
This paper is included in the Proceedings of the
2020 USENIX Annual Technical Conference.

July 15–17, 2020
978-1-939133-14-4

Open access to the Proceedings of the
2020 USENIX Annual Technical Conference

is sponsored by USENIX.

Spool: Reliable Virtualized NVMe Storage Pool
in Public Cloud Infrastructure

Shuai Xue, Shang Zhao, and Quan Chen, Shanghai Jiao Tong University and
Alibaba Cloud; Gang Deng, Zheng Liu, Jie Zhang, Zhuo Song, Tao Ma, Yong Yang,

Yanbo Zhou, Keqiang Niu, and Sijie Sun, Alibaba Cloud; Minyi Guo,
Shanghai Jiao Tong University

https://www.usenix.org/conference/atc20/presentation/xue

Spool: Reliable Virtualized NVMe Storage Pool in Public Cloud Infrastructure

†‡Shuai Xue, †‡Shang Zhao, †‡Quan Chen, ‡Gang Deng, ‡Zheng Liu, ‡Jie Zhang, ‡Zhuo Song
‡Tao Ma, ‡Yong Yang, ‡Yanbo Zhou, ‡Keqiang Niu, ‡Sijie Sun, †Minyi Guo

†Department of Computer Science and Engineering, Shanghai Jiao Tong University
‡Alibaba Cloud

Abstract
Ensuring high reliability and availability of virtualized

NVMe storage systems is crucial for large-scale clouds. How-

ever, previous I/O virtualization systems only focus on im-

proving I/O performance and ignore the above challenges.

To this end, we propose Spool, a reliable NVMe virtualiza-

tion system. Spool has three key advantages: (1) It diagnoses

the device failure type and only replaces the NVMe devices

with actual media errors. Other data link errors are handled

through resetting the device controller, minimizing data loss

due to unnecessary device replacement. (2) It ensures the

consistency and correctness of the data when resetting the

controller and upgrading the storage virtualization system. (3)

It greatly reduces the restart time of the NVMe virtualization

system. The quick restart eliminates complaints from tenants

due to denial-of-service during a system upgrade and failure

recovery. Our evaluation shows that Spool provides reliable

storage services with performance loss smaller than 3%, and

it reduces restart time by 91% when compared with SPDK.

1 Introduction

In large-scale public clouds, the cores and memory are virtual-

ized and shared by multiple tenants. A single physical server

can serve up to 100 virtual machines (VMs) from either the

same or different tenants [41]. On the physical server, VMs

are managed with VM hypervisors, such as VMware [13],

KVM [25], and Xen [14]. The hypervisors are also responsi-

ble for handling the interactions between the guest operating

system in the VMs and the host operating system on the

physical server.

Virtualizing I/O devices so that tenants can share them has

attracted the attention of both industry and academia [15, 23,

31,33,40,42]. A guest VM mainly stores and accesses its data

on local devices through the I/O virtualization service with

high throughput and low latency. For instance, the Big Three

of cloud computing (Amazon EC2 I3 series [2], Azure Lsv2

series [3], and Alibaba ECS I2 series [1]) are providing the

VMM
NVMe SSD1

Host

Hardware
NVMe SSD1...

Guest3Guest2Guest1 ... Guest3Guest2Guest1 ...Guest

1

22 22

33

Figure 1: Virtualizing NVMe-based storage system.

next generation of storage optimized instances for workloads

that require high I/O throughput and low latency. These prod-

ucts are driven by local devices that eliminate the long latency

over the network [8]. At the same time, accessing data from

local devices increases the risk of a single point of failure as

the reliability of data is dependent on the reliability of the

host node.

Solid-state drives (SSDs) are often adopted as storage de-

vices due to their high throughput and low latency compared

to those of hard drives. In particular, the recent NVM Express

(NVMe) interface [9] further increases the I/O performance

of SSDs compared with the traditional SATA interface. Main-

stream storage virtualization solutions, such as Virtio [29],

support NVMe devices. Because serious performance degra-

dation is observed in I/O virtualization [22], userspace NVMe

driver in QEMU [43], Storage Performance Development

Kit (SPDK) [38], SPDK vhost-NVMe [39], and Mdev [27]

have been proposed to further improve the I/O throughput of

virtualized NVMe devices.

While prior researchers focused on improving the

read/write throughput and reducing the latency of virtual-

ized NVMe devices, they ignored the reliability problem al-

though it is equally important. In large-scale public clouds,

NVMe device failures occur due to heavy use and the need for

NVMe virtualization systems to be upgraded often to add new

features or apply new security patches. Emerging NVMe vir-

tualization systems fail to handle failure recovery and system

upgrades efficiently. To better explain this problem, Figure 1

shows an example where multiple tenants share a virtualized

NVMe storage system on a physical node.

USENIX Association 2020 USENIX Annual Technical Conference 97

With emerging virtualized storage systems, to fix an NVMe

device failure on a node, the administrator directly replaces

the failed device through either cold-plug or hot-plug. This

failure recovery mechanism results in unnecessary data loss

from the failed NVMe device. The statistics of our in-

production cloud show that only 6% of 300,000 device fail-

ures involve media errors that can only be resolved by replac-

ing with a new device. Other device failures are caused by

data link errors that can be resolved by resetting the NVMe de-

vice controller. Resetting an NVMe device’s controller would

not result in data loss from the device, and we can perform

the reset operation fast without removing the failed device

(� in Figure 1) and restarting the virtualization system (� in

Figure 1).

The standard procedure for upgrading the virtualized stor-

age system on a node is stopping the daemon process that runs

the system, updating the binary file, and then initializing the

whole software stack of the virtualization system again [17].

In this period, all the I/O devices on the node are inaccessible

due to the lack of an I/O virtualization system. Our measure-

ment shows that the software initialization procedure already

spends approximately 2.5 s probing all the I/O devices and

SPDK’s Environment Abstraction Layer (EAL) [38] (to be

discussed in detail in Section 5). This long downtime hurts

the user experience. A possible solution to reduce the impact

of the upgrade is migrating the VMs (and the corresponding

data) to other nodes [19, 41]. However, live VM migration

is too costly for regular backend updates, especially when

a large amount of backend requires updating, for example,

when applying an urgent security patch.

However, the data written by the Guest VMs may be lost

when resetting the controller or performing the upgrade (� in

Figure 1). The loss happens in the case that the data persisted

in the NVMe device (still in the submit queue) when the

reset operation or the process restart was performed. No prior

work on NVMe virtualization has considered such a reliability

problem.

To resolve the above problems, we propose Spool, a holistic

reliable virtualized NVMe storage system for public clouds

with local disks. Compared with prior NVMe virtualization

systems, Spool has the following key advantages: (1) It di-

agnoses the device failure type and only replaces the NVMe

devices with actual media errors. Other data link errors are

handled through resetting the controller, minimizing data loss

due to the unnecessary disk replacement. (2) It ensures the

consistency and correctness of the data when resetting the con-

troller and upgrading the virtualization system. (3) It greatly

reduces the restart time of the NVMe virtualization system

to approximately 100 milliseconds. The quick restart elimi-

nates complaints from tenants due to denial-of-service during

system upgrades and failure recovery.

To be more specific, Spool is comprised of a cross-process
journal for recovery, an isolation-based failure recovery com-
ponent, and a fast restart component. The cross-process jour-

LOW
PERFORMANCE

500 IOPS
2 ms LATENCY

HDD SATA NAND SSD NVMe NAND SSD NVMe V-NAND SSDHDD SATA NAND SSD NVMe NAND SSD NVMe V-NAND SSD

AFFORDABLE
PERFORMANCE

HIGH
PERFORMANCE

EXPTRME
PERFORMANCE

25 K IOPS
100 us LATENCY

400 K IOPS
100 us LATENCY

1,500 K IOPS
10 us LATENCY

Figure 2: Development of the hardware I/O performance.

nal resides in the shared memory and records the data status

from all the VMs. Even if Spool is restarted, the data in the

journal is accessible for the new Spool process. Furthermore,

an instruction merge is proposed to eliminate the inconsis-

tency of the journal with minimal overhead. An “instruction”

is a step within a transaction that updates the journal. The

failure recovery component diagnoses the NVMe device error.

Based on the error code, Spool either isolates and replaces

the devices that have media errors or resets the controller (us-

ing the journal for reliability). The restart component records

the runtime data structures of the current Spool process in

the cross-process journal. By reusing the data structures at

the restart for a system upgrade, we significantly reduce the

downtime.

To the best of our knowledge, Spool is the first holistic

virtualized system that is capable of handling hardware failure

and NVMe virtualization system upgrades reliably. Spool is

currently deployed in an in-production cloud that includes

more than 20,000 physical nodes and 200,000 NVMe-based

SSDs.

The main contributions of this paper are as follows.

• An instruction merge-based reliability mechanism.
The instruction merge eliminates data inconsistent with

the cross-process journal for recovery even if abnormal

exits occur.

• A restart optimization method. The method greatly re-

duces the downtime of Spool during the upgrade and

enables frequent system upgrades for adding new fea-

tures and applying patches without affecting the tenants.

• A hardware fault processing mechanism. The mecha-

nism diagnoses the device failure types and only replaces

the NVMe devices with media errors, minimizing data

loss due to unnecessary disk replacement.

Our experimental results show that Spool provides reliable

storage services based on a shared memory journal with less

than 3% performance loss, and it reduces the system restart

time by 91% when compared to SPDK.

2 Background and Motivation

In this section, we introduce the virtualized NVMe storage

systems and the motivation behind the design of Spool.

98 2020 USENIX Annual Technical Conference USENIX Association

Guset OS(VM)
Virtio Frontend

Virtio Frontend

Hypervisor(VMM)

Generic Block Layer

NVMe Device

Guset OS(VM)
Virtio Frontend

Virtio Frontend

Hypervisor(VMM)

Generic Block Layer

NVMe Device

(a) Virtio

Guset OS(VM)
Guest Driver

VFIO Driver

NVMe Device

Guset OS(VM)
Guest Driver

VFIO Driver

NVMe Device

(b) Passthrough based

on VFIO

Guset OS(VM)
Virtio Frontend

Hypervisor(VMM)

NVMe Device

Guset OS(VM)
Virtio Frontend

Hypervisor(VMM)

NVMe Device

VFIO Driver

Spool

SPDK Driver

(c) Spool based on

SPDK

Figure 3: Comparison of NVMe virtualization mechanisms.

2.1 Virtualized NVMe Storage Systems

The performance of an I/O device is impacted by both the stor-

age media and the I/O software stack. As shown in Figure 2,

Samsung NVMe SSD devices based on the latest V-NAND

technology have increased the IOPS to 1.5 million and re-

duced the latency to 10 microseconds. In this scenario, the tra-

ditional SATA (Serial ATA) [34] interface for storage devices

has become the performance bottleneck for such SSDs. Due

to the limitation of the Advanced Host Controller Interface

(AHCI) architectural design, the theoretical data transmis-

sion speed of the SATA interface is only 600 MB/s [34]. To

solve the I/O bottleneck brought by the interface, the NVMe

(Non-Volatile Memory Express) protocol [9] is designed and

developed using a PCIe interface instead of SATA. Currently,

NVMe supports deep queues with up to 64K commands to

devices within a single I/O queue [9].

In public clouds, instead of selling raw hardware infrastruc-

ture, cloud vendors typically offer virtualized infrastructure as

a service to maximize hardware resource utilization [16, 18].

Virtualization technology has shown its heroism, especially in

the birth of hardware virtualization technology, such as Intel

VT technology, which has greatly expanded the application

scope of virtualization technology. There are three parts to

the realization of virtualization: CPU virtualization, memory
virtualization, and I/O virtualization. Among them, I/O vir-

tualization requires more focus, and its performance directly

determines the performance of the guest VM [22, 30, 32].

There are generally three I/O virtualization mechanisms:

Virtio [29], VFIO [36], and SPDK-based userspace appli-

cations [38]. Figure 3 shows a comparison between Virtio,

VFIO, and our SPDK-based design, Spool.

As for Virtio, the frontend exists in a guest OS, while the

backend is implemented in a hypervisor, such as QEMU [12].

The frontend transfers I/O requests to the backend through the

virtqueue, implemented as ring buffers, including available
ring and used ring buffers. Available ring buffers could save

multiple I/O requests driven by the frontend and transfer them

to the backend for batch processing, which can improve the

efficiency of information exchange between the client and

Figure 4: Breakdown of NVMe hardware failures.

hypervisor. However, a problem remains that each I/O request

passes through the I/O stack twice for guest and host, whereas

in modern storage devices based on NAND flash, the through-

put and latency of VMs can only achieve 50% of the native

performance [27].

As for VFIO, VMs directly access an NVMe device

through passthrough, relying on hardware support (e.g., Intel

VT-d). A VM approaches near-native performance on both

latency and throughput with passthrough. However, a sin-

gle device can only be assigned to one guest client. On the

contrary, a host often runs multiple clients in a virtualized

environment. It is difficult to ensure that each client can get

a directly assigned device. Also, a large number of devices

are allocated to clients independently, increasing the num-

ber of hardware devices as well as the cost of the hardware

investment.

The Storage Performance Development Kit (SPDK) pro-

vides a set of tools and libraries for writing high-performance,

scalable, user-mode storage applications. The bedrock of

SPDK is a userspace, polled-mode, asynchronous, lockless

NVMe driver [38]. SPDK enables zero-copy, highly parallel

access direct to SSDs from a userspace application. User-

mode drivers help improve the stability of the host operating

system because they can only access the address space of the

processes running them, and a buggy implementation does

not cause system-wide problems. Spool is proposed based on

the SPDK NVMe driver but focuses on the reliability of the

virtualized storage system.

2.2 Reliability Problems

All the above I/O virtualization mechanisms ignore the high

availability and reliability problems, although they are equally

important in public clouds. To be more specific, state-of-the-

art SPDK-based applications result in unnecessary data loss
and poor availability when dealing with failed NVMe devices

and upgrading applications, respectively.

USENIX Association 2020 USENIX Annual Technical Conference 99

Figure 5: Breakdown of SPDK’s start time on two NVMe

SSDs.

2.2.1 Unnecessary Data Loss

If an NVMe device failure is detected on the hardware node,

the device is in the failed state. When a device failure oc-

curs on a node, all the VMs on the node are de-allocated and

migrated to a healthy node by a standard procedure [11, 41].

After that, all the data on the failing node are securely erased.

The victim tenants’ data are lost and the tenants must proac-

tively load their data on the new node again. With emerging

virtualized storage systems like SPDK, to fix an NVMe de-

vice failure on a node, the administrator directly replaces the

failed device through hot-plug.

The above method results in significant unnecessary data

loss because a single NVMe device may store data from mul-

tiple tenants, and NVMe devices have higher storage density,

more vulnerable components (e.g., a Flash Translation Layer),

and relatively higher failure rates. To demonstrate this prob-

lem in detail, we collected 300,000 NVMe device failures

in our in-production environment. Figure 4 shows the break-

down of device failures. Most of the failures, 36%, are due

to the NVMe controller failure error (NVMEFAILRESET).

BLKUPDATEERR is the block update error. LINKERR is

the PCIe interconnect link error. NAMESPACEERR is the

NVMe device’s namespace error. The pie chart shows that

only 6% of the hardware failures are due to real media errors

(MEDIAERR). Our investigation shows that most failures are

caused by errors in the data link layer (e.g., namespace error,

hardware link error, NVMe reset fail error), and these failures

can be resolved by simply resetting the NVMe controller.

In summary, the current failure recovery method with SPDK
results in significant unnecessary data loss.

2.2.2 Poor Availability

I/O virtualization systems tend to be upgraded frequently to

add new features or apply security patches. When upgrading

an I/O virtualization system, the key requirement is minimiz-

ing the I/O service downtime while ensuring the correctness

of the data. There are two methods available to cloud vendors:

VM live migration and live upgrade. Unfortunately, VM live

migration is too costly for regular backend updates, especially

when a large amount of backend requires updating, for exam-

Bypass Kernel

HARDWARENVMe

IO
worker

NVMe

KERNEL

NVMe

USERSPACE
Control
DataData
Control
Data

Restart
Optimization

SPDK User mode driver

Guest/QEMU

virtqueue

blk dev

Lvol Lvol Lvol
Storage Pool

Lvol Lvol Lvol
Storage Pool

 Failure Recovery

IO
worker

IO
worker

Spool

blk dev

block layer

virtio-blk driver
virtio-blk

device

Application

UNIX domain Socket

Journal

Figure 6: Design of Spool.

ple, when applying an urgent security patch, and for storing

optimized instances with local NVMe storage , VM live mi-

gration is not even supported by cloud vendors [11]. The only

way for us is to support the live upgrade and eliminate the

downtime as much as possible.

The I/O virtualization system must be restarted to complete

the upgrade. With SPDK, we need to initialize the DPDK

EAL library, probe the NVMe devices, and initialize the in-

ternal data structure of SPDK itself. SPDK spends a different

amount of time in the "probe devices" step when resetting the

controllers of different devices. The time required for each

step is shown in Figure 5. As can be observed from this fig-

ure, the service downtime caused by the live upgrade is up to

1,200 ms for Samsung PM963 SSD. For Intel P3600, the total

service downtime will be longer and lasts up to 2,500 ms.

In summary, the long downtime hurts the availability of the
I/O virtualization system.

2.3 Design Principle of Spool
To resolve the unnecessary data loss and poor availability

problems, we propose Spool, a holistic NVMe virtualization

system. Spool is designed based on three principles:

• It should be able to identify the causes of device fail-

ure and adopt different methods to handle each failure.

In this way, Spool eliminates most unnecessary NVMe

device replacement.

• It should be able to optimize the restart procedure during

a live upgrade so that the downtime can be minimized.

• It should be able to ensure that data access requests from

the guest OS are not lost during a controller reset and

live system upgrade.

3 Methodology of SPOOL

Figure 6 shows the design architecture of Spool, where the

blue components are new relative to SPDK. Based on Spool,

100 2020 USENIX Annual Technical Conference USENIX Association

the NVMe devices on a node are virtualized and organized

into a Storage Pool (hence, “Spool”). The virtualized NVMe

devices are divided into multiple logical volumes that are

managed through the buddy system [28]. The logical volumes

are exposed to the guest OS in the form of block devices.

As shown in the figure, the guest drivers communicate with

Spool over shared memory. Specifically, the I/O worker on

the host node polls I/O requests from the vhost virtqueue

of block devices and submits to the corresponding physical

devices. Spool is comprised of a cross-process journal, an

isolation-based failure recovery component, and a fast restart
component. Based on the three components, Spool ensures

high reliability and availability of the storage pool.

The cross-process journal records each I/O request and its

status to avoid data loss. The journal provides data access

across process lifecycles, even if Spool restarts for an upgrade

or exits abnormally. An instruction merge mechanism is pro-

posed to eliminate the possible inconsistency of the journal

itself due to an abnormal exit and to avoid the copy overhead

of atomic operations.

The restart component records the runtime data structures

of the current Spool process in shared memory. Spool catches

the termination signals including SIGTERM and SIGINT to

ensure the completion of all INFLIGHT I/O requests before

actual exit. Spool reuses the data structures at the restart,

thus significantly reducing the downtime spent on initializing

the Environment Abstraction Layer (EAL) and resetting the

device controller.

Spool diagnoses the device failure type online through self-

monitoring, analysis, and reporting technology (S.M.A.R.T.)

data [35]. For media errors, the failure recovery component

isolates the failed device so that the administrator can replace

the failed device through hot-plug. All the other NVMe de-

vices are unaffected by the failed device. For data link errors,

the recovery component resets the device’s controller directly,

thus minimizing data loss due to unnecessary disk replace-

ment.

We implement Spool based on the SPDK userspace NVMe

driver. Spool combines the advantages of Virtio and VFIO

(Figure 3). Furthermore, instead of implementing the actual

Virtio datapath, we offload the datapath from QEMU to Spool

adopting the vhost-user protocol. Adopting this protocol, the

guest OS directly interacts with Spool without QEMU’s inter-

vention. In addition, by adopting the SPDK userspace polled

driver specification [38], Spool eliminates the overhead of sys-

tem calls and data copies between kernel space and userspace

stacks on the host and achieves high I/O performance.

4 Reliable Cross-Process Journal

In this section, we describe the reliability problem in the Virtio

protocol that virtualizes the NVMe device, and we present

the design of a cross-process journal that improves reliability.

Available Ring

last_idx avail_idx

Available Ring

last_idx avail_idx

Available Ring

last_idx avail_idx

Available Ring

last_idx avail_idx

Used Ring

used_idx

Used Ring

used_idx

IO1 IO2 IO3 IO4IO1 IO2 IO3 IO4 IO2 IO3 IO4IO2 IO3 IO4IO1

Used Ring

used_idx

Used Ring

used_idx

IO2

Used Ring

used_idx

IO2

1 2

3
IO1

N
V

M
e D

evice
N

V
M

e D
evice

Figure 7: Design of Virtio block virtualization protocol.

4.1 Problem Statements
Figure 7 shows the design of the Virtio block driver that

handles I/O requests in the guest OS. The I/O requests are

processed in a producer-consumer model, where the guests

are producers and the storage virtualization system is the

consumer.

Specifically, the Virtio driver of each guest OS maintains

an available ring and a used ring to manage its I/O requests.

� When an I/O request is submitted, the descriptor chain of

the request is placed into the descriptor table. The descriptor

chain includes the metadata, buffer, and status of the request.

The metadata indicates the request type, request priority, and

the offset of read or write. The guest driver places the index

of the head of the descriptor chain into the next ring entry of

the available ring, and the available index of the available ring

(“avail_idx” in Figure 7) is increased. Then, the driver noti-

fies the storage virtualization system that there is a pending

I/O request. � Meanwhile, the storage virtualization system

running in the host obtains the several head indexes of the

pending I/O requests in the available ring, increases the last

index of the available ring (“last_idx” in Figure 7), and

submits the I/O requests to NVMe device hardware driver. �
Once a request is completed, the storage virtualization sys-

tem places the head index of the completed request in the

used ring and notifies the guest. Here, it is worth noting that

the available ring and used ring are allocated by the guest,

and the avail_idx is maintained by the guest, while both

the last_idx and used_idx are maintained by the storage

virtualization system.

The storage virtualization system may adopt either interrupt

or polling to obtain I/O requests from the guest OS. Polling

is able to fully utilize the advantages of NVMe devices to

reap significant performance benefits [27, 37, 38], and Spool

uses a dedicated I/O thread to poll I/O requests from the guest

and data from the NVMe device instead of interrupts. This

mechanism is implemented based on the SPDK userspace

NVMe driver.

In general, the storage virtualization system runs well with

the above procedure. However, if the storage virtualization

system restarts for an upgrade or the NVMe device controller

is reset, data loss may occur.

In the case of Figure 7, the storage virtualization system

obtains two I/O requests, IO1 and IO2. Then, the last_idx
is incremented from IO1 to IO3 in the available ring. If the

USENIX Association 2020 USENIX Annual Technical Conference 101

storage virtualization system restarts at this moment, the last

available index will be lost, which means that it does not

know where to proceed with I/O requests after the restart.

Even if the last available index persists, there is no way to

know whether the obtained IO1 and IO2 have been completed.

If we simply continue to process the next request based on

the last available index, the previously obtained incomplete

request will be lost.

When we reset the controller of an NVMe device, all the

admin and I/O queue pairs are cleared. Suppose that IO1 and

IO2 have been submitted but they are still in the device I/O

queue and have not been processed. Due to the lack of an

I/O request state, the submitted I/O request in the cleared I/O

queue pairs will never be checked as completion from the

NVMe device.

In summary, a journal is needed to maintain I/O consis-

tency.

4.2 Design of the Journal
We propose a cross-process journal of data that persists in

shared memory to solve the problem of data loss caused by

the storage virtualization system restart or device controller

reset. Spool persists the following data in the journal.

• Last available index (last_idx) of the available ring.

The index references to the starting descriptor index of

the latest request that the Virtio backend reads from the

available ring.

• The head index of each request in the available ring.

The index refers to the head of a descriptor chain in the

descriptor table.

With the last_idx in the journal, Spool knows which re-

quests have been processed after restarting for the upgrade and

is able to continue processing the remaining to-be-processed

requests. If a request’s starting descriptor index is referenced

between last_idx and avail_idx of the available ring, it is

a to-be-processed request.

Algorithm 1 Algorithm of cross-process journal

Require: head1: The head index of request in the available ring;
Require: head2: The head index of completed request from the driver;
Require: req[]: A ring queue to mark each I/O reqeust in the journal;
Require: aux: A temporary union variable to record multiple variables;
1: poll head1 from the available ring;
2: aux.state = START;
3: aux.last_idx = journal->last_idx+1;
4: aux.last_req_head = head1;
5: *(volatile uint64_t *)&journal->val = *(volatile uint64_t *)&aux.val;
6: req[head1] = INFLIGHT;
7: journal->state = FINISHED;
8: submit I/O request to driver;
9: poll head2 completion;

10: journal->usd_idx++;
11: req[head2] = DONE;
12: put head2 to the used ring, may goto 10 or 13;
13: update used_index of the used vring with usd_idx of journal;
14: req[head2] = NONE;

Valid
Data

State
Valid
Data

State

Write memory barrier

Valid
Data

State
Valid
Data

State

last_avail_idx++
last_req_head=head

req[head]=INFLIGHT

Valid
Data

State

last_avail_idx++
last_req_head=head

req[head]=INFLIGHT

T0: Init Phase T1: Instrs Execution T2: Valid Phase

InvalidInvalid

Valid
Data

State
Valid
Data

State

last_avail_idx++
last_req_head=head

req[head]=INFLIGHT

Valid
Data

State

last_avail_idx++
last_req_head=head

req[head]=INFLIGHT

Memory Memory Memory

ValidValid

Figure 8: Transactional execution of multiple memory access

instructions.

At the same time, when processing an I/O request in Spool,

the request is given one of three states: INFLIGHT, DONE,

or NONE. The cross-process journal uses Algorithm 1 to

manage the I/O requests. To be more specific, when Spool

gets a request from the frontend, it persists the head index

of this request and marks the request as INFLIGHT, updates

last_idx, and submits the request to the hardware driver.

Once the I/O request completes, Spool updates the persisted

used_idx in the journal and marks the request as DONE. Af-

ter that, Spool returns the result of this request to the frontend,

updates the used index of the frontend, and marks the request

as NONE.

Adopting this method, if Spool restarts, the new Spool

process can find out which request was not completed before

the restart. In this way, the new Spool process resubmits the

requests in the INFLIGHT state.

4.3 Merging Journal Update Instructions
An intuitive idea is to use shared memory as a journal to

save this information with low latency overhead. However, it

is challenging to ensure the consistency of the journal itself

because Spool must update the journal multiple times during

the processing of an I/O request.

Specifically, the process of each I/O request in Spool in-

volves updating the last available index and marking the state

of the request as INFLIGHT. During the processing, if Spool

restarts or the controller is reset between the first two instruc-

tions, this request is lost.

If we can guarantee that instruction 3 (increase last_idx)

and instruction 6 (change the request’s status) in Algorithm 1

are executed in an atomic manner, the request loss problem

can be resolved. However, only reading or writing a quadword

aligned on a 64-bit boundary is guaranteed to be carried out

atomically [7] in the memory, and the two instructions are

not atomic when operating on the cross-process journal that

resides in the memory.

To resolve the above problem, we design a multiple-

instruction transaction model to guarantee atomic execution

of the two instructions. As shown in Figure 8, each transaction

consists of three phases. In T0, the init phase, we make a copy

of the variable to be modified, such as last_idx, and in T1,

102 2020 USENIX Annual Technical Conference USENIX Association

union atomic_aux {
 struct {

uint8_t pad0;
uint8_t state;
uint16_t last_avail_idx;
uint16_t last_req_head;
uint16_t pad1;

 };
 uint64_t val;
};

val

pad0
state

last_avail_idx

last_req_head

pad1

val

pad0
state

last_avail_idx

last_req_head

pad1 8 bit

Figure 9: Aux data structure that enables the update of multi-

ple indexes using a single instruction.

the transaction will be in the START state. After all the in-

structions complete, the transaction will be in the FINISHED

state in T2. Because the state is guaranteed to be carried out

atomically, once the last available index updates, the related

request is recorded as INFLIGHT in the journal. If any failure

occurs in one transaction, we rollback the transaction to erase

all data modifications with the copy.

As shown in Figure 9, we also design an auxiliary data

structure carefully to eliminate the overhead of making a copy

in T0 using a union type. The state, last available index, and

head index of the related request are padding to 64 bits and

a union memory block with a 64-bit value. We could update

these three records within one instruction in Algorithm 1

step 5. This is a valuable trick to efficiently maintain journal

consistency.

4.4 Recovering I/O Requests from Journal
Spool uses Algorithm 2 to recover the unprocessed I/O re-

quests before the restart. With multiple journal transactions

and an auxiliary structure, the new Spool process before the

restart only needs to check the state and decide whether to

redo the transactions or not.

Algorithm 2 Algorithm for recovering I/O requests

1: if (state == START) {
2: req[last_get_req_head] = INFLIGHT;
3: state = FINISHED;
4: }
5: jstate = (last_used_idx == used_idx) ? NONE : INFLIGHT
6: change all requests with done status to jstate;
7:
8: last_used_idx = used_idx;
9: submit all requests marked as INFLIGHT;

The recovery algorithm works based on the value of the

used index of vring and the last used index in the journal. If

they are equal, Spool may crash after step 13 in Algorithm 1,

but we do not know whether step 14 completes. Therefore,

Spool tries to execute step 14 again and changes the states

of the DONE requests to NONE. Otherwise, the request’s

process may be broken between steps 10 and 12. In this

case, we do not know whether the request in the state DONE

has been submitted to the frontend. To avoid losing any I/O

request, we roll back the status of all the DONE requests to

INFLIGHT. Because the frontend always has correct data,

rte_config
rte_hugepageinfo

create attach

mmaped files

SpoolSpool

Local
Pointer

Spool

Local
Pointer

SpoolSpool

Local
Pointer

Spool

Local
Pointer

nvme_ctrlr

First start Restart

Figure 10: Boosting the restart of Spool by reusing the stable

configurations.

we synchronize the last used index in the journal with the

frontend used index. In the last step, Spool resubmits all the

requests that are in the INFLIGHT state.

Now, in Spool, the size of a single journal is only 368 bytes

because it only records the metadata and the indexes of the

requests in the available ring. Note that the above algorithm

does not take precautions against the journal wrapping around;

this is not possible because the journal is the same size as

the available ring, so the guest driver will prevent such a

condition.

5 Optimizing Spool Restart

As shown in Figure 5, when restarting a storage virtualiza-

tion system, it initializes the EAL (Environment Abstraction

Layer) in the DPDK driver and probes the NVMe devices in

the SPDK driver on the host node. The relatively long restart

time (ranging from 450 ms to 2,500 ms) hurts the availabil-

ity as the whole storage system is out of service before the

restart completes. In this section, we describe the method of

optimizing the restart procedure in Spool.

5.1 Reusing Stable Configurations

During EAL initialization, the DPDK driver reserves all the

memory in an IOVA-contiguous manner and sets up the huge

pages for memory usage, such as I/O request buffers that

are shared by the host userspace datapath and the physical

device to perform DMA transactions. To be more specific,

DPDK maps all the available huge pages to the process ad-

dress space of DPDK, reads “/proc/self/pagemap” from

the host OS to find the corresponding physical addresses of

the huge pages, and sorts and merges the physical addresses

into large contiguous chunks. After that, DPDK uses the phys-

ically continuous huge page chunks as memory segments.

This design choice enables better hardware data prefetching

and results in higher communication speed. Our experiment

shows that the whole time spent on obtaining the physical

memory layout information of huge pages is approximately

800 milliseconds, accounting for 70.9% of the total down

time for a Samsung PM963 NVMe device. In our cloud, all

the SSDs are restarted by more than 800,000 times in total

USENIX Association 2020 USENIX Annual Technical Conference 103

in a single year. More restarts are required to periodically

update the SPDK driver or apply new security patches. The

long EAL initialization results in a long restart time and poor

tenant experience.

Based on the above findings, we optimize the initialization

steps of Spool. Specifically, the new Spool process after restart

reuses the memory layout information from the current Spool

process. Figure 10 shows the way we enable memory layout

reuse. As shown in the figure, after the first startup of Spool,

we store the related information (e.g., the huge pages in use

and the virtual addresses of the huge pages) in the memory-

mapped files that reside in the memory. If Spool restarts, it

directly obtains the required information from the memory-

mapped files in the memory with short latency and oper-

ates normally. Specifically, the “rte_config” file stores the

global runtime configurations, and the “ret_hugepageinfo”

file stores the memory layout information related to the huge

page chunks used by Spool.

The above design does not guarantee that the new Spool

after the restart will still use the largest continuous physical

memory. This is because other processes may release huge

pages and form larger continuous physical memory chunks.

This design choice eliminates the long scan time of huge

pages and does not degrade the performance of Spool.

5.2 Skipping Controller Reset
When probing the NVMe devices during the restart of the

SPDK driver, more than 90% of the time is spent resetting

the controller of NVMe devices. On an Intel P3600 SSD,

the NVMe probe stage takes more than 1500 milliseconds

(Figure 5). During the reset of the controller, SPDK frees the

current admin queue, the I/O queue1 in the controller, and

creates them again for the controller after the reset.

Compared with SPDK, Spool skips the controller reset

step during restart and reuses the data structures of the con-

troller. This design is valid because the restart of Spool is

not caused by media errors or data link errors. In this case,

the data structures of the NVMe device controllers are not

broken. To achieve reuse, Spool saves the NVMe device

controller-related information in the memory-mapped file

“nvme_ctrlr”, as shown in Figure 10). After Spool restarts,

it reuses the data of the device controller.

The challenging part here is that the context of the I/O

request has disappeared with the exit of Spool. Therefore, we

need to ensure the admin queue and I/O queue are completely

clean.

In general, various signals are used to terminate one run-

ning process for an OS, such as SIGTERM, SIGINT, and

SIGKILL. The default action for all of these signals is to

cause the process to terminate. To gracefully terminate, we

1There are two types of commands in NVMe: Admin Commands are sent

to Admin Submission and Completion Queue. I/O Commands are sent to I/O

Submission and Completion Queues [9].

Devices

RESET

Event
Handle

IO hang

Storage Pool

REPORT

REMOVE DEVICE

S.M.A.R.T
Diagnosis

Sigbus ErrorHD Failure
Isolation

HARDWARE

SPDK DriverHotplug Events

ADD DEVICE

DevOps

Figure 11: Handling hardware failures in different ways.

catch the termination signals including SIGTERM and SIG-
INT to ensure the completion of all INFLIGHT I/O requests

before actually terminating. In that case, we could skip the

reset operation after restart. Regarding the SIGKILL signal,

which could not be handled in process or abnormal exit, we

reset the controller after restart as usual.

6 Hardware Fault Diagnosis and Processing

Traditionally, any NVMe device hardware failure causes the

whole machine to be offline and repaired, and all VMs on the

failing node need to be proactively migrated to a healthy node.

With emerging virtualized storage systems like SPDK, to fix

an NVMe device failure on a node, the administrator directly

replaces the failed device through hot-plug. On one hand, this

causes data loss for users, and on the other hand, it increases

operating costs.

To minimize data loss and reduce operating costs, we have

implemented a fault diagnosis to identify the type of hardware

fault and effectively avoid unnecessary hardware replacement.

6.1 Handling Hardware Failures

In large-scale cloud-based productions, hardware failures are

frequent and may cause SIGBUS error and I/O hang, as shown

in Figure 11.

Spool adopts the SPDK userspace NVMe driver to access

a local NVMe PCIe SSD. Base address register (BAR) space

for the NVMe SSD will be mapped into the user process

through VFIO, which allows the driver to perform MMIO

directly. The BAR space will be accessed by Spool while

guest VMs send I/Os to the devices. However, the BAR space

may become invalid while the device fails or is hot-removed.

At this time, it will trigger SIGBUS error and cause the host

process to crash if guest VMs still send I/O requests to the

failed device of the host.

To improve reliability, a SIGBUS handler is registered into

Spool. Once guest VMs send I/O requests to failed devices

and access illegal BAR space, the handler will capture the

SIGBUS error and remap the invalid BAR space to a dummy

virtual address so that the SIGBUS error will not be triggered

104 2020 USENIX Annual Technical Conference USENIX Association

Table 1: Experimental configuration

Host configuration
CPU & Memory 2x E5-2682v4 @2.5GHz; 128GB DDR4 Memory

NVMe devices 2 Samsung PM963 3.84TB SSDs

OS info CentOS 7 (kernel verison 3.10.327)

Guest OS configuration
CPU & Memory 4 vCPU; 8 GB

OS info CentOS 7 (kernel verison 3.10.327)

again. Then, it sets the NVMe controller state to failure and

fails all the internal requests in NVMe qpairs of the failed

device.

6.2 Failure Model
The S.M.A.R.T. diagnosis collects and analyzes S.M.A.R.T.

data to identify the failure type. S.M.A.R.T. data is disk-

level sensor data provided by the firmware of the disk driver,

including smart-log, expanded smart-log, and error-log, which

can be used to analyze internal SSD errors.

Once a hardware media error is verified, Spool proactively

fails the submitted I/O requests and returns I/O errors. After

that, all the subsequent I/O requests to the failed device will re-

turn errors to guest VMs directly. Meanwhile, the S.M.A.R.T.

diagnosis will send a report to DevOps. The hot-plug feature

in the driver layer of SPDK is utilized in Spool; hence, the

failed device can be replaced directly.

For the other hardware errors, such as a data link layer

failure, diagnosis informs Spool to reset the controller. Dur-

ing the reset process, the I/O requests from the guest VMs

hang. After the device is fixed, the INFLIGHT requests in the

journal are resubmitted automatically.

7 Evaluation of Spool

In this section, we evaluate the performance of Spool in re-

solving hardware failure and supporting live upgrades. We

first describe the experimental setup. Then, we evaluate the

reliability of Spool in fixing an NVMe device’s hardware

failure without affecting other devices and correctly tolerat-

ing system upgrades at random times. After that, we show

the effectiveness of Spool in reducing the system restart time,

followed by a discussion on the impact of Spool on the I/O per-

formance and the extra overhead caused by the cross-process

journal. Lastly, we discuss the effectiveness of Spool on an

in-production large-scale public cloud.

7.1 Experimental Setup
We evaluated Spool on a server equipped with two Intel Xeon

E5-2682 processors operating at 2.5 GHz with 128 GB mem-

ory. For the NVMe devices, we adopted a mainstream SSD

device: Samsung PM963 NVMe SSD. Table 1 summarizes

the hardware and software specifications of the experimental

platform.

For extensive evaluation, we use the Flexible I/O tester

(FIO) [6] as our performance and reliability evaluation bench-

mark. FIO is a typical I/O tool meant to be used both for

benchmark and stress/hardware verification and is widely

used in research and industry. When evaluating the I/O per-

formance, we use different parameters, as shown in Table 2,

to demonstrate metrics, including IOPS and average latency

recommended by Intel [5] and Alibaba [4]. To emulate the

real-system cloud scenario, we split each NVMe SSD into

three partitions (each partition was 100 GB) and allocated

each partition to an individual VM.

We used libaio (Linux-native asynchronous I/O facil-

ity) [21] as the FIO load generation engine. Table 2 lists

the generated FIO test cases. To obtain accurate performance,

we tested raw SSDs without any file system.

Table 2: FIO test cases

Tested metrics Test cases FIO Configuration (bs, rw, iodepth, numjobs)

Bandwidth
Read (128K, read, 128, 1)
Write (128K, write, 128, 1)

IOPS

Randread (4K, randread, 32, 4)
Mixread (4K, randread 70%, 32, 4)
Mixwrite (4K, randwrite 30%, 32, 4)
Randwrite (4K, randwrite, 32, 4)

Average
Latency

Randread (4K, randread, 1, 1)
Randwrite (4K, randwrite, 1, 1)
Read (4K, read, 1, 1)
Write (4K, write, 1, 1)

7.2 Reliability of Handling Hardware Failure
When an NVMe device suffers from hardware failure, Spool

isolates the failed device and performs device replacement

or controller reset accordingly. When handling such failure,

Spool should not affect the I/O operations on other devices of

the same node, and the VMs that are using the failed device

should receive I/O errors instead of exiting abnormally.

We designed an experiment to evaluate Spool in the above

scenario. In the experiment, we launched two VMs on a hard-

ware node equipped with two NVMe devices and configured

the two VMs to uses different NVMe devices in Spool. The

two VMs randomly read data from NVMe devices in the

beginning, and we manually removed an NVMe device and

observed the behavior of the two VMs.

Figure 12 presents the I/O performance of the two VMs

when the NVMe device (“SSD2”) was hot-removed at time

80 s. The hot remove was performed by writing a non-zero

value to “/sys/bus/pci/devices/.../remove”. Observed

from this figure, the I/O performance of VM1 that uses the

NVMe device SSD1 is not affected when SSD2 is removed.

Meanwhile, VM2 does not exit abnormally after SSD2 is

removed. Once a new SSD device replaces the failed SSD2

or the controller of SSD2 is reset correctly at time 95 s, VM2

is able to directly use SSD2 without any user interference.

Spool can successfully handle the above hardware failure

because it catches the hardware hot-plug event and diagnoses

the device failure type first. Hardware failures are handled

USENIX Association 2020 USENIX Annual Technical Conference 105

Figure 12: Handling hardware failure with Spool.

Figure 13: Data consistency at live upgrade with Spool.

in two ways: media errors are solved by hot-plugging a new

SSD, and then the storage service automatically recovers,

where the related logical devices are automatically mapped to

new devices, while data link failure is handled by controller

reset instead of replacing a SSD. On the contrary, if the tradi-

tional SPDK is used to manage SSDs, the hardware failure

can only be solved by hot-plugging new devices, resulting in

unnecessary data loss, and the storage service of SPDK needs

to be reset manually for recovery.

7.3 Reliability of Handling Random Upgrades

To validate the reliability of Spool in handling upgrades with-

out resulting in data loss, we designed an experiment that

restarts purposely stops and starts and randomly kills and
restarts Spool. In the experiment, we relied on the data ver-

ification function in FIO to check the data consistency. By

enabling the data verification function, FIO verifies the file

contents after writing 10 blocks contiguously with crc32 and

reports whether any data corruption occurred or not. If FIO

runs completely without errors, data consistency is verified.

Figure 13 shows the read and write performance to the SSD

when we restart on purpose, stop and start, and randomly

kill and restart Spool at time 10 s, 20 s, and 35 s. As can

be observed from the figure, the I/O operations to the SSD

complete correctly with Spool, even if Spool is directly killed

and restarted for an upgrade.

Spool can guarantee data consistency during upgrades due

to the cross-process journal. The journal persists the current

states of all the NVMe devices. Whenever Spool is restarted,

it is able to recover the states before the restart and continue to

complete the unprocessed I/O requests. On the contrary, with

SPDK, there is no mechanism to guarantee data consistency

for INFLIGHT I/Os.

Figure 14: Restart times of Spool and SPDK.

7.4 Reducing Restart Time

Observed from Figure 13, the downtime due to the restart is

short with Spool. In more detail, Figure 14 shows the restart

time breakdown of Spool and SPDK.

As can be observed from this figure, Spool significantly

reduces the total restart time from 1,218 ms to 115 ms on a

Samsung PM963 SSD. This significant restart time reduction

originates from the reduction of EAL initialization time and

the NVMe probe time.

SPDK suffers from a long EAL initialization time and a

long NVMe probe time because it initializes the EAL and re-

sets the controller of the device during probing at each startup.

By reusing the previous memory layout information, Spool

minimizes the EAL initialization time. And, by skipping re-

setting the device controller, Spool reduces the NVMe probe

time.

7.5 I/O Performance of Spool

It is crucial to ensure high I/O performance (i.e., high IOPS

and low latency) when guaranteeing reliability. In this subsec-

tion, we report the I/O performance of NVMe devices with

Spool in two cases: an NVMe device is only allocated to a

single VM, and an NVMe device is shared by multiple VMs.

7.5.1 Case 1: Single VM Performance

Figure 15 presents the data access latency and IOPS to an

SSD when it is virtualized with Virtio, SPDK, and Spool.

In the figure, “native” shows the performance of the SSD

measured on the host node directly; “SPDK vhost-blk” and

“SPDK vhost-scsi” show the performance of the SSD if SPDK

is used as the I/O virtualization system and the SSD is treated

as a block device or a SCSI device, respectively.

As can be observed from Figure 15, all the I/O virtualiza-

tion systems result in longer data access latency compared

with the native access due to extra layers in the virtualization

system. Meanwhile, Spool achieves similar data access la-

tency to SPDK. From the IOPS aspect, the IOPS of Randread
with Spool is 2.54x higher than Virtio and even slightly better

than the native bare metal. As mentioned in Section4, Spool

uses polling instead of interrupt to monitor the I/O requests.

Polling saves the expense of invoking the kernel interrupt

handler and eliminates context switching. These results are

consistent with prior work [27].

106 2020 USENIX Annual Technical Conference USENIX Association

(a) Average latency (b) IOPS

Figure 15: Average data access latency and IOPS of an NVMe

SSD when it is used by a single VM.

(a) Average latency (b) IOPS

Figure 16: Average data access latency and IOPS of an NVMe

SSD when it is shared by multiple VMs.

Compared with SPDK vhost-blk, the performance of our

implementation is almost the same. Because the SPDK vhost-

blk software stack is thinner than SPDK vhost-scsi, the IOPS

with SPDK vhost-scsi is lower than that with Spool.

7.5.2 Case 2: Scaling to Multiple VMs

In this experiment, we partition an SSD into three logic disks

and assign each logic disk to an individual VM. This exper-

iment tests the effectiveness of Spool in handling multiple

VMs on an NVMe device.

Figure 16 shows the IOPS and data access latency when

three VMs share an NVMe device, and each result is the

sum of those of all VMs. For the latency test, we ran each

benchmark 10 times and report the average latency for each

benchmark. As can be observed from this figure, Spool does

not degrade the I/O performance of all the benchmarks com-

pared with SPDK vhost-blk and SPDK vhost-scsi. Specifi-

cally, Spool improves the IOPS of Randread by 13% com-

pared with SPDK vhost-blk, which reduces the average data

access latency of Randread by 54% to 55% compared with

SPDK vhost-blk and SPDK vhost-scsi, respectively.

Besides, we can see that the SSD device achieves similar

IOPS when the SSD is used by a single VM and three VMs,

and we can see the average data access by comparing Fig-

ure 15(b) and Figure 16(b). The data access latency of the

benchmarks when the SSD is shared by three VMs is three

times that of case 1. This is reasonable because the backend

I/O load pressure increases linearly with the number of VMs,

so the total latency of the three VMs increases. While the I/O

load pressure of one VM has reached the throughput limit

of the Samsung PM963 specification [10], the total IOPS

of three VMs remains unchanged. The I/O performance of

Spool is slightly better than that of SPDK because Spool and

(a) Average latency (b) IOPS

Figure 17: Overhead of the cross-process journal.

SPDK use different logical volume management mechanisms.

Specifically, Spool uses the buddy system to manage logical

volumes, while SPDK uses Blobstore.

7.6 Overhead of the Cross-Process Journal
To measure the overhead of the cross-process journal, we

implement a Spool variation, Spool-NoJ that disables the

cross-process journal. Figure 17 shows the data access latency

and the IOPS of the SSD with Spool and Spool-NoJ.

As shown in Figure 17, Spool-NoJ and Spool result in

similar data access latency and IOPS. Compared with Spool-

NoJ, Spool increases the average data access latency no more

than 3%. Meanwhile, Spool reduces the IOPS by less than

0.76% compared with Spool-NoJ. The extra overhead caused

by the cross-process journal in terms of average latency and

IOPS throughput is negligible.

7.7 Deployment on an In-production Cloud
We currently deploy Spool in 210 clusters with approxi-

mately 20,000 physical machines equipped with approxi-

mately 200,000 NVMe SSDs.

On the cloud supported by Spool, we built a Platform-as-a-

Service cloud(ALI I2 series) that provides low latency, high

random IOPS, and high throughput I/O support. The maxi-

mum IOPS of single disk is 50% higher than that of competi-

tive products and the maximum IOPS of a largest specification

instance is 51% higher than that of the competitive products,

as shown in Figure 18. The in-production cloud hosts Cas-

sandra, MongoDB, Cloudera, and Redis. They are ideal for

Big Data, SQL, NoSQL databases, data warehousing, and

large transactional databases. Recently, the instance resources

of local SSD disks have helped OceanBase break the world

record for TPC-C benchmark performance test maintained by

Oracle for 9 years and becoming an important milestone in

the evolution history of global databases.

A holistic fine-grain monitoring system is crucial for clouds.

While the monitoring system is able to diagnose media errors

and other SSD failures, Spool handles the failures in different

ways. Our statistics show that the current hardware failure

rate is approximately 1.2% over a whole year. Throughout

one year, approximately 2,400 out of 200,000 SSDs suffer

from media errors. The media error is due to either media

damage or life depletion. From the system upgrade aspect,

USENIX Association 2020 USENIX Annual Technical Conference 107

(a) A single disk (b) A single instance

Figure 18: Maximum read IOPS compared with AWS and

Azure.

Figure 19: Restart time of Spool during a live upgrade.

we release a new version of Spool every six months. In total,

we upgrade Spool on more than 40,000 physical machines

every year. The purpose of the new version is to deal with two

issues: 1) releasing new features and 2) fixing online stability

during the operation and maintenance phase. Most of the new

features are related to performance, such as adding support

for multiple queues, optimizing memory DMA operation, and

optimizing memory pools.

Figure 19 shows the restart time of some selected machines

in a live upgrade in production. The x-axis is the ID of the

physical node. Due to historical reasons, Spool in the pro-

duction environment is based on the earlier version of the

DPDK driver, and the initialization memory requires 1,172

ms, accounting for 70% of the initialization of EAL (1,792

ms in total), which is almost optimized. However, the rest

of the initialization of the EAL is still 550 ms, and the total

upgrade time for 95% of the machines is within 654 ms. We

are working on updating the DPDK driver for Spool.

8 Related Work

There has been a lot of work concentrating on NVMe virtu-

alization and optimizing storage I/O stacks for modern fast

storage devices(e.g., NVMe SSDs).

Kim et al. [22] analyzed the overheads of random I/O over

storage devices in detail and mainly focused on optimizing

the I/O path by eliminating the overhead of user-level threads,

bypassing the 4KB aligned I/O routine and enhancing the

interrupt delivery delay in QEMU. In QEMU/KVM forum

2017, Zheng et al. [43] implemented a userspace NVMe driver

in QEMU through VFIO to accelerate the virtio-blk in a guest

OS at the cost of device sharing. Peng et al. [27] discussed

the importance of polling for NVMe virtualization and took

advantage of polling to achieve extreme I/O performance

while each polling thread brings 100% usage of 3 cores.

Virtio [12] is a de facto standard for para-virtualized driver

specifications including virtio-blk and virtio-scsi, which de-

fines the common mechanisms for virtual device discovery

and layouts. However, each I/O request passes through the

I/O stack twice for guest and host, causing great loss of I/O

performance. Then, a vhost acceleration method is proposed

to accelerate virtio-scsi or virtio-blk provided by the storage

performance development kit (SPDK) [38], such as kernel

vhost-scsi, userspace vhost-scsi, and vhost-blk.

While local SSDs provide higher data access bandwidth

and lower latency, storage disaggregation (e.g., ReFlex [24],

NVMe-over-Fabrics [20], [23]) enables flexible scaling and

high utilization of Flash capacity and IOPS at the cost of

interconnecting latencies over a network. The bandwidth of

NIC is the bottleneck to saturate the bandwidth of multi-

ple disks. Two NVMe SSDs may saturate the bandwidth of

emerging NIC (100GbE). Meanwhile, the upgrade of cloud

services with minimal downtime has also been widely studied.

Neamtiu et al. [26] highlighted challenges and opportunities

for upgrades to the cloud. Clark et al. [19] proposed a live

migration mechanism to temporarily move VMs to a backup

server, upgrade the system, and then moves the VMs back.

Zhang et al. [41] proposed Orthus to live upgrade the VMM

without interrupting customer VMs and significantly reduce

the total migration time and downtime. However, Orthus only

focuses on KVM and QEMU and ignores the backend ser-

vices.

9 Conclusion

This paper presented Spool, a holistic virtualized storage sys-

tem that is capable of handling hardware failure and the

NVMe virtualization system upgrades reliably. Spool sig-

nificantly reduces the restart time by 91% on a Samsung

PM963 SSD by reusing the data structures at the restart for

system upgrades. Compared with emerging virtualized stor-

age systems such as SPDK, Spool supports live upgrades

and guarantees data consistency with a shared memory-based

journal at any time. Moreover, Spool diagnoses device fail-

ure type instead of hot-plugging directly and eliminates most

unnecessary NVMe device replacement.

Acknowledgement

This work is partially sponsored by the National R&D Pro-

gram of China (No. 2018YFB1004800), the National Natural

Science Foundation of China (NSFC) (61632017, 61772480,

61872240, 61832006, 61702328). Quan Chen and Minyi Guo

are the corresponding authors. We thank Lingjun Zhu for his

help in the experiments. And we also thank Mike Mesnier for

shepherding our manuscript.

108 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Alibaba cloud instance family with local

ssds. https://www.alibabacloud.com/
help/doc-detail/25378.htm?spm=
a2c63.p38356.879954.7.158f775aPotRZi#i2.

[2] Amazon ec2 i3 instances. https://aws.amazon.com/
ec2/instance-types/i3/.

[3] Azure lsv2-series. https://docs.microsoft.com/
en-us/azure/virtual-machines/linux/sizes-
storage#lsv2-series.

[4] Block storage performance. https:
//www.alibabacloud.com/help/
doc-detail/25382.htm?spm=
a2c63.p38356.879954.28.344791f3OdgBQZ#title-
1rp-8na-22y.

[5] Evaluate performance for storage performance devel-

opment kit. https://software.intel.com/en-us/
articles/evaluate-performance-for-storage-
performance-development-kit-spdk-based-
nvme-ssd.

[6] Fio. https://fio.readthedocs.io/en/latest/.

[7] Intel® 64 and ia-32 architectures software developer’s

manual. https://www.intel.com/content/dam/
www/public/us/en/documents/manuals/64-ia-
32-architectures-software-developer-vol-
3a-part-1-manual.pdf.

[8] Local ssd. https://www.alibabacloud.com/
help/doc-detail/63138.htm?spm=
a2c63.p38356.879954.199.aa265e6dMUz7fg#concept-
g3w-qzv-tdb.

[9] Nvm express specification. http://
www.nvmexpress.org/specifications.

[10] Pm963 specifications. https://www.samsung.com/
semiconductor/ssd/enterprise-ssd/
MZQLW3T8HMLP/.

[11] Utilizing local nvme storage on azure.

https://docs.microsoft.com/en-us/
azure/virtual-machines/linux/storage-
performance#utilizing-local-nvme-storage.

[12] Virtio homepage. https://www.linux-kvm.org/
page/Virtio.

[13] Vmware homepage. https://www.vmware.com.

[14] Xen main page. https://wiki.xen.org/wiki/
Main_Page.

[15] Amro Awad, Brett Kettering, and Yan Solihin. Non-

volatile memory host controller interface performance

analysis in high-performance i/o systems. In 2015 IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 145–154. IEEE,

2015.

[16] Sushil Bhardwaj, Leena Jain, and Sandeep Jain. Cloud

computing: A study of infrastructure as a service (iaas).

International Journal of engineering and information
Technology, 2(1):60–63, 2010.

[17] Haibo Chen, Rong Chen, Fengzhe Zhang, Binyu Zang,

and Pen-Chung Yew. Live updating operating systems

using virtualization. In Proceedings of the 2nd inter-
national conference on Virtual execution environments,

pages 35–44. ACM, 2006.

[18] Quan Chen and Qian-ni Deng. Cloud computing and its

key techniques [j]. Journal of Computer Applications,

9(29):2562–2567, 2009.

[19] Christopher Clark, Keir Fraser, Steven Hand, Ja-

cob Gorm Hansen, Eric Jul, Christian Limpach, Ian Pratt,

and Andrew Warfield. Live migration of virtual ma-

chines. In Proceedings of the 2nd conference on Sympo-
sium on Networked Systems Design & Implementation-
Volume 2, pages 273–286. USENIX Association, 2005.

[20] Zvika Guz, Harry Li, Anahita Shayesteh, and Vijay Bal-

akrishnan. Nvme-over-fabrics performance characteri-

zation and the path to low-overhead flash disaggregation.

In Proceedings of the 10th ACM International Systems
and Storage Conference, pages 1–9, 2017.

[21] William K Josephson. An introduction to libaio. 2007.

[22] Jungkil Kim, Sungyong Ahn, Kwanghyun La, and

Wooseok Chang. Improving i/o performance of nvme

ssd on virtual machines. In Proceedings of the 31st
Annual ACM Symposium on Applied Computing, pages

1852–1857. ACM, 2016.

[23] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu

John, and Sanjeev Kumar. Flash storage disaggregation.

In Proceedings of the Eleventh European Conference on
Computer Systems, page 29. ACM, 2016.

[24] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Re-

flex: Remote flash ≈ local flash. ACM SIGARCH Com-
puter Architecture News, 45(1):345–359, 2017.

[25] Uri Lublin, Yaniv Kamay, Dor Laor, and Anthony

Liguori. Kvm: the linux virtual machine monitor. 2007.

[26] Iulian Neamtiu and Tudor Dumitraş. Cloud software

upgrades: Challenges and opportunities. In 2011 Inter-
national Workshop on the Maintenance and Evolution

USENIX Association 2020 USENIX Annual Technical Conference 109

of Service-Oriented and Cloud-Based Systems, pages

1–10. IEEE, 2011.

[27] Bo Peng, Haozhong Zhang, Jianguo Yao, Yaozu Dong,

Yu Xu, and Haibing Guan. Mdev-nvme: a nvme

storage virtualization solution with mediated pass-

through. In 2018 {USENIX} Annual Technical Con-
ference ({USENIX}{ATC} 18), pages 665–676, 2018.

[28] James L Peterson and Theodore A Norman. Buddy

systems. Communications of the ACM, 20(6):421–431,

1977.

[29] Rusty Russell. virtio: towards a de-facto standard for

virtual i/o devices. ACM SIGOPS Operating Systems
Review, 42(5):95–103, 2008.

[30] Jeffrey Shafer. I/o virtualization bottlenecks in cloud

computing today. In Proceedings of the 2nd conference
on I/O virtualization, pages 5–5. USENIX Association,

2010.

[31] Sankaran Sivathanu, Ling Liu, Mei Yiduo, and Xing Pu.

Storage management in virtualized cloud environment.

In 2010 IEEE 3rd International Conference on Cloud
Computing, pages 204–211. IEEE, 2010.

[32] Yongseok Son, Hyuck Han, and Heon Young Yeom. Op-

timizing file systems for fast storage devices. In Proceed-
ings of the 8th ACM International Systems and Storage
Conference, page 8. ACM, 2015.

[33] Dejan Vučinić, Qingbo Wang, Cyril Guyot, Robert Ma-

teescu, Filip Blagojević, Luiz Franca-Neto, Damien

Le Moal, Trevor Bunker, Jian Xu, Steven Swanson, et al.

{DC} express: Shortest latency protocol for reading

phase change memory over {PCI} express. In Proceed-
ings of the 12th {USENIX} Conference on File and Stor-
age Technologies ({FAST} 14), pages 309–315, 2014.

[34] Wikipedia contributors. Serial ata — Wikipedia, the

free encyclopedia. https://en.wikipedia.org/w/
index.php?title=Serial_ATA&oldid=932414849,

2019. [Online; accessed 26-December-2019].

[35] Wikipedia contributors. S.m.a.r.t. — Wikipedia, the

free encyclopedia. https://en.wikipedia.org/

w/index.php?title=S.M.A.R.T.&oldid=931348877,

2019. [Online; accessed 8-January-2020].

[36] Alex Williamson. Vfio: A user’s perspective. In KVM
Forum, 2012.

[37] Jisoo Yang, Dave B Minturn, and Frank Hady. When

poll is better than interrupt. In FAST, volume 12, pages

3–3, 2012.
[38] Ziye Yang, James R Harris, Benjamin Walker, Daniel

Verkamp, Changpeng Liu, Cunyin Chang, Gang Cao,

Jonathan Stern, Vishal Verma, and Luse E Paul. Spdk:

A development kit to build high performance storage

applications. In 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom),
pages 154–161. IEEE, 2017.

[39] Ziye Yang, Changpeng Liu, Yanbo Zhou, Xiaodong Liu,

and Gang Cao. Spdk vhost-nvme: Accelerating i/os in

virtual machines on nvme ssds via user space vhost

target. In 2018 IEEE 8th International Symposium
on Cloud and Service Computing (SC2), pages 67–76.

IEEE, 2018.

[40] Xiantao Zhang and Yaozu Dong. Optimizing xen vmm

based on intel® virtualization technology. In 2008 Inter-
national Conference on Internet Computing in Science
and Engineering, pages 367–374. IEEE, 2008.

[41] Xiantao Zhang, Xiao Zheng, Zhi Wang, Qi Li, Junkang

Fu, Yang Zhang, and Yibin Shen. Fast and scalable vmm

live upgrade in large cloud infrastructure. In Proceed-
ings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 93–105. ACM, 2019.

[42] Yiying Zhang and Steven Swanson. A study of appli-

cation performance with non-volatile main memory. In

2015 31st Symposium on Mass Storage Systems and
Technologies (MSST), pages 1–10. IEEE, 2015.

[43] Fam Zheng. Userspace nvme driver in qemu. In KVM
Forum 2017, pages 25–27, 2017.

110 2020 USENIX Annual Technical Conference USENIX Association

