu-

nication with a similar interface to those existing techniques.

E.g., it can use the same connection configurations as sockets,

since they bootstrap SHM, while it simultaneously avoids the

problem of noticing new or disconnected connections over

SHM alone. On top of the SHM or RDMA message buffer

L5 implements effective polling for new messages without any

system calls and allows equally efficient sending and receiving

of data. Both, RDMA and Shared Memory have more subtle

challenges, which we will discuss in the following two chapters.

III. LOCAL MESSAGING

In many latency-critical applications, the database client

(e.g., a web server) and the database server are located on the

same machine. In this setting, it might still be desirable to

have a separation of client and server into separate processes.

Lightweight container solutions like Docker make this setup

increasingly popular, since they make it easy to safely host

different applications on the same machine. Containers should

have very good local messaging performance without the need

for heavyweight network protocols, since applications can also

communicate through Shared Memory. This application is

different from single process database systems like SQLite [3],

where messages do not cross process boundaries. However,

unlike other high-performance applications, e.g., browsers or
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char* client_setup_shm(int connection_to_server)
int fd = memfd_create("debug_name",

MFD_CLOEXEC | MFD_ALLOW_SEALING)
ftruncate(fd, SIZE)
send_fd(connection_to_server, fd)
return mmap(NULL, SIZE, prot, flags, fd, 0)

char* server_setup_shm(int connection_to_client)
int fd = recv_fd(connection_to_client)
fcntl(fd, F_ADD_SEALS, F_SEAL_SHRINK)
ftruncate(fd, SIZE)
// SHRINK_SEAL ensures: filesize >= SIZE
return mmap(NULL, SIZE, prot, flags, fd, 0)

Fig. 4. Shared Memory Setup. Code for safely setting up Shared Memory
mappings between two processes with memfd_create().

display servers, database systems rarely make use of Shared

Memory for communication.

In this section, we show how database systems can use L5’s

Shared Memory messaging layer, which greatly outperforms

other techniques. For local communication, L5 offers a one-to-

one channel, which is instantiated for every client.

A. Shared Memory

Shared Memory only offers direct sharing of system memory

resources via low-level access. This lack of safe interfaces

requires careful implementation, but has unprecedented per-

formance. In this section, we show that we can safely set up

Shared Memory, which still ensures proper process isolation.

1) Ring Buffer Setup: For the initial connection establish-

ment, L5 uses a Domain Socket. They provide many connection

management features, and are a convenient out-of-bounds

control communication channel. After connection establishment,

we can use the standard set of system calls (shm_open,
ftruncate, mmap) to create, map, and exchange a Shared

Memory segment. L5 exchanges the Shared Memory file

descriptor via the Domain Socket ancillary data channel

(cmsg), which bootstraps the high-performance connection.

The well-known setup still has some unfortunate pitfalls,

which need to be addressed to maintain a database’s safety

requirements. First, we require that clients allocate the initial

memory segment. Otherwise, a client could control the server’s

memory allocation and bypass its own resource limitations

(ulimit, cgroup). Second, the default Shared Memory

mappings are visible for third-party processes. To ensure

that only client and server can read the memory, we require

non-standard extensions for unnamed anonymous mappings

(O_TMPFILE on Linux or SHM_ANON on FreeBSD).

Third, the most intricate problem is that clients could also

arbitrarily manipulate the underlying file. A malevolent client

might shrink the file, causing the server to read beyond file

boundaries. This causes a SIGBUS signal for the server, which

is very hard to handle correctly. Identifying the causing file and

client would require significant runtime introspection, which

itself causes more problems than Shared Memory solves.

Since version 3.17, Linux has the most mature way to deal

with all of those problems: the memfd_create system call.

With it, we can create an anonymous memory mapping by

default and additionally can “seal” the underlying file. By

applying a seal, we permanently fix the sealed file’s properties.

sender_read receiver_read sender_write

Virtual
memory

0x64

[11]result=420[OK]

mmap
0x128

Physical
memory

0x64

ult=420[OK] [11]res

Fig. 5. Ring Buffer. For communication on one machine, we use a ring buffer
in Shared Memory with a virtual memory wrap-around mapping.

With F_SEAL_SHRINK we disallow any shrinking of the file,

eliminating the need to handle SIGBUS errors. Figure 4 shows

a simplified version of L5’s setup, which eliminates unintended

client interference with the database server.

For the actual communication, we place two ring buffers into

this Shared Memory segment: One for sending messages from

the client to the server and one for the reverse. Figure 5 shows

the ring buffer’s memory layout with a virtual memory wrap-

around mapping. With a second call to mmap, we configure

the memory mapping in a way that the buffer’s consecutive

virtual memory addresses map to the same physical address.

This common technique simplifies the implementation, as writes

to the buffer automatically wrap around.

2) Ring Buffer Management: The ring buffer has two main

purposes: To store in-flight messages and to catch under- and

overflow situations. For the messages, we use a simple message

format of the message size followed by the specified amount

of bytes. The buffer can then be polled for the next message by

reading the next size. Since random access in RAM is cheap as

long as there is no cache contention, we first write the actual

message and afterwards set the size. Once the size is set, x86’s

total store order guarantees that the message has already been

written completely.

We additionally maintain three pointers to track free space:

receiver_read This pointer is stored in Shared Memory,

but is only written by the receiver. It points to the first byte

of the next message to be received. The receiver polls this

memory, until it reads a non-zero value. In the example in

Figure 5, the receiver reads 11, indicating a message of that

size. It can then read the actual message, do its necessary

processing, zero out the memory (required to allow polling

the size), and then advance receiver_read.
sender_read This pointer is only stored at the sender (not

in Shared Memory). It ensures enough remaining empty buffer

space, preventing the sender from overwriting not yet read

messages. This pointer is a copy of the receiver_read,
and caches it lazily to reduce latency by minimizing cache

contention. It is synced occasionally (necessarily when the

buffer appears to be full, but ideally slightly before with-

out data dependencies) with the receiver_read pointer.

Therefore, it is not always up to date and can lag behind the

real progress of the receiver, as shown in the example.

sender_write This pointer is also only stored at the sender.
It points to the address that the next message should be written

to. When sending a message, we first check, if the buffer has

enough remaining capacity by querying the sender_read
pointer. Then it can first write the actual message, and then

set the preceding size and finally advance sender_write.
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3) Adaptive Polling: On both sides, direct memory polling

ensures minimum latency and thereby increases throughput.

However, when there is not much traffic on the connection, it

consumes an entire CPU core without doing any useful work.

To avoid wasting resources, we deploy an adaptive polling

scheme, which detects an idle connection and backs off to

less resource-intense methods: After sending a message, L5

assumes a reply within a short duration and uses polling. After

a configurable number of tries, L5 stops busy polling and

uses yield commands to allow other threads to run on the

core. When even more time passes and no new message were

received, the thread transitions to waiting.
We can use a binary semaphore to safely and efficiently

fall back to blocking, but we require cross-process syn-

chronization. On POSIX systems, this is possible using a

PTHREAD_PROCESS_SHARED mutex and a binary condition

variable. On the receiver side, the transition is made by first

locking the mutex then setting an atomic flag (sleeping).
This flag indicates a receiver waiting on the condition variable.

Since a message could come in between checking the buffer

and setting the sleeping flag, the receiver needs to check

the ring buffer once again. This process guarantees a transition

to waiting on the condition variable, without missing a message.

On the sender side, the sleeping flag is checked after

sending a message, which does not increase response time.

B. Shared Memory Bandwidth
While the previous sections focus on achieving high syn-

chronous throughput for small messages, Shared Memory also

provides high bandwidth. Since there are several tuning knobs,

we also optimize bandwidth to achieve high throughput, not

only for small messages, but also for the occasional big data

transmission, which can equally profit from using Shared

Memory.

Baseline: Between processes, we are not limited by the avail-

able network bandwidth, but only by local memory speed. Our

Intel Xeon E5–2660 v2 has a theoretically available memory

bandwidth of 60GByte/s (more details in Section V-A), but

can only be saturated using multiple threads. As a baseline,

the single threaded STREAM Benchmark [35] on our system

achieves 6.9GByte/s for the copy operation. In our case of

inter process communication and given that there is some

synchronization overhead, our goal therefore is to get as close

as possible to that number.

Parameters: To determine the optimal parameters for max-

imum bandwidth, we transmit 10GB over a Shared Mem-

ory connection and measure the average bandwidth of this

transmission. The heat map plot in Figure 6 can be used

to determine the optimal configuration to transmit data over

Shared Memory. The y-axis varies the size of the underlying

transmission buffer, which stores the “in-flight” data. On the

x-axis, we vary the size of the individually transmitted chunks.

This chunked transmission is necessary, because we transmit

more data than the underlying buffer can store. Therefore, we

copy a chunk of nByte into the Shared Memory segment,

then increment sender_write by n and repeat. The upper
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Fig. 6. Efficient Shared Memory Usage. Heat map indicating the achievable
bandwidths using different buffer and chunk sizes to transmit large amounts
of data.

right-hand side is empty, because writing chunks exceeding

the underlying buffer’s size is impossible.

We achieved the best bandwidth of 5.35GByte/s with 128 kB

chunks transmitted via an 1MB buffer (marked in bold).

However, results near this hot spot only vary by a few percents.

One very distinct feature of the heat map is the diagonal line,

where the buffer size is equal to the chunk size. This has the

effect that the reader can only start reading when the writer

has finished the current chunk and subsequent chunks can only

be written when the reader has finished reading this chunk.

This effectively turns the buffer into a locking mechanism with

mutual exclusion, greatly reducing the bandwidth.

Results: The figure also distinctly shows the cache sizes of

the processor (cf. Section V-A), with a slight performance

drop for chunk sizes exceeding the 256 kB Level 2 cache of

our system and a bigger performance drop when exceeding

the 25MB Level 3 cache. In conclusion, we use chunk sizes

fitting completely into the L2 cache and never exceeding the

L3 cache. Transmission buffer sizes are harder to recommend,

since this strongly depends on the workload. Without inherent

data requirements, one should use a buffer size of approximately

5× to 10× the used chunk size.

IV. REMOTE MESSAGING

In this section we discuss L5’s implementation of a high-

performance message buffer in shared remote memory. We

found that RDMA has non-trivial performance characteristics

that need to be taken into account. For the implementation

decisions, we first evaluate different RDMA communication

building blocks in microbenchmarks and then use these to

construct our messaging implementation. Furthermore, we

implement an efficient way to serve multiple remote clients

accessing a database server in a request-reply pattern.

A. User-Space TCP Is Not Enough

To validate that RDMA is the right technology to use, we

first tried replacing the server’s TCP stack with user-space

networking like mTCP and saw, that this does not significantly

improve response time. To get a performance baseline, we

measure the throughput of synchronous 64Byte messages over
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Fig. 7. Remote Throughput. Synchronous transmission of 64Byte messages
between one server thread and a single client resp. an optimal number of
clients (in parenthesis).

TCP, mTCP, and RDMA. Figure 7 shows the number of

message round trips per second for this workload (hardware

details in Section V-A with a DPDK compatible NIC): All TCP

based configurations transmit less than 40Kmsgs/s. RDMA can

transmit significantly more messages per second, which makes

its performance comparable to the throughput of modern data

management systems.

The issue is similar when moving to a multi client scenario.

Figure 7 also shows results of an experiment with an optimal

number of clients (in parentheses). We used one server, running

a single threaded RDMA endpoint and one client with multiple

threads to determine the peak message throughput of the server.

We also noticed, that TCP over InfiniBand has less overall

throughput, despite it being the faster fabric. The results show

that already a few RDMA clients can move the bottleneck to

a single threaded server.

B. RDMA Design Decisions

RDMA and RoCE offload most the network stack processing

from the processor onto the NIC to reduce CPU load. Recent

work [21] has shown that the fraction of CPU time spent

processing the network stack can be up to 80%. RDMA can

eliminate the overhead with hardware support for reliable

transmission of data over RC connections. Additionally, RDMA

and RoCE bypass the operating system kernel and allow the

applications to talk directly with the NICs, thus avoiding costly

context switches.

C. Optimizing RDMA for Small Messages

We highlight two design decisions in L5’s use of the IB

verbs interface:

Request Polling: We compare different ways of using RDMA

primitives to transfer fix-sized messages between two machines

in Section IV-C. In this experiment, the client machine sends a

message to the server. Once received, the two machines switch

roles and the process is repeated. The three “Write” approaches

shown use a RDMA write work requests to place data directly

into the server’s memory. They differ in the way the server is

notified about the message’s arrival: In the “Polling” case, we

write data with a single write request and a busy loop constantly

polls front and back of the incoming memory location to

detect when transmission is finished. This approach relies on
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Fig. 8. Efficient RDMA Usage. We investigate RDMA primitives for small
messages: The best IB verbs and the most efficient way to write to two locations.

a front-to-back write order within one write request. While

this behavior has been documented for all hardware RDMA

implementations [15], [33], [24], software implementations

following RFC 5040 [40] might have a less strict write order.

As an alternative, we measure a “Two Write” implementation

that issues one write request for the bulk of the data and a

second single-byte request for RFC 5040 compliant message

detection. In the “Immediate” case, we attach a so called

immediate data value to the write work request. The immediate

value transfers 4Byte of data outside the actual message and

is propagated to the receiver’s completion queue. In this case,

the server polls the completion queue instead.

The last approach “Send + Receive” uses send/receive work

requests to exchange messages. Just like in the immediate

case, we consistently poll the completion to reduce the

latency as much as possible. The experiments clearly show

that this is necessary to avoid the additional lookup in the

completion queue to achieve high message throughput rates.

With larger messages this overhead becomes less relevant,

because transferring the actual message becomes expensive.

We base L5’s implementation on polling a single write work

request, which most efficiently uses the hardware capabilities

for small message sizes. For our target message size of

around 100Byte sized messages, we get around 70% faster

synchronous throughput compared to using receive requests.

Message Delivery: To support a special mode for multiple

clients, L5’s messaging implementation requires two RDMA

writes per message: One to set an indicator flag that a new

message arrived and one containing the actual message (details

in Section IV-D). In Section IV-C we compare different tech-

niques for doing two consecutive RDMA write operations. First,

we use two write work requests and send these individually to

the NIC. The first one writes the actual data and the second

one sets the indicator flag. Due to the ordering guarantees of

RDMA, the message is completely written before the flag is

set. Next, we use the chaining feature of RDMA work requests,

which allows creating a list of work request that can be sent

to the NIC with a single function call. Lastly, we make use of

the immediate data feature again, by putting the indicator flag

into the immediate data value.

Our results show that chained work requests cause a

surprisingly large overhead, even though they execute fewer
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instructions on the CPU. The same holds for the immediate

data value, which forces the server to poll the completion

queue instead of directly polling the indicator flags. In result,

it is advisable to use the first technique, which simply uses

two distinct RDMA write request.

D. Implementation

Based on the previous findings, we implement a solution

matching our goals laid out in Section II. The RDMA

connection is initially bootstrapped with out-of-band com-

munication channel over TCP. This also allows upgrading

existing connections after authentication and RDMA capability

detection phases. The out-of-band channel is then used to

communicate locations of the mailbox flag and message buffer.

The control channel can also be used to adjust the initially

fixed buffer sizes for each client. When a client requests a

larger buffer, the server reallocates this client’s message buffer

and transmits the new location. This should be a rare case in

transactional workloads and therefore not influence the steady

state performance.

For the remote case, L5 supports an asymmetric connection

behavior, i.e., one database server that is serving small sized

requests from many clients. This is useful for a common pattern

we observed, where a database server can have many open

connections, but only a few are active in bursts (e.g. when

an ORM reads an object hierarchy). In related work, Chen

et al. [12] identified CPU cache efficiency as a contention

point for inbound messages. L5 therefore implements a cache

efficient polling mechanism for the server-side:

Client → Server: Figure 9 shows the memory layout on the

server side with two distinct memory regions. Each row in

the message buffer on the right represents the receive-buffer

for one client. Each corresponding “mailbox” flag on the left

indicates whether this row’s client has written a new message

into the “message buffer”. As described in Section IV-C, we

use two RDMA write work requests: The first one writes the

message and the second one sets the mailbox flag. Due to

the ordering guarantees of reliable RDMA connections, the

message data is guaranteed to be completely written before

the flag is set and thus, the server can never see incomplete

messages. In the example in Figure 9, the second client has

completed sending a message and thus already set the mailbox

flag. The fourth client still has a message “in-flight”, without

the mailbox flag set.

The separation of messages from indicators for available

messages in the “mailbox” allows efficient polling for incoming

messages. This dense indicator buffer is possible, because

RDMA allows writes of single bytes. Directly polling the

message buffer would cause increased latency because of

additional cache misses. L5’s continuous mailbox array has

optimal cache locality, which allows polling 64 client connec-

tions with a single cache line. Additionally, the server can use

SIMD instructions to efficiently poll the mailbox. Whenever it

encounters a set flag, it handles the message, clears the flag,

and sends a reply. Once the client has received a reply, it knows

that it is safe to send the next message.

Server → Client: In the other direction, we assume to

receive only answer messages from a single source, due to the

asymmetric relationship between client and server. Therefore,

L5 can use an optimized layout that requires only a single

RDMA write request per message:

[10] result=420 O
K

The first field [10] is the message’s size and is always

transmitted as a 4Byte integer value. The client waits for a

message, by constantly polling this memory address. Once it

reads a value different from zero, it detects the start of a new

message. The server appends an additional byte [OK] after

the actual message. Once this [OK] byte is set, the RDMA

RC write order guarantees that the message has been completely

transmitted. A second, validating read of the message size

detects torn writes. This structure resembles the buffer in Shared

Memory, as it supports arbitrary sized result sets. Typically,

requests are small or even fixed size, but transaction results

might be larger than expected and consist of multiple messages.

This way, the buffer can seamlessly handle typical workloads.
Apart from the efficiently using RDMA primitives, our

implementation benefits from three additional optimizations:

(1) A virtual memory wrap-around mapping similar to the local

ring buffer reduces the total amount of writes. It allows to

always use a single, continuous, and unconditional write, which

reduces worst-case latency. (2) Common RDMA optimization

techniques, such as using inline messages for small payloads

and selective signaling of verb completion reduces overhead.

(3) Eager, asynchronous reads of the remote read position

allow single RTT writes in the common case.

V. EVALUATION

So far, we justified the design of L5 primary with mi-

crobenchmarks, and Figure 1 showcases the overall per-

formance impact of low-latency communication on an in-

memory database system running the TPC-C benchmark. In

the following, we first discuss the experimental setup, then

evaluate L5 with a lightweight workload that is sensible for the

network bottleneck, and compare our implementation to popular

DBMSs. Finally, we compare the RDMA implementation of

L5 to two state-of-the-art communication frameworks.

A. Hardware Details
We conducted our experiments on two dual socket machines

equipped with Intel Xeon E5–2660 v2 processors running at
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2.2GHz. The machines have 256GByte of main memory and

are organized as NUMA systems with 128GByte per socket.

Both machines are equipped with a Mellanox ConnectX–3 VPI

NIC, which supports FDR InfiniBand with 56GBit/s, and are

connected via a Mellanox SX6005 switch. To avoid NUMA

effects, which are not the focus of our work, we run our

experiments exclusively on the socket that is directly connected

to the network card.

B. Yahoo! Cloud Service Benchmark

As an end-to-end workload, we use the Yahoo! Cloud Service

Benchmark (YCSB) [13]. YCSB is a simple key-value store

workload, which uses one table with a 4Byte key and 10 string

fields with 100Byte each. It defines CRUD-style operations,

but since we are focused on the network we only use the read

workload YCSB-C. Each transaction consists of the following

steps: First, the client generates and sends a randomized, valid

lookup key using a Zipf distribution [19] with z = 1. Once

received, the server queries its key-value store and returns one

of the string fields to the client.

The in-memory DBMS Silo achieves around 1 million

YCSB-C lookups per second on a single thread without

communication overhead. For the network-centric evaluation,

we send prepared-statement messages via L5 to Silo. The

benchmark of Figure 1 already demonstrated that changing

the underlying communication layer using L5 can significantly

improve the network bottleneck.

C. Software Setup

We compare our own implementation to state-of-the-art

commercially available DBMSs. DBMS X uses the ODBC

API [17] and supports three different connection options on

Windows: TCP, Shared Memory, and Named Pipes. We consider

it the most advanced implementation of a Shared Memory,

client-server database connection. L5 is designed for Linux,

where DBMS X’s only available connection option is TCP.

Therefore, we conduct local DBMS measurements on Windows

in addition to Linux. Networked experiments were measured

between two Linux machines.

We also include MySQL [5], since Raasveldt and Müh-

leisen [39] measured very promising serialization times. In our

measurements, we used its Connector/C (libmysqlclient). By

using each database’s native client library, we achieve maximum

performance, since the native libraries use the communication

protocol with the least overhead. All tested databases also

provide ODBC connectors, which would be significantly easier

to test, but are usually implemented as a wrapper of the native

libraries used in our experiments. PostgreSQL [48] is another

interesting competitor, since many other systems implement

and support its protocol. To measure it, we used the native client

library libpq. Additionally, we compare SQLite as an in-process

database without the communication between processes.

All database systems use prepared statements with placehold-

ers to reduce message size and avoid SQL parsing overhead.

In case of Silo, we transmit a structure specifying the prepared

statement ID and the placeholder value to routines written in

TABLE I
LOCAL YCSB WORKLOAD C THROUGHPUT. COMPARISON OF THE LOCAL

SYNCHRONOUS THROUGHPUT OF DIFFERENT DATABASES. TESTED

CONNECTIONS: TCP, SHARED MEMORY (SHM), NAMED PIPES (NP),
DOMAIN SOCKETS (DS), AND LOOPBACK RDMA.

[sync. tx/s] TCP SHM NP DS RDMA

Silo + L5 50.5K 685 K — 72.1K 364K

DBMS X* 7.56K 11.5K 11.5K — —
MySQL* 10.0K 45.9K 27.6K — —

DBMS X† 6.88K — — — —

MySQL† 25.0K — — 42.9K —

PostgreSQL† 11.3K — — 18.4K —

SQLite† — 378K — — —

C++. For the other systems, we use their native SQL capabilities

to execute the prepared statement.

D. Local Measurements

To evaluate L5’s Shared Memory implementation (Sec-

tion III), we use a single machine and compare against locally

available connection options. For this setup it is also possible

to use library database management systems such as SQLite,

which does not have a dedicated database connection but instead

uses regular function calls to access data. What makes those

systems undesirable is that there are a number of ways, e.g.

memory corruption bugs, in which the host process can corrupt

the database2. Our approach instead uses a dedicated one-to-

one connection in order to prevent bugs in the application to

break the database system’s ACID guarantees.

Throughput—YCSB Workload C: Table I shows a compari-

son of different systems’ synchronous transactional throughput.

In this experiment, we compare the locally available connection

types. Shared memory—where available—gives the best perfor-

mance. Other alternatives like Named Pipes or Domain Sockets

are consistently faster than the link-local TCP baseline. Those

results show that the connection technology can greatly limit the

throughput of the application. Even the best results of traditional

database connections are still orders of magnitude slower than

we would expect. This shows that it is worthwhile to rewrite

the network stack and have a dedicated implementation for

local communication. In the measurements of Silo with L5, we

additionally include the result for RDMA in local loop-back

mode. This implementation is very similar to Shared Memory,

but suffers from the round trip over the PCIe bus to the NIC

and can only reach around half of the SHM performance.

Silo in combination with L5 is consistently faster than

that of other databases, but we can also observe significant

performance differences between DBMSs, with MySQL having

a relatively good network stack. Still, SQLite’s in-process,

no-communication transactions outperform MySQL by an

order of magnitude. We achieve the overall best performance

with L5’s Shared Memory implementation, performing at

15× compared to MySQL and even outperforming SQLite’s in

process implementation.

2https://www.sqlite.org/howtocorrupt.html
*on Windows Server 2016
†on Ubuntu 18.04.1
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TABLE II
LOCAL YCSB TABLESCAN BANDWIDTH. COMPARISON OF LOCAL

BANDWIDTH OF DIFFERENT DATABASES OVER TCP, SHARED MEMORY

(SHM), NAMED PIPES (NP), AND DOMAIN SOCKETS (DS).

[MByte/s] TCP SHM NP DS

Silo + L5 257 274 — 261

DBMS X* 105 511 518 —
MySQL* 27 28 29 —

DBMS X† 186 — — —

MySQL† 508 — — 439

PostgreSQL† 148 — — 256

SQLite†3 — 711 — —

Bandwidth—YCSB Tablescan: Table II shows bandwidth

measurements for local communication channels. All systems

are far from reaching the theoretical bandwidth limits, having

over an order of magnitude headroom to the measured baseline

in Section III-B. For Silo + L5, we can observe that the

underlying connection technology only has a minor influence

on the tablescan bandwidth.

However, the mediocre tablescan bandwidth of Silo is not

caused by the network stack, but seems to be an inherent

limitation of its OLTP focused design. DBMS X’s bandwidth

can be significantly improved using Shared Memory, but it is

still an order of magnitude slower than what is theoretically

possible. In comparison, MySQL has consistently poor perfor-

mance on Windows, but performs 10× better on Linux. Given

its quite good transaction throughput using Shared Memory

on Windows, we suspect that this is a performance regression

in the current release.

Discussion: In most systems, we can observe sizable YCSB-C

performance variations from just changing the underlying

connection. But even DBMS X and MySQL, which both

support SHM under Windows, are still over an order of

magnitude off of the expected performance. Since DBMS X is

able to reach over 2 million operations in an internal T-SQL

loop, we suspect that this is caused by an incomplete operating-

system bypass. Instead of detecting incoming messages directly

through SHM, MySQL uses the Windows’ named event API

for notifications, which apparently has significant overhead.

The measurements of local tablescan bandwidth also show

significant differences between systems. Maybe as a surprise,

no tested DBMS can come close to saturating the available

bandwidth. While this might be caused by inefficient serial-

ization formats, as Raasveldt and Mühleisen [39] suggest, we

believe that many more aspects of system design play a role.

E.g., Silo’s storage and transaction implementation is optimized

for small and local accesses, but turns out to be a bad choice for

larger range-scans. Nevertheless, for DBMS X the used data

transport has high impact of reachable bandwidth and SQLite’s

in-process bandwidth shows that the network interfaces are

still lacking.

E. Remote Measurements

In Section IV, we conducted performance measurements

between two servers over TCP and RDMA. Since we focus on

client server communication, we concentrate on a single (one-

TABLE III
REMOTE YCSB WORKLOAD C THROUGHPUT. COMPARISON OF

SUPPORTED REMOTE COMMUNICATION TECHNOLOGIES.

[sync. tx/s] 1G Eth 56G IB RDMA

Silo + L5 15K 27K 302 K
DBMS X 3.1K 3.7K —
MySQL 7.1K 8.0K —
PostgreSQL 6.3K 7.5K —

TABLE IV
REMOTE TABLESCAN BANDWIDTH. COMPARISON OF SUPPORTED REMOTE

COMMUNICATION MODES.

[MByte/s] 1G Eth 56G IB RDMA

Silo + L5 99 227 266
DBMS X 111 76 —
MySQL 111 327 —
PostgreSQL 97 140 —

to-one) connection. The concept of scaling to many connections

is somewhat orthogonal (cf. Section V-F) and benefits from

efficient individual connections.

Throughput—YCSB Workload C: Table III shows a com-

parison of remote synchronous transaction throughput over

different network connections. L5’s results in this experiment

are similar to our microbenchmarks introduced earlier: To

utilize the performance of modern database systems (or any

network application with high message rates), it is necessary

to migrate to RDMA-based communication.

While upgrading the network hardware can already scale

the performance without any software modifications, most

systems show only minor improvements. Using RDMA-aware

messaging gives, similarly to SHM, over an order of magnitude

performance improvement.

Bandwidth—YCSB Table Scan: A full fetch of the YCSB

table amounts to about 1GB payload data over the network,

which he ODBC 3.8 interconnect used by DBMS X transmits

using paged data block cursors. For our implementation using

L5, we use a similar approach and fetch blocks of 128 kB

(same as in Section III-B).

As Table IV shows, most databases somewhat profit from

the available bandwidth of the faster InfiniBand network.

Slow networks limit the overall throughput, i.e., the slowest

configuration with TCP over Gigabit Ethernet (1G Eth).

Surprisingly, DBMS X is even slower with TCP over InfiniBand,

which might be caused by the computational overhead of

the translation layer (we previously observed it being sensitive

in Table II). No implementation even closely reaches the

theoretical maximum of 7GByte/s.

Discussion: The bandwidth measurements also make the proto-

col overhead visible. When bandwidth is limited by the Gigabit

Ethernet fabric, we can observe a direct impact of serialization

format’s size overhead on throughput. E.g. PostgreSQL’s is

known to have high overhead.

When switching to InfiniBand, the database systems instead

run into processing limitations. Most systems already reach the

same bandwidth as link-local TCP, while we could reach much

higher bandwidth with L5’s RDMA implementation. In a sepa-
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rate experiment, we determined this to be about 1.22GByte/s.

We want to point out that this is reasonably close to the

maximum single stream communication an application can only

use at 1×FDR signaling rate (1.75GByte/s). Our InfiniBand

installation uses a total of 4× link aggregation, which results

in the nominal data rate of 4 × 1.75GByte/s = 7GByte/s.
However, the nominal data rate can only be saturated with

multiple parallel streams, but RDMA over FDR InfiniBand can

be used to mitigate this situation.

F. Scale Out

Figure 10 shows the scale-out behavior of client connections

via different technologies. We run YCSB-C on Silo with L5

and increase the number of clients on the horizontal axis.

With this experiment, we can observe that both TCP and

RDMA can scale to some degree, but RDMA has a huge head

start. The TCP based implementation scales moderately from

1 to 20 clients, reaching about 300 k transactions per second.

RDMA already surpasses 300 k transactions per second with

2 clients, before saturating a single server with 4 clients. An

increasing number of server threads allows scaling to even

more clients, peaking at around 1.9M transactions per second

with 4 server threads and 20 clients.

The 4 server threads scale linearly up to 10 client connections,

at which point we reach some limits of our system where the

clients start to run on hyperthreads. When scaling to even more

clients, some related work raises concerns due to dedicated

packet queues of RC connections. To evaluate this, we run

a similar experiment with 200 open connections. There, we

measure a 5% overhead for a 10× increase in open connections,

which is significantly less that the overhead of using receive
requests, which we measured in Section IV-C.

G. Communication Frameworks

In the previous sections, we looked at the communication

of commercially available databases, which is slower than

L5 by over an order of magnitude. Related work also offers

general purpose communication frameworks targeted at high-

performance network needs. They either use DPDK for user-

space networking [46], [23] or directly support RDMA [1],

[49], [28], [23]. In the following, we compare L5 against two

promising implementations: Seastar [46] using DPDK and

eRPC [23] with RDMA support.
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Fig. 11. Communication Frameworks. Comparison of YCSB-C throughput
over communication frameworks. L5 and eRPC use RDMA, while Seastar
only supports DPDK.

These communication frameworks differ in applications and

target use-case from L5. For example, they commonly report

their performance numbers with batched messages, i.e., sending

8 or more messages in one transmission to distribute the

communication overhead over multiple messages. We do not

consider batching a part of the communication interface, but

rather a responsibility of higher-level frameworks, such as the

ODBC driver. In addition, they also do not provide a shared

memory interface, thus have only limited performance for link-

local database clients, i.e., multiple containers colocated on

one container host would need to incur full network overhead.

The hardware configuration for this experiment is largely

unchanged. One exception is the network fabric, where we

can not consistently use InfiniBand due to limited DPDK

support. Instead, we change our setup to use the same NICs,

but without the intermediary InfiniBand switch, which restricts

the configurable network fabric. With this change, we can run

the experiment either over Ethernet (DPDK and RoCE) or

InfiniBand (RDMA). Additionally, since the callback based

programming interfaces of eRPC and Seastar are not easily

integratable into Silo we run this experiment with a simple

custom hashtable instead. Those changes cause this experiment

to be not comparable to the previous experiments with a

significantly higher throughput.

Seastar: The communication framework in ScyllaDB [45] is

designed for extreme scalability. Seastar’s architecture is built

upon asynchronous programming with lightweight threads and

a custom network stack on top of DPDK, which enables it

to scale to multiple thousands of connections. They showcase

their performance with dual 40G Ethernet NICs, where they

serve 7M HTTP requests per second to 2048 clients, each with

multiple concurrent connections.

eRPC: Instead of treating network messages as a stream of

bytes, eRPC implements messages as remote procedure calls.
This design follows similar reasoning to ours and should be a

good fit for transaction throughput. Unlike L5, eRPC uses UD

send/receive operations, which they argue to be more scalable.

In our evaluation of eRPC, we used the same hard- and

software configuration as for L5, with RDMA and RoCE using

the standard Mellanox drivers for our NICs. In eRPC’s own

evaluation, they use a modified driver with no overflow and

invalid opcode checks, removed unused features, and disabled

locks ensuring thread safety.
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Results: To compare the communication frameworks, we run

the YCSB-C workload as before, with one concurrent in-

flight transaction and no batching. Since neither of the two

frameworks supports Shared Memory, we limit our evaluation to

the remote case. Figure 11 shows that RDMA implementations

significantly outperform Seastar. This is rather unsurprising,

since Seastar uses a custom TCP/IP implementation and

performs as expected from our microbenchmarks in Section IV.

L5 outperforms eRPC by around 42%, which is caused by

their decision to use send/receive instead of direct memory

polling. In this experiment, we can also see that the choice

of underlying network fabric is actually less important than

the use of direct memory communication and a performant

implementation thereof. Using L5 over Ethernet (RoCE) only

reduces performance by around 10% and still outperforms

both other communication frameworks.

Both Seastar and eRPC trade individual client’s performance

for better scale out behavior. Instead, we argue that it should be

possible to saturate a system already with few clients, especially

when running them on the same machine. This is exactly the

setup where L5 shines: Optimal performance for each client.

VI. RELATED WORK

High-speed networking hardware (RDMA over InfiniBand)

has already been widely adopted in research and industry

to improve the performance of data management systems.

Due to the obvious benefits of faster network fabric, a large

body of work in the database community adopts RDMA

into the systems. Many papers focus on high-performance

distributed data structures as a basis for storage engines. In

addition, we see many advancements in distributed query and

transaction processing powered by the use of RDMA. However,

one important aspect that has been largely overlooked is the

improvement of the communication layer. In short:

How do we get requests into a database engine?
In the following, we compare our work with existing research

on client-database communication and give an overview of

other areas in database systems where RDMA has been applied.

Network protocols: Raasveldt and Mühleisen speed up

the communication of database systems with client appli-

cations [39]. They argue that de-/serialization of result sets

dominates execution time for OLAP workloads and propose a

more efficient columnar serialization method. In contrast, our

work studies the effects of replacing the underlying network

protocol of database systems to improve performance. Both

are important, but orthogonal efforts towards the same goal

and might have an optimal effect when combined.

Another effort for optimizing the client-database commu-

nication is MICA [30], a high-performance key-value store

with an optimized network stack. Their network layer uses

direct NIC access (kernel bypassing; similar to mTCP). Like

our implementation, MICA avoids the overhead of TCP, but

implements a custom communication protocol optimized for

small key-value items. The RDMA part of our paper extends

their idea by adopting it for high-performance interconnects

and provides a deep analysis of the involved techniques.

Distributed data structures: There is a large body of work

building data structures on RDMA [52], [22], [24], [55]. We

present three representative ones in the following:

FaSST [25] is a key-value store that efficiently uses RDMA

for small messages. It implements remote procedure calls (RPC)

using RDMA send/receive requests instead of directly reading

or writing memory. In combination with message batching

techniques to reduce NIC to CPU communication, their system

perfectly scales for parallel workloads. FaSST uses RDMA in

unreliable datagram mode, which they reason to be reliable due

to extremely rare packet losses. In contrast to their work, we

show that competitive latencies are possible without batching,

while additionally providing reliable communication channels.

FaRM [15] uses a message passing approach that uses

RDMA writes (similar to ours) for update transactions. Their

system also uses a ring buffer and a message detection approach

polling the memory location of the next message. For read

requests, the client traverses server side data structures using

RDMA. In contrast to our work, their approach requires

multiple round trips to traverse remote data structures and

is more difficult to extend to full-fledged transactions.

Pilaf [36] is a cuckoo hash table with self-verifying data

structures that can detect read-write races without client-server

coordination. Clients directly read from the server’s memory

via RDMA read operations. While their self-verifying feature is

promising, remote traversal of the hash table causes a significant

latency overhead.

Query and transaction performance: Classic database work-

loads can also profit from using RDMA and InfiniBand [50],

[32], [4], [16]. For join processing, Barthels et al. [7], [6]

investigate and optimize the scale out behavior of radix joins

for very large InfiniBand clusters. Other research has focused on

join performance by taking advantage of data distribution [43]

and skew [41]. Alonso et al. [4] propose a high-level API

for data flows. They simplify throughput-oriented, OLAP-style

applications rather than latency, which is important for OLTP.

Beyond joins, RDMA is beneficial for extending local

main memory capacity and thus avoids spilling on slow local

disks [29], [37]. Building on the huge bandwidth of RDMA,

MonetDB has been distributed by a ring topology and contin-

uously rotating data [18]. Rödiger et al. [42] use a distributed

exchange operator that can extend existing systems and scale.

While it is notoriously difficult to scale distributed transaction

processing [54], using RDMA made large advancements in

largely partitioned workloads [26]. Abstractions like Network-

Attached-Memory (NAM) [44], [8], [9] or partitioning [34]

have been proposed. They separate a distributed database into

compute and storage nodes, interconnected via RDMA. Using

this architecture, recent research suggests RDMA latency has

evolved so far that distributed transactions can scale [54].

VII. SUMMARY

We have shown that it is necessary to redesign and improve

existing network stacks to fully utilize the performance of

modern in-memory database systems. Our experiments suggest

that current network implementations are not performant
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enough for high transaction rates. L5 addresses the problem

of low latency remote and local communication by leveraging

RDMA over InfiniBand and Shared Memory.

Using L5 makes the underlying network protocol transparent

for the database system. With this approach, we can adaptively

choose the best network technology while allowing to integrate

new ones without affecting the application itself. In result, L5

provides a single, performant interface for multiple different

technologies.
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