
Designing Distributed Tree-based Index Structures
for Fast RDMA-capable Networks

Tobias Ziegler
TU Darmstadt

tobias.ziegler@cs.
tu-darmstadt.de

Sumukha
Tumkur Vani
Brown University
sumukha_tumkur_
vani@brown.edu

Carsten
Binnig

TU Darmstadt
carsten.binnig@cs.
tu-darmstadt.de

Rodrigo
Fonseca

Brown University
rfonseca@cs.
brown.edu

Tim Kraska
MIT

kraska@mit.edu

ABSTRACT
Over the past decade, in-memory database systems have
become prevalent in academia and industry. However, large
data sets often need to be stored distributed across the mem-
ory of several nodes in a cluster, since they often do not fit
into the memory of a single machine. A database architec-
ture that has recently been proposed for building distributed
in-memory databases for fast RDMA-capable networks is
the Network-Attached-Memory (NAM) architecture. The
NAM architecture logically separates compute and memory
servers and thus provides independent scalability of both
resources. One important key challenge in the NAM archi-
tecture, is to provide efficient remote access methods for
compute nodes to access data residing in memory nodes.

In this paper, we therefore discuss design alternatives for
distributed tree-based index structures in the NAM architec-
ture. The two main aspects that we focus on in our paper
are: (1) how the index itself should be distributed across sev-
eral memory servers and (2) which RDMA primitives should
be used by compute servers to access the distributed index
structure in the most efficient manner. Our experimental
evaluation shows the trade-offs for different distributed in-
dex design alternatives using a variety of workloads. While
the focus of this paper is on the NAM architecture, we be-
lieve that the findings can also help to understand the design
space on how to build distributed tree-based indexes for other
RDMA-based distributed database architectures in general.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3300081

ACM Reference Format:
Tobias Ziegler, Sumukha Tumkur Vani, Carsten Binnig, Rodrigo
Fonseca, and Tim Kraska. 2019. Designing Distributed Tree-based
Index Structures for Fast RDMA-capable Networks. In 2019 Inter-
national Conference on Management of Data (SIGMOD ’19), June
30-July 5, 2019, Amsterdam, Netherlands. ACM, New York, NY, USA,
18 pages. https://doi.org/10.1145/3299869.3300081

1 INTRODUCTION
Motivation: In the last years, in-memory database systems

have become dominant in academia and industry. This is not
only demonstrated by the multitude of academic projects in-
cluding MonetDB, Peloton and HyPer but also by the variety
of available commercial in-memory database systems such as
SAP HANA, Oracle Exalytics, IBM DB2 BLU, and Microsoft
Hekaton. A major challenge of in-memory systems, however,
is that large data sets often do not fit into the memory of a
single machine anymore. To that end, in-memory databases
often need to be stored distributed across the memory of a
cluster of machines. For example, Walmart — the world’s
largest company by revenue — uses a cluster of multiple
servers that in total provide 64 terabytes of main memory to
process their business data.

An architecture that has recently been proposed for build-
ing distributed in-memory database systems is the Network-
Attached-Memory (NAM) architecture [5, 39, 44]. The NAM
architecture was specifically designed for high-performance
RDMA-enabled networks and logically separates compute
and memory servers as shown in Figure 1. The memory
servers in the NAM architecture provide a shared and dis-
tributed memory pool for storing the tables and indexes,
which can be accessed from compute servers that execute
queries and transactions.

Amajor advantage of the NAMarchitecture over the classi-
cal shared-nothing architecture is that compute and memory
servers can be scaled independently and thus the NAM archi-
tecture can efficiently support the resource requirements for
various different data-intensive workloads (OLTP, OLAP, and
ML [5]). Moreover, as shown in [44], the NAM architecture
is less sensitive towards data-locality and can thus support
workloads where the database is not trivially partitionable.

Research 7: Modern Hardware SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

741

https://doi.org/10.1145/3299869.3300081
https://doi.org/10.1145/3299869.3300081

C
o

m
p

u
te

S

e
rv

e
rs

M
e

m
o

ry
S

e
rv

e
rs

RAM
(Buffer)

RAM
(Buffer)

RAM
(Buffer)

Remote Direct Memory Access (RDMA)

CPU CPU CPU CPU

RAM
(Buffer)

RAM
(DB 1)

RAM
(DB 2)

RAM
(DB 3)

RAM
(DB 4)

CPU CPUCPU CPU

R
/W

R
/W

R
/W R
/W

R
/W

R
/W R
/W

R
/W

Figure 1: The NAM Architecture

As a result, a recent paper [44] has shown that the NAM
architecture can scale out nearly linearly for transactional
workloads (OLTP) up to clusters with more than 50 nodes
while the classical shared-nothing architecture stops scaling
after only a few nodes.

However, what enables the scalability of the NAMarchitec-
ture is the advent of affordable high-performance networks
such as InfiniBand, RoCE, or OmniPath. These networks not
only provide high-bandwidth and low-latency, but also allow
to bypass the CPU for many of the required data transfer
operations using Remote-Direct-Memory-Access (RDMA),
minimizing the CPU overhead for every data transfer. Un-
fortunately, taking full advantage of RDMA especially for
smaller data transfers is not easy and as [44] points out re-
quires a careful design for all in-memory data structures.

Previous work [15, 16, 21, 44] therefore made several pro-
posals on how to design data structures mainly to support
concurrent updates. However, all these systems assume that
secondary indexes are not distributed and do not span more
than one server. While it is a reasonable assumption for some
workloads, it cannot only severely limit the scalability of the
entire system, but also create hot-spots if the index is com-
monly read/updated, destroying one of the key advantages
of the NAM architecture.
In this paper we therefore investigate if it is possible to

design a scalable tree-based index structure for RDMA. Our
focus is on tree structures in order to handle range queries
efficiently, and on the NAM architecture because of its scal-
ability, as well as its capability to separately scale compute
and in-memory storage. However, designing a scalable tree-
based index structure is not trivial and many design choices
exists. For instance, accessing indexes via RDMA leaves the
option whether to use one-sided RDMA operations, which
do not involve the remote CPU, or two-sided RDMA opera-
tions, which are essentially RPC calls. One-sided operations
are more scalable as they have less overhead, but unfortu-
nately, they are more complicated to use [5, 17, 20, 44], and
might require more than one round-trip. Furthermore, many
approaches exists on how the index (inner and leaf nodes)
should be distributed across the storage servers. Ideally, the
distribution scheme not only leverages thememory resources
of all available servers in a fair manner (e.g., the memory

requirements are distributed uniformly across all machines),
but is also robust towards different access patterns (i.e., uni-
form vs. skewed, different selectivities, different read/write
ratios etc.)
Contributions: In summary we make the following con-

tributions: (1) We discuss the design options of distributed
tree-based index structures for the NAM architecture that
can be efficiently accessed via RDMA. (2) We present three
different possible index implementations that vary in the
data distribution scheme as well as the underlying RDMA
primitives used to access and update the index. (3) We ana-
lyze the performance of the proposed index designs using
various workloads ranging from read-only workloads with
various access patterns and selectivities to mixed workloads
with different write intensities. Furthermore, the workloads
used in our evaluation cover uniform and skewed distribu-
tions to show the robustness of the suggested index designs.
As we will show in our experiments, both design questions,
which RDMA primitives to use and how to distribute the
index nodes, play a significant role on the resulting scalabil-
ity and robustness of the index structure. Finally, we believe
that the findings of this paper are not only applicable for
the NAM architecture, but also represent a more general
guideline to build distributed indexes for other architectures
(e.g., the shared-nothing architecture) and applications (e.g.,
ordered key-value stores) over RDMA-capable networks.
Outline: The remainder of this paper is organized as fol-

lows: In Section 2 we first give an overview of the capabili-
ties of RDMA-enabled networks and then discuss the design
space for tree-based indexes in the NAM architecture. After-
wards, based on the design space we derive three possible
tree-based indexing schemes, that we then discuss in detail in
Sections 3 to 5. The evaluation, in Section 6, examines these
index alternatives with various workloads. As mentioned
before, we believe that the findings of this paper generalize
to other distributed architectures. Some initial ideas in this
direction are discussed in Section 7. Finally, we conclude
with an overview of the related work in Section 8 and a sum-
mary of the findings and possible avenues of future work in
Section 9.

2 OVERVIEW
This section provides an overview of the background of
RDMA-capable networks relevant for this paper, discusses
the design space of distributed indexes for RDMA and an-
alyzes the scalability of the different alternatives. Readers
familiar with RDMA can skip Section 2.1 and continue with
Section 2.2.

2.1 RDMA Basics
Remote Direct Memory Access (RDMA) is a networking pro-
tocol that provides high bandwidth and low latency accesses

Research 7: Modern Hardware SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

742

to a remote node’s main memory. This is achieved by using
zero-copy transfer from the application space to bypass the
OS kernel. There are several RDMA implementations avail-
able — most notably InfiniBand and RDMA over Converged
Ethernet (RoCE) [42].

RDMA implementations typically provide different opera-
tions (called verbs) that can be categorized into the following
two classes: (1) one-sided and (2) two-sided verbs.

One-sided verbs: One-sided verbs (READ/WRITE) provide
remote memory access semantics, where the host specifies
the memory address of the remote node that should be ac-
cessed. When using one-sided verbs, the CPU of the remote
node is not actively involved in the data transfer.
Two-sided verbs: Two-sided verbs (SEND/RECEIVE) pro-

vide channel semantics. In order to transfer data between
the host and the remote node, the remote node first needs
to publish a RECEIVE request before the host can transfer
the data with a SEND operation. Different from one-sided
verbs, the host does not specify the target remote memory
address. Instead, the remote host defines the target address in
its RECEIVE operation. Another difference is that the remote
CPU is actively involved in the data transfer.
A further important category of verbs is Atomic verbs.

These verbs fall into the category of one-sided verbs and en-
able multiple host nodes to access the same remote memory
address concurrently, while preventing data races at the same
time. In RDMA, there are two atomic operations available:
remote compare-and-swap (CAS) and remote fetch-and-add
(FA). An important difference to READ/WRITE operations is
that both atomic operations (CAS and FA) can only modify
exactly 8 Bytes on the remote side.

Whether to use one-sided or two-sided verbs strongly de-
pends on the application. While one-sided operations are
appealing since they do not involve the remote CPU for
being executed, they typically require more complex com-
munication protocols using multiple round-trips between
the host and the remote node. On the other hand, two-sided
verbs are capable of implementing an RPC-based protocol
which requires only two round-trips but involves the remote
CPU (potentially heavily) in the execution of the RPC and
thus limits the scalability of the application. In this paper, we
study these trade-offs for the design of distributed tree-based
index structures. A more general analysis of whether to use
one-sided or two-sided operations can be found in [17].

2.2 Design Space for RDMA-based Indexes
In this section, we discuss the design space of distributed
tree-based index structures for RDMA-based networks. The
focus of this paper is on the NAM architecture and thus on
the question of how to distribute the index over memory
resources of multiple memory servers, as well as how to
access the distributed index from compute servers (see Figure

Server 2Server 1 Server 2 Server 3

0-99 100-199 200-299

Server 1 Server 3

Fine-grained DistributionCoarse-grained Distribution

Remote Pointers

… …Remote Pointers

Figure 2: Index Distribution Schemes

1). However, we believe that the design discussion in this
section can also help to understand the design space on how
to build distributed tree-based indexes for RDMA in general
and thus the findings can be applied to other architectures
(e.g., in a shared-nothing architecture). We will discuss some
of these other scenarios in more detail in Section 7.
In this section, we assume that the tree-based index has

a structure similar to a B-+-tree (or more precisely a B-link
tree [24]); i.e., inner nodes only store separators and leaf
nodes store the actual keys of the index. We will describe
the details of how we adapted the B-link tree in Sections 3
to 5 for our implementation. The index designs discussed
in this paper are applicable to primary/secondary as well as
clustered/non-clustered tree-based indexes with and without
unique keys.
Since tree-based indexes and in particular B-link trees

are often used as secondary indexes, the following discus-
sions assume a secondary (i.e., non-clustered) index with
non-unique keys, where duplicate keys can be stored in the
leaf/inner nodes of the index while leaves map secondary
keys (called keys further on) to primary keys (called payload
further on). The generalization to the other cases (primary
index, clustered index) is straightforward.
Index Distribution: In order to distribute the index (inner

and leaf nodes) across the memory of multiple machines,
two different extreme forms of distribution schemes can
be applied — namely a coarse-grained and a fine-grained
distribution scheme (see Figure 2):

(1) Coarse-grained Distribution (CG): This scheme applies a
classical approach known from shared-nothing architectures.
In order to distribute the index over multiple servers, we
first apply a partitioning function (either range-based, round-
robin, or a hash-based) to the keys that are being indexed and
thus decide on which server a key and its payload should
be stored. Once all keys and the payload are assigned to
servers, we can build a separate tree-based index on each of
the memory servers (i.e., we are co-locating inner and leaf
nodes on the same server).

(2) Fine-grained Distribution (FG): In the fine-grained distri-
bution scheme, we implement the other extreme case, where
we do not partition the index at all but instead build a global
index over all keys and distribute the index nodes (i.e., leaf
and inner nodes) on a per node-basis over the memory of all
machines in a round-robin manner level by level. In order

Research 7: Modern Hardware SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

743

to connect the index nodes, we use remote memory point-
ers that encode not only the memory address but also the
storage location (i.e., the memory server) which holds the
remote node. Details about the implementation of remote
memory pointers will be discussed later in Section 4.
While the coarse-grained scheme is the dominant solu-

tion to distribute indexes (and data) in slow networks when
the network bandwidth is a major limiting factor, the fine-
grained scheme is an interesting alternative for fast RDMA-
capable networks since it can farm out index requests across
all servers and thus lead to better load balancing. This is par-
ticularly interesting if local and remote memory bandwidth
converges which is already true for the most recent Infini-
Band standard HDR 4× that can provide approx. 50GB/s for
remote memory accesses per dual-port RDMA network card.

At the end of this section, we provide a formal analysis of
the scalability of both distribution schemes.

RDMA-based Accesses: As explained in Section 2.1, RDMA
provides two different classes of operations to access remote
memory, called one-sided and two-sided. In the following,
we discuss how one- and two-sided RDMA operations can
be used to implement index access methods. A more general
discussion about the trade-offs of one- and two-sided can be
found in [17].
If we use one-sided operations to access an index from a

remote host, each node of a tree-based index typically needs
to be accessed independently since RDMA READ/WRITEs
can only access one remote memory location at a time. Thus,
a lookup of a key in a leaf needs one RDMA READ operation
for each index node from the index root down to the leaf
level following the remote pointers. Range queries addition-
ally need to traverse the (linked) leaf level and need one
additional RDMA READ operation for each scanned leaf.
Implementing insert operations is even more complex

since we also need to take care of concurrency control (e.g.,
using RDMA atomics). In addition, to concurrency control
operations, inserts need at least two full index passes from
the root to the leaves and back. In the top-down pass, we
access every index node from the root to the leaf using RDMA
READs and in the bottom-up pass we then need to install
at most two pages using RDMA WRITEs for every level (in
case splits happen) plus potentially one additional RDMA
WRITE for installing a new root node.

In case we use two-sided RDMA operations for index ac-
cesses, we can leverage the fact that we can implement an
RPC protocol using an approach similar to [21] where the
remote CPU is involved to apply the index operations. An
RPC call from one server to another can be implemented
using a pair of SEND/RECEIVE operations: one pair for send-
ing the request from host to remote server, and one pair for
the response (e.g., which contains the result in case of an

Description Symbol Example
of Memory Servers S 4
Bandwidth per Memory Server (GB/s) BW 50GB/s
Page Size of Index Nodes (in Bytes) P 1024B
Data Size (# of tuples) D 100M
Key Size (in Bytes)
- same as Value/Pointer Size - K 8B

Fanout (per index node) M=P/(3·K) 42
Leaves (# of nodes) L=D/M approx. 2.3M
Max. index height (FG, Unif./Skew) HFG=logM (L) 4
Max. index height (CG, Unif.) HUCG=logM (L/S) 4
Max. index height (CG, Skew) HSCG=logM (L) 4

Table 1: Overview of Symbols

Fine-grained Coarse-grained (2-sided)
(1-sided) Range Hash

Step (1): Avail. BW:
Total BW Uniform S·BW S·BW S·BW
Total BW Skew S·BW 1·BW 1·BW
Step (2): BW per Q
Point (Unif., sel=1/L) HFG ·P HUCG ·P HUCG ·P
Point (Skew, sel=z/L) HFG ·P+z·P HSCG ·P+z·P HSCG ·P+z·P
Range (Unif., sel=s) HFG ·P+s·L·P HUCG ·P+s·L·P HUCG ·P·S+s·L·P
Range (Skew, sel= sz) HFG ·P+sz ·L·P HSCG ·P+sz ·L·P HSCG ·P·S+sz ·L·P
Step (3): Max. Q/sec
Max. Throughput Avail. BW / BW requirement per Q

Table 2: Scalability Analysis (Theoretical)

index lookup). Thus, two-sided operations seem to be more
efficient for implementing remote index accesses.
However, again when assuming that the local memory

bandwidth and network bandwidth are equal, one-sided op-
erations are not worse than two-sided operations w.r.t. the
bandwidth and thus throughput. Nevertheless, latency might
increase. On the other hand, using one-sided operations do
not involve the remote CPU at all. This is especially benefi-
cial for skewed workloads in high-load scenarios leading to
higher throughput and lower latency of index accesses, as
we will show in our experiments in Section 6.

2.3 Scalability Analysis
In this section, we now formally analyze the theoretical max-
imal throughput for the different index design variants intro-
duced before. The basic idea of the scalability analysis is to
compute the theoretical maximal throughput (i.e., number
of index accesses per second) based on the number of avail-
able servers that hold index data (i.e., memory servers in the
NAM architecture). The theoretical maximal throughput will
be computed by the total aggregated (remote) memory band-
width available that can be provided by all memory servers
divided by the bandwidth requirements for each index access
(i.e., for each query Q).

In the analysis we did not consider latency which is defini-
tively higher for FG because multiple network round-trips
are needed for each query. In our evaluation in Section 6, we
discuss the latency of the different index designs and show
that under high-load the FG scheme outperforms the CG

Research 7: Modern Hardware SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

744

scheme in terms of latency while being slightly higher for
normal load.
Assumptions: For analyzing maximal throughput for S

memory servers, we assume that memory bandwidth and
network bandwidth are equal and thus we do not differenti-
ate between both. This assumption is realistic as shown in
[5]. Since [5] was published, a new generation of InfiniBand
hardware (HDR 4×) appeared. With this hardware, the re-
mote memory bandwidth when using two network cards (or
one with a dual-port interface) will give us around 50GB/s ,
which is close to what we can expect today from the local
memory bus of one CPU socket with 4 memory channels.
In our scalability analysis, we further consider different

combinations of how the index is distributed across memory
servers (fine-grained/FG vs. coarse-grained/CG), as well as
different workload characteristics of how index accesses are
distributed (uniform vs. skewed). Since, we cannot analyze
all possible alternatives we make the following restrictions:
(a) We do not differentiate between one-sided and two-sided
RDMA operations since we assume memory and network
bandwidth to be equal as discussed before. Moreover, we
also do not include the CPU load in our analysis. To that end,
searching an index page from a compute server using a RPC
(based on two-sided operations) or a read using one-sided
operations is not different anymore w.r.t. required (remote)
memory bandwidth and thus the resulting throughput. (b)
We only consider read-only index accesses for the theoreti-
cal analysis since read accesses dominate OLTP workloads
[22] (and OLAP workloads as well). In our experimental
evaluation in Section 6, we also include workloads with
write accesses which show similar effects as the theoreti-
cal analysis for read-only workloads in terms of throughput.
(c) For analyzing skewed workloads, we assume attribute-
value-skew on the indexed attribute; i.e., one distinct key
dominates the distribution of the secondary index. In case
of CG-distribution (hash and range) this means that the ma-
jority of index entries (i.e., inner and leaf nodes) will end up
being stored on a single memory server.
Analysis and Findings: We now discuss the scalability of

throughput for different index designs. For the scalability
analysis, we use the symbols that we introduce in Table 1.
The findings of the analysis are summarized in Table 2. In
the following, we explain the idea behind the analysis in a
stepwise manner as indicated in the table.
Step (1) in Table 2: First, for different workload distribu-

tions we model the effectively available aggregated band-
width of all memory servers that hold the index. We assume
that we have a cluster with S memory servers, each con-
tributing a bandwidth BW to the aggregated bandwidth. The
total available aggregated bandwidth for FG-distribution is
always S ·BW . The reason is that even if workload is skewed
(i.e., one secondary key dominates the distribution), index

21 22 23 24 25 26

Memory Servers

0

200K

400K

600K

800K

1.0M

1.2M

1.4M

M
ax

.
T

h
ro

u
gh

p
u

t
(O

p
er

at
io

n
s/

s)

Range Queries (Sel=0.001, z=1)

Fine-Grained (Unif./Skew)

Coarse-Grained Range (Unif.)

Coarse-Grained Hash (Unif.)

Coarse-Grained Range/Hash (Skew)

Figure 3: Maximal Throughput (Theoretical)

accesses will always be farmed out to all memory servers
due to the round-robin distribution of index nodes to servers.
This is different for CG-distribution (hash and range). In the
skewed case, the very same memory server stores most of
the index data, thus effectively limiting the bandwidth to
only 1 · BW in the worst case.
Step (2), line 2 in Table 2: In a second step, we now con-

sider the (remote) memory bandwidth requirements of an
individual index access (i.e., one query) and start with point
queries and then continue with range queries.
For uniform distribution, we assume that only one leaf

page needs to be read by the point query (i.e., the selectivity
is sel = 1/L). In both cases (FG and CG), we thus only need to
traverse the index height. To that end thememory bandwidth
requirement is HFG · P (where P is the size of an index node
in bytes). For FG distribution, the index is built over all leaf
nodes L and thus the height is loдM (L)whereM is the fanout
of an index node. The index height for CG (uniform) is only
loдM (L/S) since data is first partitioned on S servers. In the
CG (skew) case, we assume that the maximal index height
under the CG scheme is the same as for the FG scheme. The
reason is that most leaf nodes will be stored in one memory
server (which also increases the index height). Moreover, we
assume a read-amplification of z for skewed workloads; i.e.,
z leaf pages need to be retrieved instead of 1 only (i.e., the
selectivity is sel = z/L) resulting in an additional memory
bandwidth requirement of z · P for a point query.
For range queries, we assume that under uniform work-

load a fraction of s leaf pages needs to be retrieved (i.e.,
the selectivity is sel = s). For skewed workloads this will
again be amplified by a factor of z (i.e., the selectivity is
sel = z · s = sz). Moreover, in the skewed case, we again as-
sume that CG has the same maximal height as FG since most
data will be stored in one memory server. Additionally, for
the hash-based scheme queries must be send to all S memory
servers resulting in S index traversals from root to leaves.

Step (3), line 3 in Table 2: Based on the results in step (1) and
(2), we can now derive the theoretical maximal throughput
for S memory servers by dividing the available aggregated

Research 7: Modern Hardware SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

745

Root Node

Ke
y

+
Pt

r
Ke

y
+

Pt
r

Ke
y

+
Pt

r
Ke

y
+

Pt
r

Ke
y

+
Pt

r
Pt

r +
 S

bl

Lock + Version

Leaf Node

Ke
y

+
Pt

r
Ke

y
+

Pt
r

Ke
y

+
Pt

r
Ke

y
+

Pt
r

Ke
y

+
Pt

r
Pt

r +
 S

bl

Lock + Version

Leaf Node
Ke

y
+

Pt
r

Ke
y

+
Pt

r
Ke

y
+

Pt
r

Ke
y

+
Pt

r
Ke

y
+

Pt
r

Pt
r +

 S
bl

Lock + Version

Local
Pointer

Local
Pointer

Local
Pointer

…

Root Node

Ke
y

+
Pt

r
Ke

y
+

Pt
r

Ke
y

+
Pt

r
Ke

y
+

Pt
r

Ke
y

+
Pt

r
Pt

r +
 S

bl

Lock + Version

Leaf Node

Ke
y

+
Pt

r
Ke

y
+

Pt
r

Ke
y

+
Pt

r
Ke

y
+

Pt
r

Ke
y

+
Pt

r
Pt

r +
 S

bl

Lock + Version

Leaf Node

Ke
y

+
Pt

r
Ke

y
+

Pt
r

Ke
y

+
Pt

r
Ke

y
+

Pt
r

Ke
y

+
Pt

r
Pt

r +
 S

bl

Lock + Version

Local
Pointer

Local
Pointer

Local
Pointer

…

Server 1 Server 2

Figure 4: Design 1 - Coarse-Grained Index
memory bandwidth (step 1) by the bandwidth requirements
for the different queries (step 2).

Example Results: Figure 3 plots the results of our analysis
for range queries (for a uniform and a skewed workload).
Point queries show a similar trend; thus we do not show their
plot. For Figure 3 plot, we use the example values provided
in Table 1 (rightmost column), however, additionally varying
the available memory servers between S = 2...64. We choose
a selectivity of s = 0.001 and skew amplification of z = 10.
We can see that all index designs scale well for uni-

form workloads. The reason why the CG scheme (uniform)
scales slightly worse for hash-partitioning than for range-
partitioning is that queries for hash-partitioning need to be
sent to all memory servers since all servers might hold rel-
evant index entries for range queries resulting in the fact
that the indexes on all S machines need to be traversed. This
is different for skewed workloads. Here the FG scheme still
shows the same scalability as for a uniform workload while
the CG scheme stagnates with increasing memory servers.
The main reason is that the total available bandwidth is lim-
ited to only BW under skew and is independent from the
number of memory servers available. To that end, we can
see that in terms of throughput the FG scheme is the only
scheme which achieves a throughput which scales with the
available memory servers independent of the workload.
Next, we present the details of our index implementations
using a coarse-grained (CG), a fine-grained (FG), and a hy-
brid distribution scheme that mixes CG and FG. For each
of the index implementations we also discuss which RDMA
operations are being used for accessing the index from a
remote machine (i.e., from a compute server).

3 DESIGN 1: COARSE-GRAIN/TWO-SIDED
In this section, we discuss our first tree-based index struc-
ture design which can be distributed over the memory of
multiple servers and accessed by clients via RDMA (e.g., com-
pute servers in the NAM architecture). First, we discuss the
details of the distributed index structure itself. Afterwards,
we elaborate on how this index structure can be efficiently
accessed using RDMA operations.

3.1 Index Structure
The first index structure leverages a coarse-grained distri-
bution scheme as shown in Figure 2. The basic idea of the

1 operation lookup(key , node , parent , parentVersion) {
2 version = readLockOrRestart(node);
3 if(parent != null)
4 readUnlockOrRestart(parent , versionParent)
5
6 if(isLeaf(node))
7 value= getLeafValue(node)
8 checkOrRestart(node , version)
9 return value
10 else
11 nextNode = node.findChildInNodeOrSingling(key)
12 checkOrRestart(node , version)
13 return lookup(key , nextNode , node , version)
14 }
15
16 operation insert(key , value , node , parent , parentVersion){
17 version = readLockOrRestart(node);
18 if(parent != null)
19 readUnlockOrRestart(parent , versionParent)
20
21 if(isLeaf(node))
22 upgradeToWriteLockOrRestart(node , version)
23 splitKey = node.insert(key , value)
24 writeUnlock(node)
25 return splitKey
26 else
27 nextNode = node.findChild(key)
28 splitKey = insert(key , value , nextNode , node ,version)
29 if(splitKey !=NULL)
30 upgradeToWriteLockOrRestart(node , version)
31 parentSplitKey = node.insert(key , value)
32 writeUnlock(node)
33 return parentSplitKey
34 return NULL
35 }

Listing 1: Operations of a Coarse-Grained Index

coarse-grained index distribution scheme is to partition the
key space by using a traditional partitioning scheme (either
hash- or range-based), between different memory servers.
Afterwards, each memory server individually builds a tree-
based index for its assigned keys.
The internal index structure in each node is shown in

Figure 4 and follows the basic concepts of a B-link tree [24].
However, different from the original B-link tree, we use real
memory pointers instead of page identifiers. More impor-
tantly, we additionally introduce an 8-byte field per index
node which stores a pair (version, lock-bit)where the last bit
represents a lock-bit. We use this field to implement a concur-
rency protocol based on optimistic-lock-coupling [25]. Our
adaption of optimistic-lock-coupling for RDMA is explained
in the next section.

3.2 RDMA-based Accesses
In order to access the index structure, as shown in Figure
4, from a remote host, we use an RPC-based protocol that
uses two-sided RDMA operations. This design thus follows a
more traditional paradigm where operations are shipped to
the data – similar to how database operations are executed
in a shared-nothing architecture. Other index designs which
use one-sided operations or a hybrid access protocol that
mixes one-/two-sided operations are explained in Sections 4
and 5 respectively.
Our RPC implementation for this index design is using

RDMA SEND/RECEIVE similar to the RPC implementation

Research 7: Modern Hardware SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

746

of [21]. In contrast to [21], we are not using unreliable data-
grams (UD) to implement the RPC but reliable connections
(RC). Typically the overall throughput of index operations is
limited by either the CPU or the memory bandwidth as we
will show in our experiments; rather than by the number of
RDMA operations that the network card can execute (which
was the main motivation of using UD in [21]). Furthermore,
to better scale-out with the number of clients, we are using
shared receive queues (SRQs) to handle the RDMA RECEIVE
operations on the memory servers. SRQs allow all incoming
clients to be mapped to a fixed number of receive queues,
instead of using one receive queue per client [41].
In the following, we mainly focus on how the remote

procedures are executed on memory servers which store the
part of the index being requested.
Index Lookups: If an incoming RPC represents an index

lookup (i.e., a point- or a range-query), a thread which han-
dles the RPC in a memory server traverses the index using
a concurrency protocol based on optimistic-lock-coupling
[25] but adapted for our tree-based index structure.

Index Updates: Furthermore, we also support index inserts
and deletes as on RPCs. In the following, we first discuss
inserts and then delete operations. Similar to [25], the
thread which handles the insertion RPC, does not acquire
any lock in the top-down pass from root to leaf nodes.
Instead it acquires the first lock on the leaf level using a
local compare-and-swap (CAS). If a leaf needs to be split,
due to an insert, the locks are propagated to the parent
nodes. Delete operations are implemented by setting a
delete bit per index entry instead of removing the key. For
removing deleted entries we use an epoch-based garbage
collection scheme which runs on each memory server in
a NAM architecture and is responsible for removing and
re-balancing the index in regular intervals.

The code for the two operations lookup (point-query)
and insert that are executed locally on a memory server is
shown in Listing 1. The concurrency scheme of the coarse-
grained index relies on the same methods as [25]. Range-
queries work similar and only need to traverse the leaf level
additionally. The helper methods used in the code of Listing 1
is shown in Appendix A.1. In order to implement the lookup
operation of Listing 1, readLockOrRestart is used which
implements a spinlock on the lock-bit to enter a node. Fur-
thermore, after scanning the content of a node, the lookup
operation calls checkOrRestart which uses the full version
information (including the lock-bit) to check whether a con-
current modification has happened while searching the node.
The insert operation of Listing 1 additionally uses a compare-
and-swap operation in its upgradeToWriteLockOrRestart
operation to set the lock-bit before modifying a node and
insert a new key. For releasing the lock in writeUnlock a

Ke
y

+
Pt

r
Ke

y
+

Pt
r

Ke
y

+
Pt

r
Ke

y
+

Pt
r

Ke
y

+
Pt

rRoot Node (Server 1)

Ke
y

+
Pt

r
Ke

y
+

Pt
r

Ke
y

+
Pt

r
Ke

y
+

Pt
r

Ke
y

+
Pt

r
Pt

r +
 S

bl

Lock + Version

Inner Node (Server 2)

Ke
y

+
Pt

r
Ke

y
+

Pt
r

Ke
y

+
Pt

r
Ke

y
+

Pt
r

Ke
y

+
Pt

r
Pt

r +
 S

bl

Lock + Version

Inner Node (Server 1)

Ke
y

+
Pt

r
Ke

y
+

Pt
r

Ke
y

+
Pt

r
Ke

y
+

Pt
r

Ke
y

+
Pt

r
Pt

r +
 S

bl

Lock + Version

Leaf Node (Server 2)

Ke
y

+
Va

l
Ke

y
+

Va
l

Ke
y

+
Va

l
Ke

y
+

Va
l

Ke
y

+
Va

l
L+

 R
 S

bl

Lock + Version

Leaf Node (Server 1)

Ke
y

+
Va

l
Ke

y
+

Va
l

Ke
y

+
Va

l
Ke

y
+

Va
l

Ke
y

+
Va

l
L+

 R
 S

bl

Lock + Version

Remote
Pointer

Remote
Pointer

Remote
Pointer

Remote
Pointer

Remote
Pointer

Remote
Pointer

…

Head Node (Server 1)

Pt
r

Pt
r

Pt
r

Remote
Pointers

Pt
r

Pt
r

Pt
r

Pt
r

Pt
r

Pt
r

Pt
r

Leaf Node (Server 2)

Ke
y

+
Va

l
Ke

y
+

Va
l

Ke
y

+
Va

l
Ke

y
+

Va
l

Ke
y

+
Va

l
L+

 R
 S

bl

Lock + Version

Leaf Node (Server 1)

Ke
y

+
Va

l
Ke

y
+

Va
l

Ke
y

+
Va

l
Ke

y
+

Va
l

Ke
y

+
Va

l
L+

 R
 S

bl

Lock + Version

Remote
Pointer

Remote
Pointer

…

Pt
r

Pt
r

Figure 5: Design 2 - Fine-Grained Index

fetch-and-add operation is used to atomically reset the lock-
bit and carry the bit over to increase the version counter.

4 DESIGN 2: FINE-GRAIN/ONE-SIDED
In this section, we discuss our second design of a tree-based
index structure.

4.1 Index Structure
The basic idea of the fine-grained index is that the index is
distributed on a per-node basis to different memory servers
in a round robin fashion as discussed in Section 2. An exam-
ple index structure is shown in Figure 5.

As in the first design, in addition to the keys and pointers
each index node stores an 8-byte fieldwith (version, lock-bit)
at the beginning of each node. However, different from the
first design, pointers are implemented as so called remote
pointers. More precisely, a remote pointer is a 8-byte field
which stores (nullbit, node-ID, offset). The nullbit
indicates whether a remote pointer is a NULL-pointer or not
and the node-ID encodes the address of the remote memory
server (using 7 Bit). The remaining 7 Byte encode an offset
into the remote memory that can be accessed via RDMA.
Furthermore, we introduce an optimization called head

nodes on the leaf level. The optimization will be discussed
at the end of this section.

4.2 RDMA-based Accesses
In order to access the index structure shown in Figure 5 from
a remote host, we use an RDMA-based protocol that is based
on one-sided operations. For the fine-grained distribution
scheme we anyway need to access each index node sepa-
rately (inner and leaf node) and thus one-sided operations
are a good fit for the FG distribution scheme. Similar to the
index design in Section 3, we use a protocol that is based on
optimistic-lock-coupling. Yet, all operations are implemented
using one-sided RDMA primitives.

Index Lookups: The intention of the lookup-operation for
point-queries is that it can be executed by a compute server
to access a remote memory server(s) which store the index
node(s). The code for the remote_lookup operation which

Research 7: Modern Hardware SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

747

implements a point-query is shown in Listing 2. Range-
queries work similar and only need to traverse the leaf level
additionally. The code of the helper methods is shown in
Listing 4 in Appendix A.1.
The main difference to the lookup protocol of Section 3

is that the remote_lookup first copies the accessed node
(inner or leaf) with an RDMA_READ to the memory of the
client. Afterwards, the lookup operation checks on its local
copy if the lock is not set (i.e., it is set to 0) and fetches a new
copy if the lock is set by implementing a remote spinlock.

An interesting observation is that different from the origi-
nal protocol in [25], we do not need the version of the node
after searching the node. Version checking in the coarse-
grained scheme (as shown in line 8 and 12 in Listing 1 for
the coarse-grained scheme) is used since a reader may see
an intermediate inconsistent state of an index node. In the
fine-grained scheme, however, the client holds a local consis-
tent copy which cannot be modified by other clients, hence
version checking is not needed. Furthermore, we also do
not check the version of the parent again once we traversed
down to the next level (as shown in line 4 in Listing 1 for
the coarse-grained scheme). Therefore, a concurrent split
on the current level might not be detected. However, after a
split the first node is written in-place (as discussed below).
Thus, we can use the fact that we implement a B-link tree
and continue the search with the sibling if the search key is
not found in the current node.

Finally, a last modification, when using a one-sided proto-
col, is that compute servers need to know the remote pointer
for the root node. This can be implemented as part of a cata-
log service that is anyway used during query compilation
and optimization to access the metadata of the database.
Index Updates: As before, we also support inserts and

deletes, which will be discussed in the following.
Inserts are more complex than lookups, since they mod-

ify the index structure. Similar to the remote_lookup op-
eration the compute server first fetches a local copy and
checks if no lock was set. To that end, version checking after
traversing from one leaf level to the next is not needed any-
more since clients hold a copy of an index node. However,
since clients only hold a local copy of the index node, the
remote_upgradeToWriteLockOrRestart operation uses an
RDMA_CAS operation for setting the lock-bit on the remote
memory server. Moreover, remote_writeUnlock resets the
lock-bit remotely with RDMA_FETCH_AND_ADD. This method
additionally installs the modified version of the node on the
remote side using an RDMA_WRITE as shown in Listing 4 in
Appendix A.1. In case a node has to be split (i.e., the splitkey
is not NULL), the remote_writeUnlock method addition-
ally writes the second node resulting from the split.

Finally, delete operations (no shown in Listing 2) are again
implemented by setting a delete bit using a similar protocol

1 operation remoteLookup(key , remNodePtr) {
2 node = remote_read(remNodePtr)
3 remote_readLockOrRestart(node , remNodePtr)
4
5 if(isLeaf(node))
6 value= getLeafValueFromNodeOrSiblings(node)
7 return value
8 else
9 nextNodePtr = node.findChildInNodeOrSiblings(key)
10 return remoteLookup(key , nextNodePtr)
11 }
12
13 operation remoteInsert(key , value , remNodePtr){
14 node = remote_read(remNodePtr)
15 version = remote_readLockOrRestart(node , remNodePtr)
16
17 if(isLeaf(node))
18 remote_upgradeToWriteLockOrRestart(node , remNodePtr ,version)
19 splitKey = node.insert(key , value)
20 remote_writeUnlock(node , remNodePtr)
21 return splitKey
22 else
23 nextNodePtr = node.findChildInNodeOrSiblings(key)
24 splitKey = remoteInsert(key , value , nextNodePtr)
25 if(splitKey !=NULL)
26 remote_upgradeToWriteLockOrRestart(node , remNodePtr ,version)
27 parentSplitKey = node.insert(key , value)
28 remote_writeUnlock(node , remNodePtr)
29 return parentSplitKey
30 return NULL
31 }

Listing 2: Operations of a Fine-Grained Index

as inserts, which modifies a local copy of the page and then
writes the node back to the memory server. Moreover, we use
an epoch based garbage collection scheme similar to Section
3, although the garbage collection thread is run by a compute
server globally for the complete index. The reason is that
deletions also need to lock the index nodes (same as writes).
In order to implemented these locks, we have to use the same
one-sided protocol as for potential concurrent writes which
relies on RDMA-based atomics. The reason why we cannot
run garbage collection as a local thread on a memory server
is that atomicity cannot be guaranteed if remote and local
atomic operations would both be used concurrently on the
same memory addresses [10].

4.3 Optimization of Index Structure
In addition to the basic index design, we introduce so-called
head nodes in the leaf level. Head nodes are additional leaf
nodes (with no actual index data) that are installed after
every n-th real leaf node. The idea of the head nodes is that
they redundantly store remote pointers to all n − 1 following
leaf nodes (i.e., the pointers between leaf nodes are still kept).
That way, a compute node which reads a head node during
a leaf level scan (which is necessary for a range query) can
use the remote pointers to prefetch leaves. This technique
is based on selectively signaled RDMA READs as already
presented in [39]. Prefetching reduces the network latency
by masking network transfer with computation.
One difficulty that arises when using head nodes is that

they need to be updated after a leaf node splits. Since head
nodes are only an optimization andwe keep the actual sibling
pointers additionally in each leaf node, we do this similar
to garbage collection in an epoch-based manner using an

Research 7: Modern Hardware SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

748

Leaf Node (Server 2)

Ke
y

+
Va

l
Ke

y
+

Va
l

Ke
y

+
Va

l
Ke

y
+

Va
l

Ke
y

+
Va

l
L+

 R
 S

bl

Lock + Version

Leaf Node (Server 1)
Ke

y
+

Va
l

Ke
y

+
Va

l
Ke

y
+

Va
l

Ke
y

+
Va

l
Ke

y
+

Va
l

L+
 R

 S
bl

Lock + Version

Remote
Pointer …

Leaf Node (Server 2)

Ke
y

+
Va

l
Ke

y
+

Va
l

Ke
y

+
Va

l
Ke

y
+

Va
l

Ke
y

+
Va

l
L+

 R
 S

bl

Lock + Version

Leaf Node (Server 1)

Ke
y

+
Va

l
Ke

y
+

Va
l

Ke
y

+
Va

l
Ke

y
+

Va
l

Ke
y

+
Va

l
L+

 R
 S

bl

Lock + Version

Remote
Pointer

F
in

e
-g

ra
in

e
d

C
o

a
rs

e
-g

ra
in

e
d

Root and Inner Nodes
(Server 1)

Root and Inner Nodes
(Server 2)

Remote
Pointer

Remote
Pointer

…

Remote
Pointer

Remote
Pointer

Figure 6: Design 3 - Hybrid Index

additional thread that scans through the leaf nodes of all
memory servers and installs new head nodes (resp. removes
the old head nodes). A compute server can detect outdated
head nodes during traversing the leaf level; i.e., if a sibling
pointer in a leaf node is pointing to a leaf node whose remote
pointer was not in a head node (i.e., it was not prefetched),
then the compute server which traverses the leaf level simply
needs to execute an additional remote read for this pointer.
This will cause some increase in latency but the scan of the
leaf level will still be correct.

5 DESIGN 3: HYBRID SCHEME
This index design is a hybrid scheme combining the two
schemes discussed in Section 3 and Section 4.

5.1 Index Structure
For distributing the index, as shown in Figure 6 we use a
coarse-grained scheme to partition the upper levels of the
index (inner and root node) while we use a fine-grained
scheme for the nodes on the leaf level. The intuition is that
we combine the best of both designs; i.e., getting low latency
by using an RPC-based index traversal and still being able
to leverage the aggregated bandwidth of all memory servers
by distributing leaves in a fine-grained manner.
That way, even if attribute-value-skew on index key oc-

curs, leaf nodes are still distributed uniformly to all memory
servers. Additionally, the leaf level in this index structure
can leverage head nodes, similar to the design in Section 4,
to enable prefetching for range queries.

5.2 RDMA-based Accesses
For accessing the index, we also use a hybrid scheme of
one-sided and two-sided RDMA operations.
Index Lookups: The basic idea is that we (as already dis-

cussed before) traverse the upper levels of the index using
RPCs that are implemented using two-sided operations. How-
ever, instead of returning the actual data, the RPC only re-
turns the remote pointer to the leaf node. Afterwards, in
case of a lookup (i.e., point- and range-queries), the compute
server fetches the leaf nodes using one-sided RDMA READs.

Index Updates: In case of an insertion, we again use an RPC
that traverses the index and returns a remote pointer to a leaf
page where the new key should be inserted to. For actually
installing the key, the compute server uses the remote pointer

Workload Point Queries Range Queries (sel=s) Inserts
A 100%
B 100%
C 95% 5%
D 50% 50%

Table 3: Workloads of our Evaluation

and the one-sided protocol from Section 4 to install the new
key to the leaf level.
In case a new leaf node has to be inserted (due to a split

operation), the compute node will issue an additional RPC
over two-sided RDMA to the memory server indicating that
a new leaf node has been inserted (using the start key and the
new remote pointer as arguments). The memory server will
then use the second part of insertion protocol from Section
3 to install the new key into the upper levels of the index.
Finally, deletes are handled again by an epoch-based

garbage collection. In this scheme, a global garbage collec-
tion thread is again executed on a compute server handles
deletes for all the leaf nodes while local garbage collection
threads on memory servers handle the upper levels. There is
no need to synchronize the local garbage collection threads
on memory servers with the global garbage collector for
leaves since the delete operation already takes care of setting
the delete bit in a consistent manner.

6 EXPERIMENTAL EVALUATION
The goal of our experiments is to analyze the different in-
dex designs (CG/2-Sided, FG/1-sided, Hybrid) presented in
Sections 3 to 5.
Workloads: We chose the Yahoo! Cloud Serving Bench-

mark (YCSB) to mimic typical OLTP and OLAP index work-
loads. Since the original version of the YCSB workload [12]
does not cover all relevant cases for tree-based index struc-
tures we implemented a modified version. For example, the
original version of YCSB only supports queries for short
ranges but does not explicitly support different selectivi-
ties (low/ high) for query ranges. Table 3 summarizes the
workloads of our modified version of the YCSB benchmark:
Workload A models a read-only workload with 100% point
queries while Workload B represents read-only workload
with range queries where the selectivity can be configured
to different values. In our experiment we used sel = 0.001
(0.1%), sel = 0.01 (1%) and sel = 0.1 (10%) to model different
cases from low selectivity to high selectivity.
Moreover, the original YCSB only supports a skewed ac-

cess pattern of queries by using a Zipfian distribution for the
requested keys. However, for evaluating a tree-based index
structure we also want to modify the skewness of the data
itself (to introduce attribute-value skew), as it has a signifi-
cant impact on the index performance as already discussed
in Section 2. Therefore, we generated data sets with mono-
tonically increasing integer keys and values (each 4-Byte)
with different sizes: 10M , 100M , and 1B. In order to simulate

Research 7: Modern Hardware SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

749

0 40 80 120 160 200 240

Clients

105

106

L
o

ok
u

p
s/

s

Point Queries

Coarse-Grained

Fine-Grained

Hybrid

(a) Point Query

0 40 80 120 160 200 240

Clients

102

103

104

L
o

ok
u

p
s/

s

Range Queries (Sel=0.001)

(b) Range Query (sel=0.001)

0 40 80 120 160 200 240

Clients

102

103

L
o

ok
u

p
s/

s

Range Queries (Sel=0.01)

(c) Range Query (sel=0.01)

0 40 80 120 160 200 240

Clients

101

102

L
o

ok
u

p
s/

s

Range Queries (Sel=0.1)

(d) Range Query (sel=0.1)
Figure 7: Throughput for Workloads A and B (Skewed Data, Size 100M)

0 40 80 120 160 200 240

Clients

105

106

L
o

ok
u

p
s/

s

Point Queries

Coarse-Grained

Fine-Grained

Hybrid

(a) Point Query

0 40 80 120 160 200 240

Clients

102

103

104

L
o

ok
u

p
s/

s

Range Queries (Sel=0.001)

(b) Range Query (sel=0.001)

0 40 80 120 160 200 240

Clients

101

102

103

L
o

ok
u

p
s/

s

Range Queries (Sel=0.01)

(c) Range Query (sel=0.01)

0 40 80 120 160 200 240

Clients

101

102

L
o

ok
u

p
s/

s

Range Queries (Sel=0.1)

(d) Range Query (sel=0.1)
Figure 8: Throughput for Workloads A and B (Uniform Data, Size 100M)

0 40 80 120 160 200 240

Clients

0

5

10

15

20

25

30

G
B

/s

Max. Bandwidth

Point Queries

Coarse-Grained

Fine-Grained

Hybrid

(a) Point Query

0 40 80 120 160 200 240

Clients

0

5

10

15

20

25

30

G
B

/s

Max. Bandwidth

Range Queries (Sel=0.001)

(b) Range Query (sel=0.001)

0 40 80 120 160 200 240

Clients

0

5

10

15

20

25

30

G
B

/s

Max. Bandwidth

Range Queries (Sel=0.01)

(c) Range Query (sel=0.01)

0 40 80 120 160 200 240

Clients

0

5

10

15

20

25

30

G
B

/s

Max. Bandwidth

Range Queries (Sel=0.1)

(d) Range Query (sel=0.1)

Figure 9: Network Utilization for Workloads A and B (Skewed Data, Size 100M)

non-unique data with attribute-value skew, we use the same
data with unique keys/values and assign the data based on
key ranges to servers to enforce a skewed distribution; e.g.,
if we use two servers, we could assign 80% to one server and
20% of the data to the other server.

Setup: For executing all the experiments, we used a cluster
with 8 machines featuring a dual-port Mellanox Connect-IB
card connected to a single InfiniBand FDR 4× switch. Each
machine has two Intel Xeon E5-2660 v2 processors (each
with 10 cores) and 256GB RAM. The machines run Ubuntu
14.01 Server Edition (kernel 3.13.0-35-generic) as their oper-
ating system and use the Mellanox OFED 3.4.1 driver for the
network. All three index designs where implemented using
C++ 11 and compiled using GCC 4.8.5.

6.1 Exp.1: Throughput
In our first experiment, we analyze the throughput of the
different indexing variants presented in Section 3 to Sec-
tion 5. The main goal of this experiment is to show the
behaviour of the different index designs under a varying
load for workloads with and without skew. As discussed in
Section 2 a major difference of the individual index designs
is how data is distributed and accessed via RDMA. This de-
termines how efficiently an indexing variant can leverage
the total aggregated bandwidth of all memory servers in a
NAM architecture.

In order to analyze the efficiency of the different indexing
strategies and model the throughput behavior, we deployed a
NAM cluster with 4memory servers (on 2 physical machines)

Research 7: Modern Hardware SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

750

and used 1 − 6 compute servers (on 1 − 6 physical machines)
each running 40 compute threads to access the index. We
deployed 2 memory servers on each physical machine to
exploit the fact that our InfiniBand cards support two ports;
i.e., each memory server was thus using its own dedicated
port on the networking cards.
In this experiment, we first focus on the read-only work-

loads A (point queries) and B (range queries). Workloads
C and D, which include insertions, will be used in Section
6.3. For workload B, we ran different variants each having a
different selectivity (sel = 0.001, sel = 0.01, and sel = 0.1).
We use 100M key/value pairs throughout this experiment.

For running the workloads under low- and high-load sce-
narios, we ran each of these workloads with a different num-
ber of compute servers starting with one server that hosts 20
compute threads (called clients in this experiment). Each of
the client threads executes index lookups (point and range
queries) in a closed loop (i.e., it waits for a lookup to fin-
ish before executing the next lookup) and spreads lookups
uniformly at random over the complete key space.

In order to model attribute-value skew in this experiment,
we use range partitioning for the coarse-grained index to
assign 80% of the key/value pairs to the first memory server,
12% to the second , 5% to the third, and 3% to the last memory
server. Consequently, 80% of the lookups need to be sent to
the first server since requests are spread uniformly across the
key space. For the hybrid index, we use a similar scheme and
only shuffle the leaf nodes in a round robin manner using
fine-grained index distribution.
In the following, we first show the throughput results

for uniform and skewed data and then discuss the network
utilization of the different schemes (coarse-grained, fine-
grained, and hybrid).

Discussion of Throughput: The throughput for all schemes
with skewed and uniform data are shown in Figure 7 and 8.
The x-axis shows the number of clients used and the y-axis
the resulting aggregated throughput.

A first interesting observation is that the hybrid approach,
combining ideas of coarse- and fine-grained, performs in the
most robust manner not only for point and range queries but
also for different data distributions (uniform and skewed) as
shown in Figure 7 and Figure 8. The reason is that it com-
bines the best of both other schemes: getting low latency by
using a RPC-based index traversal as in the coarse-grained
scheme, and still being able to leverage the aggregated band-
width of all memory servers by distributing leaves as in the
fine-grained scheme. As a result the hybrid scheme has the
highest throughput in (almost) all cases. Only for lower loads
(i.e., ≤ 20 clients), the coarse-grained outperforms the hy-
brid scheme minimally. The reason is that the coarse-grained
scheme is slightly more communication efficient since it gets
the qualifying data of an index lookup directly in the RPC

response. In contrast, the hybrid scheme only gets a remote
pointer and then additionally need to read the leaf data using
RDMA READ operations.
For scenarios with moderate and higher loads (i.e., > 20

clients), the hybrid scheme clearly outperforms the coarse-
grained scheme. The reason for the stagnation of coarse-
grained is that the memory servers becomes CPU boundwith
more than 20 clients, which in the case of coarse-grained
becomes the bottleneck. One could argue that four memory
servers (executed on two physical machines each having
20 cores) should allow coarse-grained to scale to 40 clients.
However, the RDMA network card is attached to one socket
only (while each machine has two sockets). To that end, the
second memory server on each machine needs to cross the
QPI link for every index lookup leading to less throughput
for this server (i.e., the experiments show the point when the
first memory server on each machine becomes saturated).
Furthermore, we can see that the throughput of the coarse-
grained scheme for skewed data (Figure 7) is approx. 20%
below uniform data (Figure 8) and even declines under a
high load for point queries (Figure 7(a)).
Finally, another interesting observation is that the fine-

grained approach performs almost as good as the hybrid
scheme except for point queries in which the fine-grained
scheme achieves a much lower throughput. After all, the
fine-grained scheme has a much lower network efficiency
(as discussed next) for point queries; i.e., each index lookup
needs to transfer multiple index pages over the network to
traverse the index. This problem is mitigated in the hybrid
scheme since it uses a two-sided RDMA implementation to
traverse the index using an RPC to the memory server.

Discussion of Network Utilization: In the following, we dis-
cuss the effects that we see in the network utilization as
shown in Figure 9. One effect that becomes visible, is that
fine-grained scheme, which relies purely on one-sided RDMA
operations, is less network efficient for point queries as the
hybrid and the coarse-grained scheme. For point queries, the
coarse-grained scheme, which uses two-sided RDMA, only
needs to transfer one key for the request and value for the
response between compute and memory servers to imple-
ment the RPC. A similar observation holds for the hybrid
scheme, which only needs one additional RDMA operation
(i.e., a READ) to fetch the result. In contrast to the coarse-
grained and hybrid, the fine-grained scheme needs multiple
round-trips to traverse the index (i.e., read n index pages).
This results in a higher network load and also translates into
lower throughput.
For range queries, instead, the network communication

between compute and memory servers is dominated by the
data from the leaf level that needs to be transferred. For
example, in the case of s = 0.001, fine- and coarse-grained
need to transfer approx. 1600 pages in our experiments for a

Research 7: Modern Hardware SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

751

data size of 100M from the leaf level between compute and
memory servers. The index pages that need to be transferred
for the fine-grained scheme to traverse the index, thus do not
add a noticeable overhead. For example, in our experiments
with data sizes of up to 100M , the index height is only 4;
i.e., only 4 pages in addition to the 1600 pages need to be
transferred in the fine-grained scheme compared to coarse-
grained and hybrid scheme.

Important to note is that for fine-grained as well as for the
hybrid scheme, the leaf level is distributed across all memory
servers on a per page basis. Therefore, both schemes utilize
the remote memory bandwidth of all memory servers when
executing range queries (as shown in Figure 9). This allows
the fine-grained as well as the hybrid scheme to achieve
the same throughput for range queries under skew and uni-
form data, while the coarse-grained scheme is limited by the
bandwidth of one memory server.

6.2 Exp.2: Scalability
Exp.2a: Varying Data Size. The goal of this experiment

is to demonstrate how the operations per second change
with different data sizes while maintaining the same num-
ber of memory servers. We again analyze all three different
index designs using the same setup as before with 4 mem-
ory servers on 2 physical machines. Moreover, we used 6
compute servers with a total of 240 clients to show the effect
of high load and a uniform data distribution which better
leverages all available resources in the different designs.

The results of the experiment can be seen in Figure 10 for
point queries and range queries with high selectivities of
10% to show the extreme cases. For point queries, we see that
all indexing approaches behave similarly for the different
data sizes; i.e., with increasing data size the throughput only
drops minimally in all cases. However, for range queries we
can see a significant drop for fine-grained and hybrid indexes
when data size increases. The reason is that both approaches
become network-bound for range queries with a selectivity
of sel = 0.1.

As we show in our next experiment, adding more memory
servers helps to further increase throughput. This under-
lines the advantage of the NAM architecture of being able to
scale the different resources (compute and memory servers)
individually if one becomes a bottleneck.
Exp.2b: Varying # of Memory Servers. In this experiment,

we analyze the throughput of the coarse-grained and fine-
grained indexing scheme when using a different number of
memory servers. We do not show the hybrid scheme since
the results are, as in the previous experiments, very similar to
coarse-grained for point queries and to fine-grained indexes
for range queries.

For the setup, we use only 3 machines for compute clients
with a total number of 120 clients (i.e. 40 per compute server).

1M 10M 100M

Data Size

104

105

106

107

L
o

ok
u

p
s/

s

Point Queries

(a) Point Query

1M 10M 100M

Data Size

102

103

104

105

L
o

ok
u

p
s/

s

Range Queries (Sel=0.1)

Coarse-Grained

Fine-Grained

Hybrid

(b) Range Query (sel=0.1)
Figure 10: Varying Data Size for Workloads A and B
(Uniform Data, 240 Clients)

2 4 6 8
Memory Server

0

2M

4M

6M

L
oo

ku
ps

/s

Point Queries

Coarse-Grained

Fine-Grained

(a) Point Query, Uniform

2 4 6 8
Memory Server

1K

2K

3K

4K

L
oo

ku
ps

/s

Range Queries (Sel=0.01)

(b) Range Query (sel=0.01), Uniform

2 4 6 8
Memory Server

1M

2M

3M

4M

L
oo

ku
ps

/s

Point Queries

(c) Point Query, Skew

2 4 6 8
Memory Server

1K

2K

3K

4K

L
oo

ku
ps

/s

Range Queries (Sel=0.01)

(d) Range Query (sel=0.01), Skew
Figure 11: Varying # ofMemory Servers forWorkloads
A and B (Size 100M, 120 Clients)
Moreover, we used 1 − 8 memory servers to distribute the
index; where two memory servers always shared the same
physical machine as before. Furthermore, as workloads we
again use all the different queries (point and range queries
with sel = 0.01) with different data distribution for a data
size of 100M index entries.

Figure 11 shows the results. The x-axis shows the number
of memory servers used for each run and the y-axis the re-
sulting throughput aggregated over all clients. An interesting
result of this experiment is that the fine-grained approach
can make use of all memory servers for all workloads while
the coarse-grained index only can benefit from an increased
number of memory servers if data distribution is not skewed.
Furthermore, the hybrid scheme is also sensitive to skew
in point queries since the index access is dominated by the
two-sided RPC-based access (which becomes the bottleneck
under skew). For range queries with a high selectivity it be-
haves similar to the one-sided scheme again and efficiently
can make use of an increased number of memory servers.

Research 7: Modern Hardware SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

752

0 40 80 120 160 200 240

Clients

105

106

O
p

er
at

io
ns

/s

Mixed Workload (Inserts)

CG 50

CG 5

FG 50

FG 5

Hybrid 50

Hybrid 5

Figure 12: Throughput for Workloads C & D with In-
serts (Uniform Data, Size 100M)

6.3 Exp.3: Workloads with Inserts
In the last experiment, we analyze the throughput of the
different indexing variants using time workloads C and D
which also include insert operations. Workload C is a work-
load with a low insertion rate (only 5%) whereas workload D
has a relatively high insertion rate (50%). The other accesses
which are not insertions are comprised only of point queries
in those workloads.
In this experiment we use the same experimental setup

as in Exp. 1 (Section 6.1) with 4 memory servers and an
increasing number of clients. As data set we use the size of
100M index entries distributed uniformly across all 4memory
servers. The results of this experiment can be seen in Figure
12. The x-axis shows the number of clients used for each
run and the y-axis the resulting throughput of all operations
(inserts and lookups) aggregated over all clients.

Again, the hybrid index is the most robust one and clearly
outperforms coarse-grained. Furthermore, the hybrid index
also dominates the fine-grained index for scenarios with a
load with less than 140 clients. For higher loads the fine-
grained scheme has a higher throughput while the coarse-
gained and hybrid scheme degrade. The main reason is
that for the coarse-gained and hybrid scheme, a higher load
increases the wait time in the memory servers for spin locks.
In consequence, the threads that traverse the index are busy
waiting and cannot accept lookups/inserts from other clients.
In case of the fine-grained scheme, the clients use remote
spin locks, which allow threads in the compute server to
progress if they access other nodes of the index.

7 OTHER ARCHITECTURES
In this section, we discuss how the tree-based index alterna-
tives of this paper could be adapted to other architectures
than the NAM architecture.
Shared-Nothing Architecture: A classical architecture for

distributed in-memory databases is the shared-nothing ar-
chitecture. In this architecture, data is partitioned across the
memory of all nodes, and each node has direct access only
to its local memory. Furthermore, indexes are also created
locally per partition. The results of this paper can be applied

to the shared-nothing architecture in different ways. In the
following, we discuss two potential ideas.
First, we could directly use the coarse-grained index de-

sign to make indexes that are built locally per partition (i.e.,
per node) accessible via RDMA also from other nodes. That
way indexes could be accessed remotely using RDMA by
distributed transactions that not only need to access data on
a single node but also need to access data on other nodes.
Moreover, transactions that run on the same node where the
index resides can leverage locality (i.e., use local memory
accesses) and avoid remote memory accesses completely. An
additional experiment, which shows the benefits that result
from locality in a shared-nothing architecture is shown in
an additional experiment in Appendix A.3.
Second, another problem is that indexes often do not fit

into the memory of a single node. A recent study [45] shows
that the indexes created for typical OLTP workloads can
consume up to 55% of the total memory available in a single
node in-memory DBMS. This overhead not only limits the
amount of space available to store new data but also reduces
space for intermediates that can be helpful when processing
existing data. Consequently, another idea is to use the hybrid
or fine-grained scheme in a shared nothing architecture to
leverage the available memory from other nodes (e.g., in a
cloud setup). A similar idea has been discussed in [28] where
the buffer pool was extended to other machines that have
memory available using RDMA.

Shared-Storage Architectures: Shared-storage architectures
separating persistent storage from data processing is a pre-
ferred architecture for cloud databases since it can provide
elasticity and high-availability [1, 7, 40]. Many of these
shared-storage based systems aim to push filter operations
into the storage layer to reduce data movements. Recent
results show that combining Non-volatile memory (NVM)
and RDMA facilitate high-performance distributed storage
designs [33]. In these designs, our indexing schemes devel-
oped for the NAM architecture could also be applied to push
filter operations into the RDMA-enabled storage layer.
Many-Core Architectures (Single-Node): Multi-socket,

many-core architectures have replaced single-core architec-
tures in the last decade. So far, a typical design has been
that the coherency between CPU caches is managed by
the hardware. However, these designs have shown to not
scale to a large number of cores distributed across multiple
sockets. This problem motivated non-cache-coherent
(nCC) multi-core architectures where the machines can be
partitioned into independent hardware islands [11, 19]. One
direction to provide software-managed cache coherence
is to use RDMA operations to transfer data between the
hardware islands [11]. Thus, we believe that our index
designs also become relevant when deploying single-node
database on future non-cache-coherent architectures.

Research 7: Modern Hardware SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

753

8 RELATEDWORK
Distributed Databases and RDMA:. An important line of

work related to this paper are new database designs based
on RDMA [3, 15, 16, 21, 30, 44]. Most related to this paper
is the work on the NAM architecture [5, 39, 44]. While [44]
identified distributed indexes as a challenge, they only dis-
cussed them as an afterthought. Furthermore, there exists
other database systems that separate storage from compute
nodes [6, 9, 26, 40], all of them treated RDMA as an after-
thought and none of them discussed index design for RDMA.

Another recent work [30] is similar to the NAM architec-
ture as it also separates storage from compute nodes. The
authors discuss indexes for retrieving data from remote stor-
age. However, their assumption is that the index is small
enough to be cached completely by a compute node — an
assumption which limits the applicability of their proposal.
[8] discusses caching of remote memory using RDMA in gen-
eral. The main insight of the paper is that finding an ideal
caching strategy heavily depends on the workload. This is an
observation that we also made for tree-based indexes. Our
initial results about caching can be found Appendix A.4.
Other systems that focus on RDMA for building dis-

tributed database systems are FaRM [15, 16] and FaSST [21].
FaRM exposes the memory of all machines in the cluster as a
shared address space. Threads in FaRM can use transactions
as an abstraction to allocate, read, write, and free objects
in the address space using strict serializability without wor-
rying about the location of objects. In contrast to FaRM,
FaSST discusses how remote procedure calls (RPCs) over
two-sided RDMA operations can be implemented efficiently.
In this paper, we built on these results: Similar to FaRM, we
use an abstraction (called remote pointers) to access remote
(and local) data in our fine-grained indexing scheme with-
out worrying about the data location. Similar to FaSST, we
also leverage RPC calls based on two-sided RDMA opera-
tions for implementing our coarse-grained and the hybrid
index scheme. However, different from the ideas discussed in
FaRM and FaSST, we implemented optimizations targeting
tree-based indexes (e.g., using head pages for pre-fetching)
as well as different design decisions such as using shared-
receive queues to better support scale-out of compute servers
connected to a fixed set of memory servers. Furthermore,
both — FaRM and FaSST — discuss indexes (typically hash-
tables) only as potential applications of their programming
model and do not focus on distributed (tree-based) indexes
as we do in this paper.

There has also been some work on RDMA-based lock man-
agers [10, 14, 35, 43] which is relevant to this paper to imple-
ment concurrency control protocols for distributed databases.
However, lock-managers which implement general purpose

solutions for coarse-grained concurrency control. In our in-
dexing schemes instead, we developed a concurrency control
protocol for fine-grained latching that is based on so called
optimistic-lock coupling [25].
Furthermore, many other projects in academia have also

targeted RDMA for OLAP workloads, such as distributed
join processing [2, 4, 38] or RDMA-based shuffle operations
[29]. As opposed to our work these papers discuss RDMA in
a traditional shared-nothing architecture only and they also
do not consider the redesign of indexes.
Finally, industrial-strength DBMSs have also adopted

RDMA. For example, Oracle RAC [37] has RDMA support,
including the use of RDMA atomic primitives. Furthermore,
SQLServer [28] uses RDMA to extend the buffer pool of a
single node instance but does not discuss the effect on dis-
tributed databases at all. After all, none of these systems has
discussed distributed indexes for RDMA-based architectures.

Distributed Indexes. The design of distributed indexes has
not only been discussed in databases [31] but also in the
context of information retrieval [13] and web databases [18].
However, none of these directions has particularly focused
on the design of distributed indexes for RDMA.

A distributed RDMA-enabled key/value store such as the
ones in [20, 23, 27, 32, 34, 36] can also be seen as a distributed
index that can be accessed via RDMA. Different from our
work, these papers typically focus on put/get for RDMA-
based distributed hash tables. [27] additionally leverages
programmable NICs to extend the one-sided RDMA primi-
tives with operations that allow clients to add / retrieve new
entries from hash-tables in one round-trip instead of multiple
ones. However, different from tree-based indexes, distributed
hash tables do not support range queries, which are an im-
portant class of queries in OLAP and OLTP workloads. To
that end, this line of work complements our work and the
results can be used as another form of distributed index for
point queries. In fact, in [44] the authors used results from
this work to build primary clustered indexes.

9 CONCLUSIONS
In this paper we presented distributed tree-based indexes
for RDMA. We have discussed different design alternatives
regarding the index distribution and the RDMA-based access
protocols. While the focus of this paper was on the NAM
architecture which separates compute and memory servers,
we believe that the discussions and findings can also help to
understand the design space also for other distributed archi-
tectures in general. Furthermore, there are other important
dimensions such as caching to improve the index perfor-
mance. As mentioned before, we discuss our initial results
for caching in Appendix A.4. However, studying caching in
detail is beyond the scope of this paper and represents an
interesting avenue of future work.

Research 7: Modern Hardware SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

754

ACKNOWLEDGMENTS
This work was partially funded by the German Research
Foundation (DFG) under grants BI2011/1 and gifts from Mel-
lanox.

REFERENCES
[1] Scaling out with Azure SQL Database. https:

//azure.microsoft.com/en-us/documentation/articles/
sql-database-elastic-scale-introduction/.

[2] C. Barthels et al. Rack-scale in-memory join processing using RDMA.
In Proc. of ACM SIGMOD, pages 1463–1475, 2015.

[3] C. Barthels et al. Designing databases for future high-performance
networks. IEEE Data Eng. Bull., 40(1):15–26, 2017.

[4] C. Barthels et al. Distributed join algorithms on thousands of cores.
PVLDB, 10(5):517–528, 2017.

[5] C. Binnig et al. The end of slow networks: It’s time for a redesign.
PVLDB, 9(7):528–539, 2016.

[6] M. Brantner et al. Building a database on S3. In Proc. of ACM SIGMOD,
pages 251–264, 2008.

[7] M. Cai et al. Integrated querying of SQL database data and S3 data in
amazon redshift. IEEE Data Eng. Bull., 41(2):82–90, 2018.

[8] Q. Cai et al. Efficient distributed memory management with RDMA
and caching. PVLDB, 11(11):1604–1617, 2018.

[9] D. G. Campbell et al. Extreme scale with full sql language support in
microsoft sql azure. In SIGMOD, 2010.

[10] H. Chen et al. Fast in-memory transaction processing using RDMA
and HTM. ACM Trans. Comput. Syst., 35(1):3:1–3:37, 2017.

[11] S. Christgau and B. Schnor. Software-managed cache coherence for
fast one-sided communication. In PMAM@PPoPP, pages 69–77. ACM,
2016.

[12] B. F. Cooper et al. Benchmarking cloud serving systems with YCSB.
In Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC
2010, Indianapolis, Indiana, USA, June 10-11, 2010, pages 143–154, 2010.

[13] P. B. Danzig et al. Distributed indexing: A scalable mechanism for
distributed information retrieval. In Proceedings of the 14th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval. Chicago, Illinois, USA, October 13-16, 1991 (Special
Issue of the SIGIR Forum)., pages 220–229, 1991.

[14] A. Devulapalli et al. Distributed queue-based locking using advanced
network features. In 34th International Conference on Parallel Processing
(ICPP 2005), 14-17 June 2005, Oslo, Norway, pages 408–415, 2005.

[15] A. Dragojević et al. FaRM: Fast remote memory. In Proc. of NSDI,
pages 401–414, 2014.

[16] A. Dragojević et al. No compromises: distributed transactions with
consistency, availability, and performance. In Proc. of OSDI, pages
54–70, 2015.

[17] A. Dragojevic et al. RDMA reads: To use or not to use? IEEE Data Eng.
Bull., 40(1):3–14, 2017.

[18] C. Feng et al. Indexing techniques of distributed ordered tables: A
survey and analysis. J. Comput. Sci. Technol., 33(1):169–189, 2018.

[19] M. Gries et al. SCC: A flexible architecture for many-core platform
research. Computing in Science and Engineering, 13(6):79–83, 2011.

[20] A. Kalia et al. Using rdma efficiently for key-value services. In Proc. of
ACM SIGCOMM, pages 295–306, 2014.

[21] A. Kalia et al. FaSST: fast, scalable and simple distributed transactions
with two-sided (RDMA) datagram RPCs. In Proc. of OSDI, pages 185–
201, 2016.

[22] J. Krüger et al. Fast updates on read-optimized databases using multi-
core cpus. PVLDB, 5(1):61–72, 2011.

[23] C. Kulkarni et al. Beyond simple request processing with ramcloud.
IEEE Data Eng. Bull., 40(1):62–69, 2017.

[24] P. L. Lehman et al. Efficient locking for concurrent operations on
b-trees. ACM Trans. Database Syst., 6(4):650–670, 1981.

[25] V. Leis et al. The ART of practical synchronization. In DaMoN, pages
3:1–3:8, 2016.

[26] J. J. Levandoski et al. High performance transactions in deuteronomy.
In CIDR 2015, Online Proceedings, 2015.

[27] B. Li et al. Kv-direct: High-performance in-memory key-value store
with programmable nic. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, pages 137–152, New York, NY,
USA, 2017. ACM.

[28] F. Li et al. Accelerating relational databases by leveraging remote
memory and RDMA. In SIGMOD Conference, pages 355–370. ACM,
2016.

[29] F. Liu et al. Design and evaluation of an rdma-aware data shuffling
operator for parallel database systems. In EuroSys, pages 48–63, 2017.

[30] S. Loesing et al. On the Design and Scalability of Distributed Shared-
Data Databases. In ACM SIGMOD, pages 663–676, 2015.

[31] D. B. Lomet. Replicated indexes for distributed data. In Proceedings
of the Fourth International Conference on Parallel and Distributed In-
formation Systems, December 18-20, 1996, Miami Beach, Florida, USA,
pages 108–119, 1996.

[32] X. Lu et al. Scalable and distributed key-value store-based data man-
agement using rdma-memcached. IEEE Data Eng. Bull., 40(1):50–61,
2017.

[33] Y. Lu et al. Octopus: an rdma-enabled distributed persistent memory
file system. In 2017 USENIX Annual Technical Conference, USENIX ATC
2017, Santa Clara, CA, USA, July 12-14, 2017., pages 773–785, 2017.

[34] C. Mitchell et al. Using One-Sided RDMA Reads to Build a Fast, CPU-
Efficient Key-Value Store. In Proc. of USENIX ATC, pages 103–114,
2013.

[35] S. Narravula et al. High performance distributed lock management ser-
vices using network-based remote atomic operations. In Seventh IEEE
International Symposium on Cluster Computing and the Grid (CCGrid
2007), 14-17 May 2007, Rio de Janeiro, Brazil, pages 583–590, 2007.

[36] J. Ousterhout et al. The case for ramcloud. Communications of the
ACM, 54(7):121–130, 2011.

[37] Delivering Application Performance with Oracle’s InfiniBand Tech-
nology, 2012.

[38] W. Rödiger et al. Flow-join: Adaptive skew handling for distributed
joins over high-speed networks. In Proc. of ICDE, pages 1194–1205,
2016.

[39] A. Salama et al. Rethinking distributed query execution on high-speed
networks. IEEE Data Eng. Bull., 40(1):27–37, 2017.

[40] http://snowflake.net/product/architecture.
[41] S. Sur et al. Shared receive queue based scalable MPI design for infini-

band clusters. In IPDPS, 2006.
[42] J. Vienne et al. Performance analysis and evaluation of infiniband FDR

and 40gige roce on HPC and cloud comp. systems. In IEEE HOTI, 2012.
[43] D. Y. Yoon et al. Distributed lock management with RDMA: decen-

tralization without starvation. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Conference 2018, Houston,
TX, USA, June 10-15, 2018, pages 1571–1586, 2018.

[44] E. Zamanian et al. The end of a myth: Distributed transaction can
scale. PVLDB, 10(6):685–696, 2017.

[45] H. Zhang et al. Reducing the Storage Overhead of Main-Memory
OLTP Databases with Hybrid Indexes. In SIGMOD, pages 1567–1581,
2016.

Research 7: Modern Hardware SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

755

https://azure.microsoft.com/en-us/documentation/articles/sql-database-elastic-scale-introduction/
https://azure.microsoft.com/en-us/documentation/articles/sql-database-elastic-scale-introduction/
https://azure.microsoft.com/en-us/documentation/articles/sql-database-elastic-scale-introduction/
http://snowflake.net/product/architecture

1 uint64_t readLockOrRestart(Node node){
2 uint64_t version = awaitNodeUnlocked(node)
3 return version
4 }
5
6 void readUnlockOrRestart(Node node , uint64_t version){
7 if(version != node.version)
8 restart ()
9 }
10
11 void upgradeToWriteLockOrRestart(Node node , uint64_t version){
12 if(!CAS(node.version , setLockBit(version)){
13 restart ()
14 }
15
16 void writeUnlock(Node node){
17 fetch_add(node.version , 1)
18 }
19
20 uint64_t awaitNodeUnlocked(Node node){
21 uint64_t version = node.version
22 while (version & 1) == 1 // spinlock
23 pause()
24
25 return node.version;
26 }

Listing 3: Helper Methods for Coarse-Grained Index

1 Node remote_read(NodePtr remotePtr){
2 return RDMA_READ(remotePtr)
3 }
4
5 uint64_t remote_readLockOrRestart(Node node , NodePtr remotePtr){
6 uint64_t version = remote_awaitNodeUnlocked(node , remotePtr)
7 return version
8 }
9
10 void remote_upgradeToWriteLockOrRestart(Node node , NodePtr

remotePtr , uint64_t version){
11 if(! RDMA_CAS(remotePtr , node.version , setLockBit(version)){
12 restart ()
13 }
14
15 void remote_writeUnlock(NodePtr remotePtr , Node node){
16 if(node.right_node != NULL){ //node was split
17 remNodePtr2 = RDMA_ALLOC(size(node.right_node))
18 RDMA_WRITE(remNodePtr2 , node.right_node)
19 }
20 RDMA_WRITE(remNodePtr , node);
21 RDMA_FETCH_AND_ADD(remotePtr , 1)
22 }
23
24 uint64_t remote_awaitNodeUnlocked(Node node , NodePtr remotePtr){
25 uint64_t version = node.version
26 while (version & 1) == 1 // spinlock
27 pause()
28 node = RDMA_READ(remotePtr)
29
30 return node.version;
31 }

Listing 4: Helper Methods for Fine-Grained Index

A APPENDIX
A.1 Additional Index Operations
In the following, we show operations used to implement the
indexing variants in Sections 3 to Sections 5. The operations
in Listing 3 are used by the coarse-grained index (Section 3).
These operations are called from compute servers by RPC
and are then executed by memory servers. The operations
in Listing 4 are used by the fine-grained index (Section 4)
where compute servers use one-sided RDMA operations to
access the index in the memory servers.

A.2 Latency of Index Designs
In this experiment, we analyze the latency of the different
workloads using the same experimental setup and data as in
experiment 1 (Section 6.1). Figure 13 and Figure 14 show the
results for skewed and uniform data distribution. The x-axis
again shows the number of clients used for each run and the
y-axis the resulting latency for executing one instance of a
query in a client.

A general pattern that we can see in all workloads is that
the latency of the coarse-grained index is best for a low load
(< 20 clients). The reason is that this indexing scheme uses
RPCs and as long as the memory servers are not becoming
CPU bound, the latency in this indexing scheme benefits
from using less round-trips between compute and memory
servers for index lookups. However, for high load scenarios
the fine-grained or the hybrid scheme show smaller latencies
than the coarse-grained indexing scheme.

A.3 Effect of Co-location
In this experiment, we analyze the throughput when co-
locating compute andmemory servers in a NAM architecture.
Co-location in the NAM architecture was also discussed in
[5, 39, 44] and can be used to mimic a shared-nothing (like)
architecture where data and compute is also co-located. The
difference is that the memory of all nodes in a co-located
NAM architecture is directly accessible not only via RPC but
also via one-sided RDMA. The goal of this experiment was
to show how the coarse-grained scheme behaves compared
to the fine-grained scheme under co-location using typical
workload characteristics (i.e., medium load and no skew).

In this experiment, we were running the same workloads
as in Exp. 1 (i.e., the read-only workloads A and B) with
data of size 100M. For running the workload, we used two
NAM variants: one variant with and one without co-location
of compute and memory servers. For the variant with co-
location, we used 4 physical machines and each of the physi-
cal machines hosted a compute and a memory server each
running 20 threads pinned to one of the sockets. For the
variant without co-location, we used 4 additional dedicated
physical machines for compute server, however only one
socket of those machine was used for executing the compute
server threads. Moreover, the memory servers were deployed
on the other 4 machines. To simulate the same resources in
the variant without co-location were we used in total 8 ma-
chines instead of 4, the compute and memory server used
only one socket of each machine (instead of both). More-
over, in both variants (with and without co-location), each
memory server used only one port of the RDMA NIC.

For running the workload, every client (i.e., each compute
thread) selected the requested key (range) uniformly at ran-
dom. The throughput results are summarized in Figure 15

Research 7: Modern Hardware SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

756

0 40 80 120 160 200 240

Clients

10−5

10−4

L
at

en
cy

(s
)

Point Queries

Coarse-Grained

Fine-Grained

Hybrid

(a) Point Query

0 40 80 120 160 200 240

Clients

10−2

L
at

en
cy

(s
)

Range Queries (Sel=0.001)

(b) Range Query (sel=0.001)

0 40 80 120 160 200 240

Clients

10−1

L
at

en
cy

(s
)

Range Queries (Sel=0.01)

(c) Range Query (sel=0.01)

0 40 80 120 160 200 240

Clients

100

L
at

en
cy

(s
)

Range Queries (Sel=0.1)

(d) Range Query (sel=0.1)

Figure 13: Latency for Workloads A and B (Skewed Data, Size 100M)

0 40 80 120 160 200 240

Clients

10−5

10−4

L
at

en
cy

(s
)

Point Queries

Coarse-Grained

Fine-Grained

Hybrid

(a) Point Query

0 40 80 120 160 200 240

Clients

10−2

L
at

en
cy

(s
)

Range Queries (Sel=0.001)

(b) Range Query (sel=0.001)

0 40 80 120 160 200 240

Clients

10−1

L
at

en
cy

(s
)

Range Queries (Sel=0.01)

(c) Range Query (sel=0.01)

0 40 80 120 160 200 240

Clients

100

L
at

en
cy

(s
)

Range Queries (Sel=0.1)

(d) Range Query (sel=0.1)

Figure 14: Latency for Workloads A and B (Uniform Data, Size 100M)

Fine-Grained Coarse-Grained

Index Design

0

1M

2M

3M

4M

5M

L
o

ok
u

p
s/

s

Point Queries

Distributed

Co-Located

(a) Point Query

Fine-Grained Coarse-Grained

Index Design

0

2.5K

5.0K

7.5K

10.0K

12.5K

15.0K

L
o

ok
u

p
s/

s

Range Queries (Sel=0.001)

Distributed

Co-Located

(b) Range Query (sel=0.001)

Fine-Grained Coarse-Grained

Index Design

0

250

500

750

1.0K

1.2K

1.5K

L
o

ok
u

p
s/

s

Range Queries (Sel=0.01)

Distributed

Co-Located

(c) Range Query (sel=0.01)

Fine-Grained Coarse-Grained

Index Design

0

25

50

75

100

125

150

175

L
o

ok
u

p
s/

s

Range Queries (Sel=0.1)

Distributed

Co-Located

(d) Range Query (sel=0.1)

Figure 15: Effects of Co-location on Throughput (Uniform Data, Size 100M, 80 Clients)

for coarse- and fine-grained. We do not show the results for
the hybrid scheme, which again behaved very similar to the
coarse-grained for point queries and similar to fine-grained
for range queries. As one effect, we can see that all work-
loads (point and range queries) have a similar relative gain
independent when running in the co-located variant. The
reason is that in both cases (coarse- and fine-grained), 25%
of the memory accesses required by index lookups can be
executed locally on the same physical machine where the
compute server is running. For coarse-grained, for example,
the complete index traversal can be executed locally, if the
data requested by a compute server resides in a memory

server on the same physical machine. For fine-grained, a
compute server cannot execute a complete traversal locally
but it can also use local memory accesses for those index
pages that reside on the same physical machine with the
compute server which requests the data. This also results
on average in 25% local accesses since we use 4 dedicated
machines for the co-located variant.
This observation is similar to the observations made for

co-location in [5, 44] where the authors also report that
co-location enables a constant factor of higher throughput

Research 7: Modern Hardware SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

757

depending on the ratio of local/distributed transactions. Fur-
thermore, when looking at the absolute throughput, as ex-
pected, under co-location point queries can achieve the high-
est throughput using the coarse-grained scheme. For range
queries, the fine-grained scheme has still the highest through-
put similar to what we saw in Exp. 1 (see Section 6.1).

A.4 Opportunities and Challenges of
Caching

An interesting dimension in the NAM architecture is caching
of hot index nodes in compute servers that are frequently
accessed. Caching allows compute servers to avoid remote
memory transfers from memory servers. This is similar to
the co-location of compute and memory servers as discussed
in Appendix A.3, which also allows compute servers to
make use of locality. However, different from co-location, for
caching, index nodes are replicated from memory servers to
compute serves and thus it requires cache invalidation if the
index in the memory servers is updated.
For read-only workloads, caching can thus help to avoid

expensive remote memory accesses and significantly im-
prove the lookup performance of tree-based indexes in a
NAM architecture since no invalidation of cached data is
required. We believe that especially the fine-grained scheme
benefits from caching since it requires multiple round-trips
between compute and memory servers to traverse the index.

Furthermore, the other indexing schemes (coarse-grained
and hybrid) can also benefit, especially for range-queries,
since (potentially large) results do not need to be transferred
fully from memory to compute servers anymore. However,
for workloads which include writes (i.e., inserts and deletes
of index entries), caching becomes a non-trivial problem
since cached index nodes on compute servers need to be
invalidated if the index on the memory servers changes.

The problem of cache invalidation has also been discussed
in [8], which presents general caching strategies for re-
mote memory accesses using RDMA. For tree-based indexes,
where inserts and deletes might propagate up to the index
from the leaf level to the root node, we observed that cache in-
validation is even a more severe issue since one insert/delete
operation might need to invalidate multiple cached index
nodes. To that end, we believe that there is a need for de-
veloping new caching strategies that take the particularities
of tree-based indexes into account to decide whether or not
to cache an index node. However, providing an in-depth
discussion and analysis of different caching strategies for
tree-based indexes that can adapt themselves to the workload
is beyond the scope of this paper and presents an interesting
avenue of future work.

Research 7: Modern Hardware SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

758

	Abstract
	1 Introduction
	2 Overview
	2.1 RDMA Basics
	2.2 Design Space for RDMA-based Indexes
	2.3 Scalability Analysis

	3 Design 1: Coarse-Grain/Two-sided
	3.1 Index Structure
	3.2 RDMA-based Accesses

	4 Design 2: Fine-Grain/One-sided
	4.1 Index Structure
	4.2 RDMA-based Accesses
	4.3 Optimization of Index Structure

	5 Design 3: Hybrid Scheme
	5.1 Index Structure
	5.2 RDMA-based Accesses

	6 Experimental Evaluation
	6.1 Exp.1: Throughput
	6.2 Exp.2: Scalability
	6.3 Exp.3: Workloads with Inserts

	7 Other Architectures
	8 Related Work
	9 Conclusions
	Acknowledgments
	References
	A Appendix
	A.1 Additional Index Operations
	A.2 Latency of Index Designs
	A.3 Effect of Co-location
	A.4 Opportunities and Challenges of Caching

