
Remote memory in the age of fast networks
Marcos K. Aguilera

VMware
Nadav Amit

VMware
Irina Calciu

VMware

Xavier Deguillard
VMware

Jayneel Gandhi
VMware

Pratap Subrahmanyam
VMware

Lalith Suresh
VMware

Kiran Tati
VMware

Rajesh Venkatasubramanian
VMware

Michael Wei
VMware

ABSTRACT
As the latency of the network approaches that of memory, it be-
comes increasingly attractive for applications to use remote mem-
ory—random-access memory at another computer that is accessed
using the virtual memory subsystem. This is an old idea whose time
has come, in the age of fast networks. To work e�ectively, remote
memory must address many technical challenges. In this paper, we
enumerate these challenges, discuss their feasibility, explain how
some of them are addressed by recent work, and indicate other
promising ways to tackle them. Some challenges remain as open
problems, while others deserve more study. In this paper, we hope
to provide a broad research agenda around this topic, by proposing
more problems than solutions.

1 INTRODUCTION
Disaggregated memory is an exciting technology proposed to im-
provememory utilization in cloud data centers [11, 19, 22, 25, 33, 39].
Its basic idea is to detach (“disaggregate”) most of the memory of
each machine, placing it on a common fabric, where it forms a
cluster memory pool; this memory can be assigned to machines
when and if they need it (Figure 1(a)). To realize disaggregated
memory, new hardware architectures are under development in
both academic and industrial settings (§5). While new hardware
could be interesting, its cost could be prohibitive and its availability
may be limited.

In this paper, we envision that disaggregatedmemory can be fully
realized in software alone, without new hardware architectures, new
standards, or new interconnects, using instead commodity o�-the-
shelf hardware available today. To clearly distinguish the software
from the hardware approaches, we call the former remote memory,
while reserving the term disaggregated memory for the hardware
solution. With remote memory, each machine has a conventional

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5028-0/17/09. . . $15.00
https://doi.org/10.1145/3127479.3131612

Fast N
etw

ork

Machine
Private
RAM

Cluster

Shared

RAM

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

Machine
Private
RAM

Machine
Private
RAM

Machine
Private
RAM (a)

Machine
Private
RAM

Cluster
Shared
RAM

Fast N
etw

ork

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

Machine
Private
RAM

Machine
Private
RAM

Machine
Private
RAM

Cluster
Shared
RAM

Cluster
Shared
RAM

Cluster
Shared
RAM

(b)

Figure 1: (a) Disaggregated memory. Memory is detached
from machines and placed on a common fabric to all ma-
chines. Machines may retain some RAM, but the bulk of the
memory is in the fabric. (b) Remote memory. Each machine
has locally attached memory, with a part assigned to a pool
of cluster memory. Machines are connected by a commodity
network.

memory architecture and it contributes parts of its memory to the
cluster memory pool. Machines that need memory then access the
memory of another machine over the network (Figure 1(b)). Using
the virtual memory subsystem, accesses to the remote memory are
transparent, appearing like accesses to local memory. Remote mem-
ory brings many bene�ts, such as huge memories, better utilization,
and more e�cient data exchange (§6).

Remote memory is an old idea, similar to distributed shared
memory (e.g., [10, 13, 31, 38, 42, 43]) and swapping to the network
(e.g., [15, 20, 21, 30, 32]). These ideas were studied extensively 20
years ago, and now they are getting revived in di�erent ways [22,
23, 48]. What is di�erent today? In the 2000s, network latency was
three orders of magnitude higher thanmemory latency (hundreds of

https://doi.org/10.1145/3127479.3131612

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA
Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi, Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh

Venkatasubramanian, and Michael Wei

Application What is in remote memory
Graph processing Large graph
Key-value cache Key-value pairs
Key-value storage Key-value pairs
Data analytics Input and output of tasks
Database system Tables, indexes
Statistical processing Data sets
Machine learning Input data, parameter sets

Figure 2: Applications of remote memory.

µs vs. hundreds of ns). Since then, network latencies have improved
signi�cantly, while memory latencies have not, so there is a gradual
convergence of performance (§4). So, might remote memory work
now?

It turns out that e�ciently realizing remote memory requires
overcoming several challenges, from virtual memory overheads,
crashes of remote machines, sharing model, virtualization, scalabil-
ity, and placement (§7). In this paper, we enumerate the challenges,
discuss their feasibility, explain how some of them are addressed
by recent work, and indicate other promising directions to explore.
Currently, no system addresses all of the challenges. Some of the
challenges remain open problems, while others have been studied
but not extensively. We believe much more research is required in
this topic, and we hope to provide a broad research agenda around
it, by proposing more problems than solutions.

2 WHAT IS REMOTE MEMORY?
We target a data center environment within a public or private
cloud. The data center is divided into smaller clusters of dozens of
machines, such as a rack or a few racks, connected by a reliable,
high-bandwidth, low-latency network. By low-latency we mean
latencies close to 1µs, as achieved by commodity RDMA networks
today. Remote memory spans a cluster of such machines (“rack-
scale”) rather than the entire data center.

Remote memory provides the abstraction of a linear address
space, which applications read and write at a byte granularity using
the usual machine-level instructions for memory. We want remote
memory to resemble local memory to applications as much as possi-
ble. However, remote memory should expose some of its di�erences
to applications (e.g., how it handles failures, shares data, and places
data §7), so we need new abstractions that are not transparent, but
do not overburden programmers. Under the hood, remote mem-
ory is implemented by virtual memory paging, which we brie�y
recapitulate. When the application tries to access a page stored in
another machine, it causes a page fault, which fetches the page
over the network. The page is cached in local memory for the near
future. If the page is modi�ed, it is marked dirty and later written
back to the remote machine.

To work well, this simple idea needs to overcome many chal-
lenges (e.g., what if the remote machine crashes with our memory?),
which we cover in Section 7. We intend remote memory to serve a
wide variety of applications that manipulate lots of data (Figure 2).

3 RELATEDWORK
Remote memory is related to distributed shared memory (DSM),
and there is much to be learned from this body of work. DSM is

centered on transparent sharing (the “S” in DSM): it implements the
abstraction of a shared memory system using a message-passing
system, with the goal of running applications designed for the
former system using the latter. This goal turned out to be elusive due
to the di�culty of getting reasonable performance. Remote memory
draws from this lesson and avoids the hard problem of sharing: its
goal is not to implement shared memory. In fact, remote memory
need not be shared at all: it can be used to store private pages
to extend local memory or to safeguard data remotely. Or it can
provide a di�erent form of sharing: we envision non-simultaneous
sharing of remote memory, whereby a host stops using the data
before another node starts (e.g., in di�erent phases of map-reduce).
This sharing over time is distinctive fromDSM’s sharing for running
multithreaded code; the sharing model for remote memory is an
interesting research challenge (§7).

Recent work has started studying di�erent aspects and use cases
of remote memory. In�niswap [23] proposes using remote memory
as a fast cache for a local disk swap. Mojim [48] proposes using
remote memory to safeguard the data stored in local non-volatile
memory in case a machine breaks. These systems tackle some of the
challenges of remote memory using solutions designed for their use
cases, as we explain in Section 7. For example, In�niswap tackles
crashes of remote memory hosts by simply ignoring them; this is
acceptable because In�niswap stores only disposable data in remote
memory (caches). Mojim asynchronously replicates data from one
remote host to another, which again is acceptable for its use case.
We are interested in a broader application of remote memory: to
serve as a complete substitute for disaggregated memory.

Other work has studied the network requirements for disaggre-
gated or remote memory [22]. That work mentions the software
overheads of virtual memory without quantifying the problem.

There are many ways for a machine to store data remotely,
such as using key-value storage systems (e.g., [16, 17, 28, 36]),
tuples [14], distributed objects [45], �les, database systems, and
RDMA [4, 5]. While e�ective, these abstractions are fundamen-
tally di�erent from the abstraction of memory accessed via loads
and stores, because they require developers to explicitly use them
through special language-speci�c functions. For example, key-value
storage systems require applications to invoke functions to get and
put key-value pairs; database systems require functions to issue
SQL queries; and RDMA requires functions to register memory
and orchestrate requests and queues. In contrast, remote memory
is accessed directly through memory instructions—the same loads
and stores that are used for non-remote memory—providing a sim-
ple, transparent, convenient, and language-agnostic abstraction for
developers.

For example, suppose a developer wants to read two locations a
and b in remote hosts, and store their sum in a third remote location
c . With remote memory, the developer can just write some simple
code, such as ⇤c = ⇤a + ⇤b where a, b, and c are pointers to the
desired locations; this is the same code whether the locations are
local or remote. With a key-value interface, the developer must
invoke get(a) and get(b), store the results in some variables, say x
and �, and then invoke put(c,x + �). With RDMA, the developer
must initialize the context and register memory regions both at the
application and at the remote hosts; establish connections to the
remote hosts; exchange region keys; post RDMA-read operations on

Remote memory in the age of fast networks SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

Network latency (ns)
Word, 100Gbps Page, 100Gbps Page, 25Gbps

now #20% #50% now #20% #50% now #20% #50%
700 560 350 1020 880 670 1980 1840 1630

M
em

or
y

la
te
nc

y
(n
s)

best 60ns 11.7 9.3 5.8 17.0 14.7 11.2 33.0 30.7 27.2
typical 100ns 7.0 5.6 3.5 10.2 8.8 6.7 19.8 18.4 16.3
nvm 200ns 3.5 2.8 1.8 5.1 4.4 3.4 9.9 9.2 8.2

Figure 3: Network latency (top), memory latency (left), and
the ratio of network to memory (bottom right). Memory la-
tencies are for the best commodity, typical commodity, and
hypothetical non-volatile memory (nvm), speculated to be
2⇥ slower. Network latencies are for transferring a word or
a 4 KB page over a 100 or 25 Gbps network, for commod-
ity networks now and speculative improvements of 20% and
50% on switching and NIC delays.

a and b and request the results to be placed in specially registered
bu�ers; wait for the completion of the reads; store the sum in
another specially registered bu�er; post RDMA-write operations
on c using the special bu�er; and wait for the completion of the
write.

While di�erent, we believe the other abstractions (key-value,
RDMA, etc) could be useful to implement remote memory. For
example, an implementation of remote memory needs code to read
and write pages remotely, and this code could use the get and put
operations of a key-value storage system. Or one might opt for a
direct RDMA implementation. Either way, the complexity of these
abstractions are hidden by the implementation of remote memory.

4 WHY NOW?
Remote memory is now relevant because the latencies of memory
and network are converging: eventually, there will be comparable
costs for going to local memory or memory of a remote host. The
latency of commodity memory has not been improving, as memory
makers focus instead on higher densities and lower power [47].
Upcoming non-volatile memories, such as 3D XPoint, are expected
to be slower than DRAM, perhaps by a factor of 2 or 3. Meanwhile,
commodity network latencies have dropped to 700 ns roundtrip
for a local area network [6]. New networking technologies, such as
Omni-Path [5], will collocate NIC and CPU on the same package,
and eventually on the same die, further reducing network latency.
Figure 3 shows the ratio of network to memory latencies in various
systems, some hypothetical. A ratio of 1.8 (word) or 3.4 (page) could
become reality one day.

5 WHY A SOFTWARE SOLUTION?
To realize disaggregated memory, hardware solutions are currently
under development both as research projects [33, 34] and industry
e�orts,such as CCIX [1], Gen-Z [3], OpenCAPI [7], and Omni-
Path [5]. Given such hardware, why develop a solution that uses
only commodity hardware and is implemented entirely in software?
We believe this is warranted for many reasons. First, these hard-
ware solutions are not yet available and may not materialize or
gain traction. Second, even if they materialize, hardware solutions
may not be ubiquitous or may have signi�cant costs, especially in
initial deployments. Third, from a scienti�c perspective, we want to
understand if new hardware solutions are necessary and what are

Type Bene�t Reason Use case
Resource Huge

memory
Memory not limited by
physical machine

New applications

E�ciency Utilization Memory not grabbed by
machine

Low-cost memory
provisioning

E�ciency Cheap
data
exchange

Avoids marshalling and
demarshalling to trans-
mit data

Distributed data an-
alytics

Resiliency Decouples
failure

Machine fails while re-
taining remote memory

HPC checkpointing,
data management
applications

Figure 4: Summary of bene�ts of remote memory.

Type Challenge
Failures Remote host crashes

Network slow or congested
Virtualization Virtual memory overheads

Virtual machine indirection
Abstraction Transparency level

Proper sharing model -
Lack of write ordering
Non-uniform latency

Security Remote host compromised
Resources Local vs. cluster memory

Remote memory allocation
Memory placement
Local memory management

Scalability Control plane e�ciency
Memory metadata overhead

Figure 5: Challenges of remote memory.

their advantages and drawbacks compared to a software solution
in terms of performance, cost, energy consumption, etc. Fourth, we
want to know if small hardware changes could bring big bene�ts
to software solutions. To gain this understanding, we must develop
the software solution.

6 BENEFITS
Figure 4 shows the bene�ts of remote memory, similar to those of
disaggregated memory [11, 19, 22, 33]. First, machines have access
to a huge memory, which enables new and existing applications to
run at larger scale (e.g., in-memory databases and graph processing).
Second, machines do not stash memory, reducing their provisioning
cost (e.g., no need to provision each machine for the worst case).
Third, an application can write data to remote memory; when
it �nishes, other applications can obtain its output, without the
overheads of writing to a �le system or serializing data; e.g., in map-
reduce, the output of the mapper can be obtained directly from
reducers over remote memory. Finally, application data survives
machine crashes, because memory is separate from the machine;
this has implications for HPC application checkpointing, database
systems, and other systems that need durability.

7 CHALLENGES
To provide a complete alternative to disaggregated memory, remote
memory must address a number of challenges that we now describe
(Figure 5).
1. Remote host crashes. If a remote host fails, the application
loses a large chunk of its remote memory, which could crash or
freeze the application while the remote server is down.

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA
Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi, Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh

Venkatasubramanian, and Michael Wei

Possible solutions. Broadly, this challenge admits two classes of so-
lutions. First, expose failures to the application by allowing it to
provide failure handlers—including handlers that just ignore the
failure, as in In�niswap. This is useful to handle disposable or re-
constructible state (e.g., the output of deterministic computations).
Second, mask the failure through redundancy, using replication or
erasure coding. Doing this will require microsecond-speed mecha-
nisms to maintain redundancy in the common failure-free case; for
instance, erasure coding a 4K page needs to be competitive with
copying the page. This could be achievable with FPGA support.
Moreover, any solution needs to be memory e�cient. This will
require, for example, erasure codes with small space overheads.

In�niswap [23] exposes rather than mask failures, but it can
ignore them because remote memory is disposable: it is just a cache
for the disk swap space, so that losing remote memory amounts
to losing redundant cache entries. Mojim [48] replicates the non-
volatile memory into remote memory synchronously, then repli-
cates the remote memory at one host to another asynchronously.
Because replication of remote memory is asynchronous, it does not
add latency, but asynchronous replication can lose data.
2. Network slowor congested.Another challenge is performance
degradation in the network due to congestion or pathological be-
havior [24]. This can lead to unpredictable application performance,
which can cause unacceptable behavior for interactive applications
(e.g., the system freezes momentarily), violations of service-level
agreements, and timeouts. Even if the problem is rare, it might
a�ect tail latencies, which are important for some applications.
Possible solutions. Some simple solutions are to prioritize network
tra�c and pre-allocate network bandwidth for remote memory. If
there are many remote memory applications and not enough band-
width for all of them, one could ensure network locality, by placing
an application and its memory nearby in the network. Another pos-
sibility is to give application di�erent regions of memory, each with
its own characteristics: one region could have a higher network pri-
ority but smaller space, while another could have a larger space but
lower network priority (hence higher jitter). Dynamic migration of
remote memory might be necessary to balance the network load.
And admission control might be required to prevent all applications
from su�ering. Alternatively, applications may need ways to cope
with stalled memory accesses while congestion subsides.
3. Virtual memory overheads. Virtual memory paging was de-
signed for disks that operate in large blocks and have latencies of
10 ms, but network transfers can have �exible sizes and are 10 000⇥
faster. Thus, paging is ine�cient and needs better mechanisms, as
noted in [22, 34].

We show these overheads, the swap-in overheads, and a break-
down of device and software path overheads on a random-access
workload with little memory and paging to local DRAM, imple-
mented using pmem emulation [8] (an optimistic approximation of
a fast network). The workload reads and writes locations at random
from 4 GB of virtual memory. Figure 6(a) shows the throughput as
we decrease the local memory one GB at a time. Performance drops
by ⇡ 44% each time, showing signi�cant overheads. Figure 6(b)
breaks down the overheads. Most of is determining what to swap
out (41%), rather than writing the page (16%).

0

100

200

300

400

500

600

4GB 3GB 2GB 1GB

Ko
ps
/s

local2memory2size

41%

16%
11%

21%

11%

57%32%

do_try_to_
free_pages

bdev_
write_
page

swapin_
readahead

bdev_
read_
page

(a) (b)

Figure 6: Paging overheads of virtual memory. (a) Paging to
DRAM-based pmem block device when an application ac-
cesses 4 GB of data with a local memory of a di�erent size.
(b) Breakdown of overheads.

Possible solutions. There are techniques to overcome paging over-
heads (dedup [46], memory compression [44], latency hiding [37],
etc.), but they are costly for remote memory, being designed for a
ms scale. We need to overhaul the virtual memory subsystem for
the µs scale, by removing data structure overheads, lock contention,
and incorrect optimizations; by providing better prefetching-style
optimizations; by cutting functionality (transparent huge pages,
copy-on-write, etc) [18]; by matching the virtual memory transfer
granularity (currently 4KB page) to the more �ne-grained appli-
cation accesses; and by leveraging new hardware features such
as subpage-level protection [40]. We can bene�t from new tech-
niques to predict memory access patterns and thus avoid page
faults, though doing so is notably hard [26, 41]. It might be possible
to extend the hardware prefetcher to speculatively fault on pages.
Alternatively, applications can provide hints about memory they
intend to access soon. Those hints can be provided by the appli-
cation developer, or they can be inferred by static code analysis
coupled with dynamic instrumentation.
4. Virtual machine indirection. Virtual machines are prevalent
in the environments we target: research shows that at least 70%
of x86 server workloads are virtualized [9]. Thus, remote memory
has to work with virtual machines. There are two approaches for
supporting virtual machines. First, virtual machines can manage
their remote memory independently of each other, as if they were
separate hosts in the network. Second, virtual machines can co-
ordinate the use of remote memory through the hypervisor. The
�rst approach is the simplest, but it does not re�ect the fact that
virtual machines are actually sharing the resources of their host,
including memory and network bandwidth. So, ideally, remote
memory should be managed by the hypervisor, and the cluster
memory can be managed by the virtualization control plane. The
challenge is that this approach adds an extra level of indirection,
which in turn imposes additional overheads for the virtual memory
subsystem [46] and creates a semantic gap: the hypervisor does not
see applications, only virtual machines, and so it is harder to use
application-speci�c information to hide overheads [34].
Possible solutions. Besides mechanisms to reduce virtual memory
overheads (discussed above), we need to �nd ways for the hypervi-
sor to capture information about applications, either implicitly by
inferring their behavior through the virtual machine, or explicitly

Remote memory in the age of fast networks SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

by relying on hints provided by the application or by the virtual
machine operating system.
5. Transparency level. In theory, remote memory can be fully
transparent to applications, looking exactly like local memory. In
practice, several of the remote memory challenges might require
help from the application. In fact, application awareness could
address all other challenges of remote memory, but awareness
amounts to intrusion, and the challenge is to �nd the right balance.
Possible solutions. One solution is to specialize remote memory for
a use case. For example, In�niswap uses remote memory solely
as a cache that need not be accessible and can be evicted at any
time. Mojim uses remote memory to safeguard the local contents of
non-volatile memory. These use cases allow In�niswap and Mojim
to provide a fully transparent abstraction.

When full transparency is not possible, it is useful to distinguish
di�erent ways in which applications can provide hints: (1) memory
allocation (2) pointer type annotation, and (3) memory accesses.
With (1), memory allocations can be annotated with the type of
memory that the application expects. For example, malloc can be
extended with a special �ag to ask for memory that is replicated, or
that does not su�er from jitter, or both. These types of annotation
may not be intrusive when there are relatively few places in the
code where memory is allocated, but determining which allocations
are remote is a manual task that requires application-speci�c knowl-
edge. With (2), each pointer type indicates what the application
expects from the memory pointed to by the pointer (memory relia-
bility, speed, jitter, etc). A type checker can ensure that a pointer is
assigned only to memory that is consistent with the requirements
of the type. For example, a pointer might be allowed to point only
to memory that is fault tolerant. Pointer type annotations by them-
selves are not intrusive, but intrusiveness might arise from the type
system, which prohibits assigning incompatible pointer types. With
(3), the application or the compiler needs to annotate a memory
access, so that the remote memory system can take the required
actions. For example, when an application changes its working set,
it might annotate the next access to avoid a page fault: the annota-
tion can proactively cause the memory system to fetch the required
page before it gets accessed. Memory access annotations can be
very intrusive if they need to be done often and by the developer, so
it would be ideal either to do them automatically using the compiler,
or to reduce the cases when they are needed.
6. Sharingmodel.Cache coherence is expensive evenwithin ama-
chine, and for remote memory its cost is prohibitive. Thus, we need
to �nd a reasonablememory sharing model to expose to applications,
without coherence. This model indicates when applications can
share data, at what granularity sharing occurs, and what behaviors
application observe if sharing occurs (e.g., what happens if applica-
tions concurrently read and write the same location). De�ning an
intuitive sharing model is generally hard.
Possible solutions. An approach is to limit remote memory to private
data, where sharing is prohibited. This approach avoids the problem,
and it is well suited for certain use cases of remote memory (e.g.,
In�niswap and Mojim).

A more general solution is to allow sharing but not simultane-
ously. At any time, memory is accessed exclusively by a single host,
but across time it can be accessed by many. This approach requires

some way for applications to signal when they want to start and
stop accessing the remote memory. This approach is useful for
applications in which one host produces some output in remote
memory, which is later consumed by another host (e.g., map-reduce,
parameter server in machine learning, graph processing framework,
etc).
7. Lack of write ordering across hosts. Remote memory could
be spread over many remote hosts, each with a di�erent roundtrip
latency, as hosts may be slow or connected to di�erent racks. Thus,
write-backs to remote memory can be reordered. Reordering be-
comes a problem when the data is subsequently read (by the same
or di�erent hosts) and the correct ordering is not respected. For
example, an application might set some data value and a pointer,
but later see the pointer to invalid data.
Possible solutions. DSM avoided this problem by enforcing ordering
with appropriate protocols, but this can be costly. Another approach
is to restrict an application to use just one remote host for memory,
as in Mojim, so that it is impossible to reorder writes across remote
hosts. (Within a remote host, writes can be ordered easily.) A third
approach is to allow reordering, for applications whose semantics
support it, e.g. In�niswap. However, none of these solutions are
generally applicable.
8. Non-uniform latency. As hosts have di�erent roundtrip la-
tencies, some parts of memory are faster than others. This can
be disruptive, as an application can be bottlenecked by the slow-
est memory that it has, thereby wasting the higher performance
provided by parts of its memory.
Possible solutions. This problem is similar to NUMA architectures,
which have multiple sockets and a given memory location can be
accessed more quickly from one of the sockets. But remote memory
adds more tiers (e.g., local, same rack, di�erent racks). One approach
is to use the existing operating system mechanisms for NUMA [29],
extending them for more tiers. Another approach is to expose the
memory speed to applications, which can use appropriate data
structures and layouts to optimize their performance. Alternatively,
the system may need to carefully choose where to place memory
(see “memory placement” below), to avoid using remote hosts far
from the application.
9. Remote host compromised. Applications assume that mem-
ory is private and safe; they store con�dential information in mem-
ory: plaintext passwords, keys, cookies, capabilities, etc. This as-
sumption is met by the hardware and kernel designs: the intercon-
nect (memory bus) is physically secured, and the kernel protects
pages and clears them when they are reclaimed. Remote memory
increases the attack surface, being vulnerable to attacks on the local
machine, the remote machines, and the network. Even if an attacker
does not control these components, it can launch side-channel and
denial-of-service attacks.
Possible solutions.We envision two approaches. First, we could as-
sume that memory is no longer safe and private, so we encrypt the
data in remote memory; this can be done directly by applications
only for its sensitive data, or transparently by the virtual memory
subsystem for all data; the latter will require microsecond-scale
encryption mechanisms. Second, we can maintain the assumptions
by strengthening the security of the larger system, to compen-
sate for the larger attack surface. In particular, it is important to

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA
Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi, Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh

Venkatasubramanian, and Michael Wei

isolate consumption of resources—such as network, memory, and
processor—across applications in every machine. This isolation
needs to be strong, to avoid side-channel attacks, say by static par-
titioning resources; work-conserving sharing, which yields unused
resources of one application to another, can leak information.
10. Local vs. cluster memory. Each host must decide on a split
between local and cluster memory (Figure 1(a)), depending on how
much local memory it needs for its own applications, in addition
to space for kernel data, �le caches, stacks, etc. Local memory
is stashed away for local consumption, so it should not be too
large, but if it is not large enough, the system may run out of
memory and become unstable. In particular, the system needs to
pre-reserve enough local memory to be able to handle its own local
metadata and to communicate with remote machines to request
more memory.
Possible solutions. A simple solution is to adopt a static allocation
that reserves a reasonable amount of local memory (e.g., 2 GB) and
leaves the rest for cluster memory. Dynamic allocation is more
challenging: if a host gives up local memory to the cluster, the host
may not be able to reclaim the memory when it needs it, because
the memory may be in use. One way to address this problem is to
allow the local host to deallocate cluster memory whenever it wants,
even if the memory belongs to another application. This approach
is taken in In�niswap, which is acceptable because cluster memory
is used only for caches. But this does not work for all applications. A
general solution requires mechanisms to migrate the data in cluster
memory to another host, so that it can be reclaimed locally.
11. Remote memory allocation. Hosts may compete for mem-
ory, and we need mechanisms to track allocations, provide reserva-
tions, enforce quotas, ensure memory is available to critical applica-
tions when they need it, and broadly enforce cluster-wide allocation
policies (e.g., a batch application can use more than 64 GB of mem-
ory only if no interactive applications are running).
Possible solutions.The simplest approach is to centralize the problem,
by requiring allocations across the cluster to go through a host
that manages memory. To improve performance, allocations can
be done in large slabs (e.g., 64 MB), so that they are infrequent,
while application libraries can divide each slab locally and provide
smaller and �ner-grained allocations through library functions
(e.g., malloc). To provide fault tolerance and availability, the host
managing memory can be replicated.
12. Memory placement.When the system allocates remote mem-
ory, it must choose which remote host(s) will actually store the
memory. This choice might depend on the network latency (nodes
within a rack have lower latencies), bandwidth (some paths may
be less congested), and memory availability at each host (it may
be desirable to balance memory usage across hosts). The challenge
here is that of mechanism and policy.
Possible solutions. The simplest mechanism is to centralize the de-
cision of placement, much like we can centralize the decision of
allocation (see above). Deciding on a policy is much harder, because
there can be many di�erent opposing requirements. One solution
is to model placement as an online optimization problem, where
some of the requirements are taken as constraints (e.g., memory
placed on a host cannot exceed its capacity), while others are part

of an optimization function (e.g., nearby placements are given a
higher utility).

Another approach, used in In�niswap, is to use the power-of-
two choice to balance the allocation across the cluster using a
decentralized scheme. This approach, while simple, provides little
�exibility in the choice of placement policies.
13. Localmemorymanagement. Each host manages its physical
memory to reduce fragmentation, share zero pages, migrate pages
for NUMA a�nity, etc. These tasks require moving and remapping
physical pages. When a local page belongs to a remote host, who
should do these tasks and how?
Possible solutions. We believe these tasks are best handled by the
machine hosting the physical memory, rather than the remote
machine. But there is a trade-o� here: doing it locally requires
an extra level of virtual memory local to each machine, which
adds overheads on modern RDMA-based NICs (e.g., IOMMU TLB
misses [35]).
14. Control plane e�ciency. As we expand the cluster, scalabil-
ity becomes a concern. There are scalability issues of the network
fabric: it may be infeasible to maintain pairwise connections be-
tween all machine pairs [16, 28]. There are also scalability issues of
the control plane of the remote memory, which monitors failures,
keeps the cluster membership (what hosts provide remote memory),
and tracks remote memory allocations.
Possible solutions.Wemay be able to leverage o�-the-shelf solutions
for control planes [2, 27]; an experimental study is required to
validate their performance for this use. If performance is insu�cient,
one might need to optimize and specialize them for remote memory,
or make them work over RDMA [12].
15. Memory metadata overhead. Very large memories create
signi�cant page metadata (e.g., lock, refcount, �ags, lru list pointer,
cgroup pointer, page cache mapping), which needs to be stored
locally even if memory is remote. This metadata may not �t in
local memory. We need ways to combine or compress metadata, or
memory mechanisms that can omit metadata.
Possible solutions. One approach, taken in In�niswap, is to manage
remote memory in slabs that are much larger than the page size, so
that the system need only keep one set of metadata for each slab.
Another approach is to realize that large non-volatile memories
face similar challenges and the community is actively engaged in
solving this problem. Remote memory may be able to leverage those
solutions.

8 CONCLUSION
Remote memory is a promising idea whose time has come in the
age of fast networks. This paper enumerates its challenges and
indicates directions to explore, setting a broad research agenda
around this topic.

9 ACKNOWLEDGMENTS
We thank Mihai Budiu, our shepherd Patrick Stuedi, and the anony-
mous reviewers for many useful comments.

REFERENCES
[1] CCIX: cache coherent interconnect for accelerators. http://www.ccixconsortium.

com. Accessed: 2017-05-05.

http://www.ccixconsortium.com
http://www.ccixconsortium.com

Remote memory in the age of fast networks SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

[2] etcd 3.1.7 documentation. https://coreos.com/etcd/docs/latest. Accessed: 2017-
05-05.

[3] Gen-Z draft core speci�cation, December 2016. http://genzconsortium.org/
draft-core-speci�cation-december-2016.

[4] In�niBand. http://www.in�nibandta.org/content/pages.php?pg=about_us_
in�niband. Accessed on 2017-01-24.

[5] Intel Omni-Path. http://www.intel.com/content/
www/us/en/high-performance-computing-fabrics/
omni-path-architecture-fabric-overview.html. Accessed on 2017-01-24.

[6] Mellanox Connect X4. http://www.mellanox.com/page/products_dyn?product_
family=201&. Accessed on 2017-01-24.

[7] OpenCAPI consortium. http://opencapi.org. Accessed: 2017-05-05.
[8] pmem.io persistent memory emulation in DRAM. http://pmem.io/2016/02/22/

pm-emulation.html.
[9] Magic quadrant for x86 server virtualization infrastructure. https://www.gartner.

com/doc/2788024/magic-quadrant-x-server-virtualization, 2014.
[10] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and

W. Zwaenepoel. TreadMarks: Shared memory computing on networks of work-
stations. IEEE Computer, 29(2):18–28, Feb. 1996.

[11] K. Asanovic and D. Patterson. FireBox: A hardware building block for 2020
warehouse-scale computers. In Keynote USENIX Conference on File and Storage
Technologies (FAST), Feb. 2014.

[12] J. Behrens, S. Jha, M. Milano, E. Tremel, K. Birman, and R. van Renesse. The
Derecho project. https://derecho-project.github.io.

[13] J. K. Bennett, J. B. Carter, andW. Zwaenepoel. Munin: Distributed shared memory
based on type-speci�c memory coherence. In ACM Symposium on Principles and
Practice of Parallel Programming (PPoPP), pages 168–176, Mar. 1990.

[14] N. Carriero and D. Gelernter. The S/Net’s Linda kernel (extended abstract). In
ACM Symposium on Operating Systems Principles (SOSP), page 160, Dec. 1985.

[15] D. Comer and J. Gri�oen. A new design for distributed systems: The remote
memory model. In Usenix Summer 1990 Technical Conference, pages 127–136,
June 1990.

[16] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson. FaRM: Fast remote
memory. In Symposium on Networked Systems Design and Implementation (NSDI),
pages 401–414, Apr. 2014.

[17] A. Dragojević, D. Narayanan, E. Nightingale, M. Renzelmann, A. Shamis,
A. Badam, and M. Castro. No compromises: distributed transactions with consis-
tency, availability, and performance. In ACM Symposium on Operating Systems
Principles (SOSP), pages 54–70, Oct. 2015.

[18] J. Edge. DAX, mmap(), and a "go faster" �ag. https://lwn.net/Articles/684828/.
Accessed on 2017-01-24.

[19] P. Faraboschi, K. Keeton, T. Marsland, and D. Milojicic. Beyond processor-centric
operating systems. InWorkshop on Hot Topics in Operating Systems (HotOS), May
2015.

[20] M. J. Feeley, W. E. Morgan, E. P. Pighin, A. R. Karlin, H. M. Levy, and C. A.
Thekkath. Implementing global memory management in a workstation cluster.
In ACM Symposium on Operating Systems Principles (SOSP), pages 201–212, Dec.
1995.

[21] M. D. Flouris and E. P. Markatos. The network RamDisk: Using remote memory
on heterogeneous nows. Cluster Computing, 2(4):281–293, Oct. 1999.

[22] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal, S. Ratnasamy,
and S. Shenker. Network requirements for resource disaggregation. In Symposium
on Operating Systems Design and Implementation (OSDI), pages 249–264, Oct. 2016.

[23] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin. E�cient memory dis-
aggregation with In�niswap. In Symposium on Networked Systems Design and
Implementation (NSDI), pages 649–667, Mar. 2017.

[24] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn. RDMA over
commodity ethernet at scale. In ACM SIGCOMM Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications (SIGCOMM),
pages 202–215, Aug. 2016.

[25] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and S. Shenker. Network support
for resource disaggregation in next-generation datacenters. In Workshop on Hot
Topics in Networks (HotNets), pages 10:1–10:7, Nov. 2013.

[26] M. R. Hines, A. Gordon, M. Silva, D. Da Silva, K. Ryu, and M. Ben-Yehuda. Appli-
cations know best: Performance-driven memory overcommit with Ginkgo. In
Cloud Computing Technology and Science (CloudCom), pages 130–137, Nov. 2011.

[27] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper:Wait-free coordination
for internet-scale systems. In USENIX Annual Technical Conference (ATC), June
2010.

[28] A. Kalia, M. Kaminsky, and D. G. Andersen. Using RDMA e�ciently for key-
value services. In ACM SIGCOMM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (SIGCOMM), pages
295–306, Aug. 2014.

[29] A. Khandual. [RFC 0/8] De�ne coherent device memory node. https://lkml.org/
lkml/2016/10/24/19. Accessed on 2017-01-24.

[30] S. Koussih, A. Acharya, and S. Setia. Dodo: A user-level system for exploiting
idle memory in workstation clusters. In IEEE International Symposium on High
Performance Distributed Computing (HPDC), pages 301–308, July 1998.

[31] K. Li and P. Hudak. Memory coherence in shared virtual memory systems. ACM
Transactions on Computer Systems (TOCS), 7(4):321–359, Nov. 1989.

[32] S. Liang, R. Noronha, and D. K. Panda. Swapping to remote memory over
In�niBand: An approach using a high performance network block device. In
IEEE International Conference on Cluster Computing (CLUSTER), pages 1–10, Sept.
2005.

[33] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F. Wenisch.
Disaggregated memory for expansion and sharing in blade servers. In Interna-
tional Symposium on Computer Architecture (ISCA), pages 267–278, June 2009.

[34] K. T. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P. Ranganathan, and
T. F. Wenisch. System-level implications of disaggregated memory. In IEEE
Symposium on High Performance Computer Architecture (HPCA), pages 189–200,
Feb. 2012.

[35] M. Malka, N. Amit, M. Ben-Yehuda, and D. Tsafrir. riommu: E�cient iommu for
i/o devices that employ ring bu�ers. In International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), pages
355–368, Mar. 2015.

[36] C. Mitchell, Y. Geng, and J. Li. Using one-sided RDMA reads to build a fast,
cpu-e�cient key-value store. In USENIX Annual Technical Conference (ATC),
pages 103–114, June 2013.

[37] G. Natapov. Asynchronous page faults - AIX did it. http://www.linux-kvm.org/
wiki/images/a/ac/2010-forum-Async-page-faults.pdf. Accessed on 2017-01-24.

[38] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and M. Oskin. Latency-
tolerant software distributed shared memory. In USENIX Annual Technical Con-
ference (ATC), pages 291–305, July 2015.

[39] P. S. Rao and G. Porter. Is memory disaggregation feasible? A case study with
Spark SQL. In Symposium on Architectures for Networking and Communications
Systems (ANCS), pages 75–80, Mar. 2016.

[40] R. Sahita, V. Shanbhogue, G. Neiger, J. Edwards, I. Ouziel, B. Huntley, S. Shwarts-
man, D. Durham, A. Anderson, and M. LeMay. Method and apparatus for �ne
grain memory protection, Dec. 2015. US Patent App. 14/320,334.

[41] T.-I. Salomie, G. Alonso, T. Roscoe, and K. Elphinstone. Application level bal-
looning for e�cient server consolidation. In European Conference on Computer
Systems (EuroSys), pages 337–350, Apr. 2013.

[42] D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta: A low overhead,
software-only approach for supporting �ne-grain sharedmemory. In International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 174–185, Oct. 1996.

[43] I. Schoinas, B. Falsa�, A. R. Lebeck, S. K. Reinhardt, J. R. Larus, and D. A. Wood.
Fine-grain access control for distributed shared memory. In International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 297–306, Oct. 1994.

[44] I. C. Tuduce and T. R. Gross. Adaptive main memory compression. In USENIX
Annual Technical Conference (ATC), pages 237–250, Apr. 2005.

[45] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A note on distributed computing.
Technical Report SMLI TR-94-29, Sun Microsystems, Nov. 1994.

[46] C. A. Waldspurger. Memory resource management in VMware ESX server.
In Symposium on Operating Systems Design and Implementation (OSDI), pages
181–194, Dec. 2002.

[47] S. Woo. DRAM and memory system trends. In Keynote International Symposium
on Memory Management (ISMM), Oct. 2004.

[48] Y. Zhang, J. Yang, A. Memaripour, and S. Swanson. Mojim: A reliable and
highly-available non-volatile memory system. In International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS),
pages 3–18, Mar. 2015.

https://coreos.com/etcd/docs/latest
http://genzconsortium.org/draft-core-specification-december-2016
http://genzconsortium.org/draft-core-specification-december-2016
http://www.infinibandta.org/content/pages.php?pg=about_us_infiniband
http://www.infinibandta.org/content/pages.php?pg=about_us_infiniband
http://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-fabric-overview.html
http://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-fabric-overview.html
http://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-fabric-overview.html
http://www.mellanox.com/page/products_dyn?product_family=201&
http://www.mellanox.com/page/products_dyn?product_family=201&
http://opencapi.org
http://pmem.io/2016/02/22/pm-emulation.html
http://pmem.io/2016/02/22/pm-emulation.html
https://www.gartner.com/doc/2788024/magic-quadrant-x-server-virtualization
https://www.gartner.com/doc/2788024/magic-quadrant-x-server-virtualization
https://derecho-project.github.io
https://lwn.net/Articles/684828/
https://lkml.org/lkml/2016/10/24/19
https://lkml.org/lkml/2016/10/24/19
http://www.linux-kvm.org/wiki/images/a/ac/2010-forum-Async-page-faults.pdf
http://www.linux-kvm.org/wiki/images/a/ac/2010-forum-Async-page-faults.pdf

