
The Case for Physical Memory Pools:
A Vision Paper

Heather Craddock(B), Lakshmi Prasanna Konudula, Kun Cheng,
and Gökhan Kul

Division of Physical and Computational Sciences, Delaware State University,
1200 N DuPont Hwy, Dover, DE 19901, USA

{hcraddock,lkonudula,kcheng14,gkul}@desu.edu
http://delawaresec.com

Abstract. The cloud is a rapidly expanding and increasingly prominent
component of modern computing. Monolithic servers limit the flexibil-
ity of cloud-based systems, however, due to static memory limitations.
Developments in OS design, distributed memory systems, and address
translation have been crucial in aiding the progress of the cloud. In this
paper, we discuss recent developments in virtualization, OS design and
distributed memory structures with regards to their current impact and
relevance to future work on eliminating memory limits in cloud com-
puting. We argue that creating physical memory pools is essential for
cheaper and more efficient cloud computing infrastructures, and we iden-
tify research challenges to implement these structures.

Keywords: Cloud computing · Memory · Operating systems ·
Virtualization

1 Introduction

The growth of cloud computing is fuelled by the rise of big data and the global
requirements for the inter-connectivity of computing resources. The cloud allows
for data and resources to be shared on demand to connected hardware devices,
reducing the need for reliance on purely local resources. According to the Data
Never Sleeps report, 1.7 MB of data is expected to be created every second for
every single person on earth by 2020 [6]. With such a vast amount of data being
generated, it is imperative that hardware and software architectures are modified
or created to manage modern requirements.

Virtualization plays a vital role in improving the utilization of distributed
resources, and consequently cloud computing. Currently, servers are capable
of hosting multiple operating systems (OS) with the help of multiple virtual
machines (VM) resulting in enhanced network productivity, recoverability, and
data migration. Virtualization works by combining hardware resources among
multiple VMs. It is a challenging task to run an unmodified operating system
on virtualized hardware. This led to development of several techniques to either
c© Springer Nature Switzerland AG 2019
D. Da Silva et al. (Eds.): CLOUD 2019, LNCS 11513, pp. 208–221, 2019.
https://doi.org/10.1007/978-3-030-23502-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23502-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-23502-4_15


The Case for Physical Memory Pools 209

modify the guest OS or combine application of virtualization techniques that
help the system best use the available resources in a secure and efficient manner.

Despite developments in memory hardware that increase the availability of
memory at lower cost, memory use and capacity is still limited by the ability
of operating systems to manage the vast resources that are now available. It
is particularly difficult to coordinate these memory resources over the cloud as
the lack of systems and methods that have been developed to manage large,
distributed memory is limiting.

The pervasiveness of the cloud makes it imperative to constantly improve
cloud technologies and to understand the current state of cloud operating sys-
tems. This paper provides an overview of some recent innovations in operating
system design, distributed memory management, and virtualization, while also
noting where improvements may be further made upon these proposals. Sug-
gestions are also made as to the future of cloud computing in general, and the
direction in which future work may lie.

In this paper, we begin by discussing existing models and techniques, includ-
ing operating system design proposals, improvements to memory virtualization,
more efficient memory management, and memory protection methods in Sect. 2.
We discuss the future direction of memory models for the cloud, with potential
future work in operating system design, distributed memory, and virtualization,
and also the direction of cloud computing in general in Sect. 3. We then conclude
in Sect. 4.

2 Existing Models

2.1 Operating System Design

Operating system design is of paramount importance to any computing envi-
ronment, but despite the increase in the popularity and necessity of the cloud
there is little development in distributed OS design. Current models are out-
dated for cloud operations or ill-equipped to deal with the increased availability
of resources. Vasilakis et al. [11] discussed a whole new OS design in a recent
work, and Swift [10] suggested a technique for improving operating system mem-
ory management. Shan et al. [9] state that the direction of cloud computing
leads away from monolithic servers and towards more disaggregated hardware
components, and the authors propose a new operating system, LegoOS, that is
designed for such a disaggregated system. LegoOS is the first operating system
designed to manage these separate components and is a revolutionary method
for approaching operating system design.

Revamping OS Design. Vasilakis et al. [11] state in their paper that in the
40 years since the original UNIX system was developed, new features or devel-
opments have just been stacked upon previous features, resulting in an overly-
complex and unwieldy model. Having grown beyond the original simplistic intent,



210 H. Craddock et al.

the model is not suitable for scaling or decentralization. The authors found four
key issues:

1. Data Cataclysm: Distributed system developments require more than minor
tweaks

2. Reliance on Commodity Hardware: Software must manage assurance on fault-
intolerant hardware

3. Rise of the Personal Cloud: Original model is not designed for personal micro-
clouds

4. Data Processing Shift: Data processing is now performed by ordinary people

The authors propose a distributed system design built from the bottom up.
The design includes a large number of components such as file systems more tol-
erant to scaling, a new type of execution primitive, and sandboxing for software
fault isolation. The system was designed based on a programming language, like
UNIX is based on C, but the language does not yet exist. For this design to be
proved to be useful, the design must be practically implemented using an adapted
or created programming language. This system was important in beginning the
discussion about revitalizing OS design. Finally, although the authors proposed
automatic memory management as garbage collection to save on the bugs and
vulnerabilities inherent in manual memory management, garbage collection can
have its own issues; it can be difficult to analyze memory and performance, and
this garbage collection only deals with memory resources and not all resources.
These issues would need to be addressed in a practical implementation.

OS Design for Near Data Processing (NDP). The emergence of NDP
architecture required a revision to the traditional memory structure. The prox-
imity to the memory modules has proven to enhance the throughput and exhibit
low power consumption. In NDP, however, heterogeneity and parallelism cannot
be solely handled, hence requiring the support of OS support to deal with prob-
lems like locality, protection and low-latency. To address these issues, Barbalace
et al. [5] proposed a new OS called Shadowgraphy based on a number of design
principles. A multiple kernel OS design where CPU heterogeneity can be backed
on the same machine, enabling the services and IO devices to interact individu-
ally in NDP and CPU while exhibiting the same protection and privileges across
all kernels. NDP enforces user privilege protections across all the kernels, so
applications running in the NDP processing unit can maintain different levels
of user privilege. Scheduling is done locally at every kernel by tracking the data
access pattern. Instead of moving the data, the code is moved. Data migration is
made efficient by caching it in both hardware and software at different levels of
the memory hierarchy. The CPU and NDP topology takes a new shape enabling
a transparent environment for the users to review.

Barbalace et al. [5] state that it is time to redesign system software for
NDP starting from the OS. They address the drawbacks of offloading while mul-
tiple applications are running; however, it isn’t discussed how Shadowgraphy
OS solves this issue. In order to achieve transparency for application develop-
ers, the system should both support asymmetricity in the processing units and



The Case for Physical Memory Pools 211

should be able to provide multiple levels of OS interfaces. A new, multi-kernel,
multi-server design should be considered to accommodate multiple users with
concurrent accesses in the system.

Distributed Memory Techniques. Distributed Shared Memory (DSM) is a
memory architecture that makes it possible to share computing tasks over mul-
tiple different hardware components. In DSM, separate physical address spaces
can be logically addressed as if they were one space, and in this way multiple
processing nodes with individual memory components can be connected over a
network to create a larger pool of memory resources. There are many issues with
current Distributed Shared Memory techniques that recent papers attempt to
address.

Scalability in Data-Intensive Applications. Many systems in use for data-
intensive applications are not easily scalable, particularly over the current hard-
ware configuration of many nodes connected over a high-bandwidth network.
To attempt to solve this problem, Nelson et al. [7] propose Grappa, a software
distributed shared memory system for use over clusters to improve performance
over data-intensive applications. Grappa’s key improvement was the implemen-
tation of parallelism to ensure the use of maximum process resource while also
disguising communication costs and message-sending latency. Although previous
methods for implementing distributed shared memory relied on locality of data
and caching to be able to scale effectively, implementing distributed computing
in parallel allowed the authors to disguise the high-bandwidth network costs
inherent in the hardware system. To create this scalable system, Grappa was
designed with three key components:

1. Distributed Shared Memory - Allows access to data anywhere in the system,
where local data can be exported to the global address space to be accessible
to other cores. Operations are performed at the data’s home node to pre-
vent unnecessary retrieval or sending of data over the network, guaranteeing
memory consistency and global order.

2. Tasking System - Multi-threading and work-stealing allow for functioning
parallelism and load-balancing to better utilize system resources. All tasks are
allocated to worker threads to execute, and threads performing long-latency
operations yield their core so the processor can still be utilized.

3. Communication Layer - Smaller messages are aggregated into larger ones to
limit the use of network bandwidth

Scalability in Grappa comes at the cost of fault-tolerance, as it was deemed
cheaper to restart after failure than recover. This is an area for potential improve-
ments. It may be interesting to explore in future how to improve the system so
that recovering from failure is cheaper than restarting entirely. In addition, send-
ing small messages using this method is somewhat limited by current hardware;
Grappa should be revisited as hardware innovations could lead to improvements
in network latency.



212 H. Craddock et al.

Improving Memory Access Speed. Improving the speed of memory access is
always crucial in distributed memory. Constructing large-scale clusters with vast
memory resources is cheaper now than it ever has been, but network latency is
caused by separated hardware elements. [4] suggests methods to improve memory
access speeds over clusters.

Memory access using TCP/IP protocol in cluster systems is slow. Existing
techniques like Remote Direct Memory Access (RDMA) allow direct memory
access from one machine into another without involving the OS, but to achieve
this the NICs bypass the kernel and remote CPU providing direct access to
data. FaRM utilizes one-sided RDMA reads and directly accesses the memory,
enhancing the speed of message passing and thus improving the performance of
the apps. FaRM allows lock-free reads which ensures that the transactions are
in order and utilizing a single RDMA read.

RDMA allows high throughput and low latency. RDMA also achieves remote
memory access through the NIC instead of the remote CPU which means that
the I/O operations will not go through the CP. This may cause the CPU to lose
control of the data in some cases. If a transaction occurs and there is a failure
to determine if there is enough storage space for the transaction, there could be
data loss or other serious error. This can be mitigated by reserving enough space
in the preparation step, but there is room for improvement.

Server Load Imbalance. The RackOut memory pooling technique suggested
in [8] utilizes direct access to improve access speeds across clusters. Novakovic et
al. noted that server load imbalance limited performance. While most large-key
value stores keep data in the memory of memory servers in order to provide
both low latency and high throughput, skew limits performance capabilities and
there are currently no methods to reduce the skew that do not involve incurring
other overheads. As skew can cause load imbalance which correlates to poor
utilization of data centers, the authors note that it was important to develop a
system which could meet all of its objectives while managing load imbalance.

RackOut is implemented on a group of servers that have internal high band-
width, a low-latency communication fabric, and direct access to other nodes’
memory through one-sided operations. Using this method, nodes in the rack can
access the memory of other server nodes without using the remote CPU, thus
minimizing server load imbalance. Furthermore, as memory access within a rack
is fast and data is only replicated when needed outside the rack, speed of mem-
ory access is improved and sharing operations between the nodes balanced the
workload more evenly across the rack. The RackOut method is limited by the
communication fabric latency, although technology is trending towards lower-
latency fabrics. While this system discusses its scalability, the study was limited
to research resources; it would improve on the theoretical nature of the paper for
tests of this system to be conducted on larger or commercial-scale data centers.

Limited Discussion on Remote Memory. Without discussion of the issues
facing areas of computing, it can be difficult to establish the direction of a field



The Case for Physical Memory Pools 213

or the potential for future work. In [3], the authors enumerate a number of
different areas in cloud computing that could face challenges as they believed
that discussion on the subject was out of date. The idea of remote memory was
proposed nearly 20 years ago when network technology made it difficult to find
and implement remote memory solutions. Though current networks are a great
deal faster than before, there is still limited discussion on efficiently realizing
remote memory. There are still a number of challenges that we need to address,
and some potential solutions:

1. Remote host crashes: (1) expose failures to the application by allowing it to
provide failure handlers; (2) use replication or erasure coding to mask the
failure through redundancy.

2. Slow or Congested Network: (1) prioritize network traffic and pre-allocate
network bandwidth for remote memory; (2) give each application different
regions of memory.

3. Virtual Memory Overheads: check and rebuild the subsystem of the virtual
memory.

4. Virtual Machine Indirection: Based on the mechanisms of reducing virtual
memory overheads, find ways for the hypervisor to extract information about
applications.

5. Transparency Level: design the remote memory in different cases.
6. Sharing Model: Limit remote memory to private data, where sharing is

prohibited.
7. Lack of Write Ordering Across Hosts: (1) DSM enforces ordering with appro-

priate protocols to solve the problem, although this is costly; (2) allow appli-
cations to use remote hosts for memory; (3) allow reordering for applications
whose semantics support it.

8. Non-uniform latency: (1) use the existing operating system mechanisms for
NUMA; (2) expose the memory speed to applications, which can use appro-
priate data structures and layouts to optimize the performance.

9. Remote Host Compromised: (1) encrypt the data in remote memory; (2)
strengthen the security of the larger system to compensate for the larger
attack surface.

10. Local vs. Cluster Memory: adopt a static allocation which reserves a rea-
sonable amount of local memory and leaves the rest for cluster memory.

11. Remote Memory Allocation: centralize the problem by requiring allocations
across the cluster to go through a host that manages memory.

12. Memory Placement: the simplest mechanism is to centralize the decision of
placement.

13. Local Memory Management: the machine hosting the physical memory
should manage it, but this may add overheads on modern RDMA-based
NICs.

14. Control Plane Efficiency: use off-the-shelf solutions for control planes,
although experiments testing their performance for this use are required.

15. Memory Metadata Overhead: manage remote memory in slabs that are much
larger than the page size, so that the system need only keep one set of
metadata for each slab.



214 H. Craddock et al.

Although [3] introduces a number of issues and the potential solutions, the
authors overlook some key issues. Firstly, the authors do not deeply discuss
security problems. When the data is stored in remote memory, not only do we
need to consider the local machine security state, but we also need to think about
the network and remote machine security. Implementation of suitable security
measures may be more costly in terms of computing resources or finances; there
are two possible ways to improve security: firstly, the remote machines may have
the highest security priority because the bulk of the data is stored there; secondly,
access and the network needs to be appropriately secured and protected; finally,
distributing the data over a larger number of different remote machines with
their own security could prevent an attack on one host from compromising the
whole system.

2.2 Improving Memory Virtualization

Virtual memory plays a vital role in modern computing as it can deliver various
benefits like improved security and increased productivity for programmers. The
operating system and page table play a crucial role in memory management but
can cause high execution-time overheads. As an attempt to solve the problem,
Aguilera et al. [3] proposed a hardware/software co-design called Redundant
Memory Mapping (RMM).

The paper proposes a hardware/software co-design called Redundant Mem-
ory Mapping (RMM). Range translation can map contiguous virtual pages to
physical pages. The authors address the primary problem of using a page in their
paper. A TLB miss can be overcome by using 124 range translations from the
range table. The paper presented few evaluations showing that RMM works for
all configurations and workloads.

Although RMM eliminates vast majority of page walks, using eager paging
may increase latency, which in turn can induce fragmentation. Latency and frag-
mentation can have heavy impact on the performance. Implementing RMM also
relies on additional hardware and software which may involve future develop-
ment. Retrieving data in parallel during translation can be a potential solution
to the stated problem. This allows storage of huge data sets with low-latency for
real time data analysis.

2.3 Efficient Memory Management

Memory capacity is a key limitation in system design. The recent breakthrough
3D XPoint memory in non-volatile memory technology has given the world abun-
dant memory capacity at much lower costs. These technologies provided memory
in larger magnitudes than DRAM at lower power and prices. Existing system
designs, however, are incapable of handling such large memories.

The essential design principle of Order(1) operations is proposed in [10] to
manage vast memories. This principle aims to complete memory management
operations in constant time, independent of the size of the operand. It applies a
file-system technique to memory management. Instead of operating on individual



The Case for Physical Memory Pools 215

pages, the operations are enabled on the whole file and thus providing Order(1)
performance. It is less complicated to expose data directly to the programs
instead of the kernel as the data already exists in the memory. Using the file
systems to manage memory is convenient as they can maintain gritty meta data,
and are capable of translating large addresses and handling large memories. In
Towards O(1) memory, the memory layer above the files is removed and the user
mode memory is allocated as files with tmpfs as a backup. Only the references
to the files are counted, ignoring the references to pages. Memory can only be
reclaimed when a process terminates or unmaps. Pointers are used to improve the
efficiency in memory mapping through sharing between the processes. Overheads
in tracking and cleaning bits is not required as the memory itself is too large
which eliminates the need for swapping between disks. This system uses range
translations to trim the cost of memory access.

Implementing Towards O(1) memory has its own limitations: operations that
depend on page level mappings cannot be easily supported and are difficult to
optimize; also, the system becomes complex when we try to store the volatile data
in the persistent memory, breaking the isolation between user and kernel space
and leading to memory leakages. In order to avoid this situation the memory
should be zeroed before being reused.

2.4 Memory Protection

The emergence of large non-volatile main memories and rack-scale computers
running large ’micro services’ creates significant challenges for memory protec-
tion based solely on MMU mechanisms. Optimization for translation perfor-
mance has put the protection at stake. Some challenges include stale locations
leading to memory corruption, hypervisor calls, and nested pages.

Achermann et al. [2] propose Matching Key Capabilities(MaKC), a new
architecture which is capable of scaling memory protection at both the user
and kernel level. MaKC divides the memory hierarchies into equal sized blocks
associated with Block Protection Key (BPK) and Execution Protection Key
(EPK). Memory access is allowed only when there is a match between BPK and
EPK, and blocked otherwise. HMACs (Hash Message Authentication Codes)
ensure that messages cannot be forged nor manipulated in transit. The authors
proposed that key matching could be implemented with protection tables that
contain BPKs which the hardware can read and cache. Proposed MaKC has a
capability-based system to handle authorization and protection in complex mem-
ory hierarchies. The MaKC approach also allows enabling huge pages without
compromising the security of small page sizes.

MaKC has not been fully designed yet, and there are still decisions to be
made on which features need to be implemented on the CPU-side or memory-
side. Implementing MaKC could lead to some potential issues:

1. Storing large number of keys and HMACs can result in space overhead;
in order to access them, one needs to enter supervisor state which can be
expensive



216 H. Craddock et al.

2. The use of MaKC will add complexity
3. Using cryptographic keys in MaKC to authenticate the fingerprints could

increase security management complexity
4. The model is proposed for fixed size blocks which may leave memory unused

and thus poor memory management

3 Research Directions for Disaggregated Memory
in the Cloud

In this section, we first make a case for physical memory pools. Then we discuss
the potential improvements in OS design, distributed memory, and virtualiza-
tion, as well as considerations regarding the direction of cloud computing as a
whole.

3.1 Physical Memory Pools

We argue that the cloud systems need to migrate to a hardware resource dis-
aggregation scheme that uses physical memory pools. A physical memory pool
(PMemP) is a cluster of memory units that do not belong to any monolithic
server, and can be demanded and used by connected monolithic machines on
a need-based basis as seen in Fig. 1. This component is governed by a gover-
nor that prioritizes resource requests from participating servers, and allocates
memory to these machines accordingly. An example of this approach in the lit-
erature is LegoOS [9] where networked mComponents are used as memory units.
In this sense, an mComponent is a type of physical memory pool. There are
four challenges that this hardware resource disaggregation scheme has to tackle:
(1) Current OS architecture limitations (Sect. 3.2), (2) Plug-n-play use of the
component (Sect. 3.3), (3) Adoption to existing virtual systems (Sect. 3.4), and
(4) Network speed limitations to use memory as a networked device (Sect. 3.5).

Server 1 Server 2 Server N

Physical Memory Pool

Fig. 1. Physical memory pool overview



The Case for Physical Memory Pools 217

Example. Java Virtual Machine (JVM) uses a memory space that is allocated
to itself when a Java program is run on the system. The JVM users can define
a minimum amount of heap memory as well as a maximum amount of heap
memory for the program. Initially, the program is given the minimum amount.
If the program requires more heap memory than this amount, JVM increases
the allocated memory, up to the maximum heap amount [1]. We expect that the
physical memory pools work as efficient and in a similar manner to this logic.
To show how this would work on JVM, we designed the following simulation.

First, we create a List. In an infinite loop, in each iteration, we add 100
elements to the list, and randomly search for 100 elements by index in the list
until we run out of memory. This enforces utilization of each part of the list,
hence preventing the use of swapping function efficiently. When the system runs
out of the initial heap memory, it has to make the next block of memory available,
just like PMemPs would, as described in Sect. 3.1.

In the simulation run, we used an Apple MacBook Pro with 2.2 GHz Intel
Core i7processor, 16 GB 2400 MHz DDR4 RAM, and 256 GB SSD. The OS is
MacOS High Sierra 10.13.6, and we used Java 1.8.0. To show the efficiency of
the mechanism and difference between block allocation and directly using maxi-
mum available heap memory, we compared initial allocations of 128 MB, 256 MB,
512 MB and 1024 MB, respectively, and maximum allocation of 1024 MB. The
results can be seen in Fig. 2. We share all the code and documentation on
GitHub1.

Figure 2a shows the growth of the List over time. As expected, the runs with
larger initial heap size reach to the maximum number of elements faster. How-
ever, the increase pattern is still comparable and the difference is due to the time
JVM spends on adding new memory blocks and time spent on garbage collection
before doing so. The garbage collection behavior can be better seen in Fig. 2b.
The garbage collector runs more aggressively when nearing the initial heap size,
but it still needs to add new memory blocks to be able to continue operating.
In a memory resource disaggregation based system, this is the ideal behavior.
The advantage of memory resource disaggregation is, instead of building mono-
litic servers with large memory sizes, we can share a common pool of memory
accordingly.

3.2 OS Design

As in [11], OS design may be constrained by the availability of an appropriate
language to code it. The OS should provide a transparent environment to the
application developer which can allow users to inspect information about the
platform, such as the topology of the CPU and NDP.

Future work may also include the design of a multiple-kernel, multi-server
model that can allow concurrent access to multiple users on the system and

1 Code repository located at https://github.com/PADLab/MemorySwapExperiment.

https://github.com/PADLab/MemorySwapExperiment


218 H. Craddock et al.

Object count growth in the List

Memory utilization growth

Fig. 2. Comparison of allocation under varying memory configurations



The Case for Physical Memory Pools 219

support the asymmetricity in the processing units. A future cloud OS should be
able to be as multi-functional and dynamic as possible to meet ever-developing
requirements.

3.3 Distributed Memory

In distributed systems, networking hardware, address translation and NICs often
act as performance bottlenecks to the system. To prevent this bottleneck, devel-
opments must continue to be made in the hardware that the discussed systems
are designed upon. Meanwhile, these limitations could be curtailed by increas-
ing the node processing and network capacity, building bigger and more capable
nodes, aggregating multiple server nodes into larger entities, and implementing
in-memory computing where the translations and data fetch can go hand in
hand.

In systems such as Grappa proposed in [7], improving fault-tolerance is
important, especially as systems are constantly being implemented on fault-
prone hardware. Efforts must be made to design systems where recovering from
faults is simpler than restarting.

3.4 Virtualization

Virtualization provides flexibility, scalability, and cost advantages to cloud com-
puting. Although virtualization breaks the line between the hardware and the
applications running on dedicated servers, adding a virtualization layer has
downsides such as slashing the application performance, adding processing over-
heads for memory, translations and inducing security vulnerabilities in the sys-
tem. To prevent these bottlenecks, the operating system should be considered
as the principal design for virtualization. Temporarily, we can downsize these
limitations by adapting towards in-memory computing and providing isolation
between the kernel and user space.

In the future, range translations should pave the way for emerging workloads
by utilizing in-memory computing, which can leverage the growth in physical
memory to store huge data sets for low-latency and real-time data analysis.

3.5 Network

Using current network technology introduces some challenges that are still heav-
ily researched. Firstly, network components and protocols include their own com-
munication overheads. We believe that in a hardware communication focused
environment this problem can easily be addressed, especially if the hardware
network is isolated from the communication network. Secondly, network band-
width limits the speed and it may not be as fast as a motherboard bus. It should
be noted, however, that network technology has developed drastically in the last
decade and this should soon become a minor issue.



220 H. Craddock et al.

3.6 Direction of Cloud Computing

There are a number of questions to contemplate:

1. How can system complexity be managed? With movement towards heav-
ily interconnected microservices provided by a number of different service
providers, it is important to maintain performance and security through all
the different structures. There is also a strong degree of trust in these services,
as other teams or companies may run vital infrastructure. It is important to
find methods to maintain and ensure trust and reliability of outsourced ser-
vices.

2. How can failure tolerance be guaranteed? Distributed systems are responsible
for a number of critical societal components, and there is a huge reliance
on the cloud for health, safety, productivity, business, and more. Ensuring
network systems are failure-tolerant should be a top priority.

3. How can virtualization be improved and supported? Sharing resources
between different and distant hosts is a key component of cloud computing, so
how can operating systems continue to support more efficient virtualization
of services and guarantee their security?

4. How can the environmental and financial impact of distribution be limited?
Increased distribution leads to increased energy cost as giant data centers are
always providing their services. Virtualization can help this as the resources
can be used from many different physical locations. Potential work for the
future may be in improving workload distribution on virtualized software so
that the most demanding tasks are completed on the most energy-efficient
hardware environments.

4 Conclusion

We discussed the contribution of a number of works that proposed methods of
improving or innovating the cloud, from specific models such as LegoOS, Grappa,
Shadowgraphy OS and RackOut to theoretical discussions of the issues cloud
computing presents as in [3]. The core contribution of this paper lies in offering
future research directions around the vision of independent physical memory
pools that the servers in a data center can share based on their current need,
and de-allocate when the resources are no longer needed.

Although some improvements or ideas for potential future work were sug-
gested in this paper, the survey is by no means comprehensive; the consistent
theme from the reviewed papers is that the discussion is only recently beginning
and there is still so much to explore in the realm of cloud computing.

Acknowledgements. This material is based in part upon work supported by the
funding provided by the State of Delaware to Delaware State University. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the University or the State.



The Case for Physical Memory Pools 221

References

1. Tuning java virtual machines. docs.oracle.com. Accessed 22 Mar 2019
2. Achermann, R., et al.: Separating translation from protection in address spaces

with dynamic remapping. In: HotOS (2017)
3. Aguilera, M.K., et al.: Remote memory in the age of fast networks. In: ACM SoCC

(2017)
4. Hodson, O., Dragojević, A., Narayanan, D., Castro, M.: FaRM: fast remote mem-

ory. In: USENIX NSDI, 4 (2014)
5. Barbalace, A., Iliopoulos, A., Rauchfuss, H., Brasche, G.: It’s time to think about

an operating system for near data processing architectures. In: HotOS (2017)
6. James, J.: Data Never Sleeps 6.0. Technical report, Domo Inc, 06 2018
7. Nelson, J., et al.: Latency-tolerant software distributed shared memory. In:

USENIX ATC (2015)
8. Novakovic, S., Daglis, A., Bugnion, E., Falsafi, B., Grot, B.: The case for rackout:

Scalable data serving using rack-scale systems. In: ACM SoCC (2016)
9. Shan, Y., Huang, Y., Chen, Y., Zhang, Y.: Legoos: a disseminated, distributed OS

for hardware resource disaggregation. In: USENIX OSDI (2018)
10. Swift, M.M.: Towards O(1) memory. In: HotOS (2017)
11. Vasilakis, N., Karel, B., Smith, J.M.: From lone-dwarfs to giant superclusters:

rethinking operating system abstractions for the cloud. In: HotOS (2015)

http://docs.oracle.com

	The Case for Physical Memory Pools: A Vision Paper
	1 Introduction
	2 Existing Models
	2.1 Operating System Design
	2.2 Improving Memory Virtualization
	2.3 Efficient Memory Management
	2.4 Memory Protection

	3 Research Directions for Disaggregated Memory in the Cloud
	3.1 Physical Memory Pools
	3.2 OS Design
	3.3 Distributed Memory
	3.4 Virtualization
	3.5 Network
	3.6 Direction of Cloud Computing

	4 Conclusion
	References




