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ABSTRACT
This paper presents Always Encrypted, a recently released
feature of Microsoft SQL Server that uses column granularity
encryption to provide cryptographic data protection guaran-
tees. Always Encrypted can be used to outsource database
administration while keeping the data confidential from an
administrator, including cloud operators. The first version
of Always Encrypted was released in Azure SQL Database
and as part of SQL Server 2016, and supported equality op-
erations over deterministically encrypted columns. The sec-
ond version, released as part of SQL Server 2019, uses an
enclave running within a trusted execution environment to
provide richer functionality that includes comparison and
string patternmatching for an IND-CPA-secure (randomized)
encryption scheme. We present the security, functionality,
and design of Always Encrypted, and provide a performance
evaluation using the TPC-C benchmark.
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1 INTRODUCTION
There are many reasons to move workloads to the cloud. The
cloud provides elasticity in a pay-as-you-go model which al-
lows customers to pay only for computational resources that
they really need. Furthermore, the cloud promises high avail-
ability and a fast time-to-market as additional computational
resources can be provisioned within minutes as opposed to
weeks or months in a non-cloud, on-premise setting.

Security and compliance are an important, if not the most
important, driver for cloud adoption. Due to economies of
scale, a large cloud provider can afford the best security tech-
nologies and experts that continuously evolve and apply
the state-of-the-art. Specifically, the cloud provider can con-
tinuously patch the infrastructure whenever vulnerabilities
become known and make large security investments because
these are amortized over a huge computational infrastruc-
ture.

The cloud, however, also exposes additional attack vectors
as the cloud provider itself or rogue employees of the cloud
provider may compromise sensitive client data and cause
breaches. Unlike a traditional on-premise deployment, the
user of a cloud service has no control over system admin-
istrators who might have administrative privileges to the
machines that host and process the data [5, 14, 20].
This paper presents Always Encrypted a unique feature

of Microsoft SQL Server that provides confidentiality con-
trols for databases in the cloud and on-premise. Current
database systems provide sophisticated access control mech-
anisms [23, 29] and encryption support for data-at-rest, but
they do not protect the data against attackers with adminis-
trative privileges on the database or on the server that hosts
the database. Microsoft SQL Server is the first and to date
only industrial-strength database system that provides this
kind of protection.
A note onMicrosoft SQL Server offerings: SQL Server is
available in two related offerings: (1) as a traditional “box-
product” that customers can deploy on infrastructure of their
choice (private datacenter or a cloud VM); (2) as a cloud
database Platform-as-a-Service (PaaS) offering called Azure
SQL Database. Both offerings rely on the same codebase
with relatively minor version and feature differences. In the
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following, unless qualified otherwise, when we refer to SQL
Server, we refer to both offerings.

1.1 Always Encrypted
Always Encrypted (AE) endows the database system with
cryptographic data protection using encryption. AE allows
data owners to use encryption at a column granularity to
outsource database administration while keeping data confi-
dential from the administrators, including cloud operators.
Operationally, these security guarantees are achieved by

keeping data identified as sensitive, encrypted at all times: at
rest when stored on disk, in SQL Server’s internal memory
while in use (except within the memory of Trusted Execu-
tion Environments (TEEs) as we will see), and in transit
during backups and result communication. SQL Server is
untrusted for these guarantees and they continue to hold if
the SQL Server instance is compromised. Encryption keys
are generated by clients in a “bring-your-own-key” model
and they are never exposed to SQL Server. This property of
AE is the central difference as compared to traditional data
protection mechanisms such as transparent data encryption
(TDE) [22, 27, 30, 31] and role-based access controls [23, 29],
where the database system needs to be trusted for the pro-
tections. TDE, for example, keeps data encrypted at rest but
decrypts it when loaded into memory during query process-
ing. The TDE design requires the database system to hold
encryption keys, so a malicious administrator can recover
the keys and data using simple memory scraping attacks.

The fundamental challenge introduced by data encryption
is computation over ciphertext. One approach to address
this challenge is to use specialized encryption schemes that
allow computation over ciphertext. The first version of AE
(AEv1) uses deterministic encryption which, as the name sug-
gests, deterministically produces the same ciphertext for a
given plaintext. This property allows equality operations
over ciphertext and AEv1 relies on this to support database
operations based on equality such as point lookups, equi-
joins, and equality-based grouping. Functionality restrictions
aside, this approach suffers from a serious usability pain-
point: since SQL Server does not have the encryption key,
turning on encryption for the first time (initial encryption)
and rotating encryption keys both require a roundtrip to
client systems possessing the encryption key(s), which can
be prohibitively expensive. For terabyte large databases, this
roundtrip can result in latencies as long as a week for ini-
tial encryption and key rotation, which was a nonstarter for
many customers with such large databases.
The main innovation of the second version of Always

Encrypted (AEv2) released as part of SQL Server 2019 (and
soon on Azure SQL Database) is to use a trusted execution
environment (TEE) to address some of the functionality and

usability restrictions of AEv1. A TEE is an emerging security
technology that provides a way for a small amount of trusted
code called an enclave to be run as part of a larger untrusted
host process. The TEE hides the enclave computation and
state from the host process and host OS and therefore, admin-
istrators of the host system. AE currently supports Windows
Virtualization-based Security (VBS) enclaves [35]. We are also
working on supporting Intel SGX enclaves [12]. (In the fol-
lowing, unless qualified otherwise, AE refers to the latest
v2 version which also includes all of the v1 functionality as
discussed in Section 2.)

AE uses the TEE to temporarily store encryption keys and
perform computations on decrypted, plaintext data. While
conceptually simple, this approach introduces significant
engineering and technical challenges: (1) We need additional
services to attest the trustworthiness of the enclave code
and such attestation services need to work for a variety of
SQL Server deployment scenarios (on-premise, Azure, other
clouds); (2) TEE raises the question of how query processing
is divided between the trusted enclave and untrusted SQL
Server? The simple strawman of pushing all of SQL Server
querying functionality into the enclave inherits any vulner-
abilities in the large SQL Server code base. There are also
subtle information leakage attacks where an attacker can
learn plaintext information from data movement patterns to
and from the enclave; (3) There are devops challenges such
as how to handle failures within the enclave and how to
debug customer errors originating within the enclave while
respecting customer data confidentiality requirements.

While we subscribe to a northstar goal of supporting most
of SQL functionality, AEv2 represents a first step towards
richer querying using TEEs. In AEv2, we support general
comparisons (beyond equality) and string pattern matching
operations. In addition, initial encryptions and key rotations
go through the TEE and avoid the roundtrip to client systems.
Accordingly, AE today is not designed to be applicable to the
entire database, but to high-sensitivity columns, e.g. person-
ally identifiable identifiers such as social security numbers,
credit card numbers, names, and addresses.

1.2 Customer Impact and Experiences
Despite its functionality limitations, AEv1 is used by a wide
variety of customers ranging from financial institutions (e.g.,
Financial Fabric, Produbanco) to insurance companies (e.g.,
Progressive Insurance) and health care organizations (e.g.,
Fullerton Health Care). These customers use AE mostly for
OLTP applications and encrypt only personally identifiable
identifier (PII) columns such as SSNs, names, email addresses,
and credit card numbers.
The AEv2 feature was designed based on feedback from

these and other customers. Customer applications suggest
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that many types of sensitive information such as names,
phone numbers, and location data require richer operations
going beyond equality. Further, the data sizes are large enough
to make the client-based initial encryption and key rotation
impractical. Although only recently released, we are seeing
an increase in interest from a broader set of customers in-
cluding those in manufacturing and retail sectors who feel
that Always Encrypted will simplify their ability to meeting
regulatory compliance requirements, such as the EU General
Data Protection Regulation (GDPR).

1.3 Related Work
AE builds on a rich body of research in the area of encrypted
database systems. Without this foundational work, it would
not have been possible to build AE. While all that work is
relevant, it took many additional innovations to build AE as
a full-fledged commercial relational database system with
end-to-end data protection guarantees using encryption. AE
is also one of the first commercial server-side platforms to
leverage emerging TEE technology.

The idea of using encryption for data protection for cloud
outsourcing was first proposed by Hacigumus et al. [16].
The main challenge of using encryption is query processing
over data obscured by encryption. All prior research proto-
types [4] use some combination of homomorphic encryption
that allows computation over ciphertext and TEE-based pro-
cessing.
Fully homomorphic encryption (FHE) schemes that allow

arbitrary computation are inefficient for database querying,
significant advances [10, 17, 28] in recent years notwithstand-
ing. FHE also works with fixed-size inputs and outputs and
therefore suffers from an abstraction mismatchwith database
querying where the input and output sizes can vary arbitrar-
ily. Prior systems [15, 24, 26, 33] have relied on specialized
encryption schemes such as property-preserving encryption
that preserve some plaintext property such as order when en-
crypted, partial homomorphic encryption that support limited
operations such as addition over ciphertext but with better
performance characteristics than FHE, and garbled circuits.
Many industrial NoSQL systems such as Google Encrypted
BigQuery [15] and Ciphercloud [11] rely on such specialized
encryption schemes as well.

The first research prototype based on TEEswas TrustedDB
[7] which uses a coarse-grained approach of running a full
query processing stack within the TEE. The fine-grained
architecture of Always Encrypted was first described in [2,
3]. AE adopted and significantly expanded that design and
showed for the first time that it can be deployed commercially
and at scale in the cloud and on premise. Recent work [13, 36]
has focused on expensive Oblivious RAM techniques for

TEEs to hide access patterns going beyond the operational
security provided by AE.

2 OVERVIEW
In this section, we discuss how Always Encrypted is config-
ured, the query functionality that it provides and introduce
the notion of an enclave.

2.1 Enclave
An enclave is a part of the virtual address space of a process
and includes code and data that is shielded from the rest of
the process and the operating system (OS), and hence from
actors with administrative privileges to the machine. We use
the term host to refer to part of the process outside the en-
clave. The host initializes the enclave by loading a specially
compiled dynamically linked library (dll) and invokes the en-
clave code using function calls. The enclave code can access
the entire address space of the process while by design the
host cannot access the enclave memory.

AE currently supports software based enclaves usingWin-
dows Virtualization-based Security (VBS) [35]. We are in the
process of adding support for Intel SGX [12]. For SGX, the
enclave is protected by the CPU, while for VBS, the protec-
tion comes from the hypervisor (Windows Hyper-V). This
implies that the Intel processor is a trusted component for
SGX enclaves and Hyper-V (and the underlying processor),
a trusted component for VBS enclaves. A detailed discussion
of enclaves is beyond the scope of this paper and we refer
the reader to these papers [12, 35].
Enclave platforms support a protocol called attestation

using which a remote system (e.g., client) can verify the au-
thenticity of the initial code and data in an enclave. This
protocol relies on a trusted external service called the attes-
tation service. We describe the details of attestation as used
in Always Encrypted in Section 4.2.

2.2 Encryption Keys
AE uses a two-level key hierarchy to encrypt data. Data is
encrypted using symmetric encryption based on a column
encryption key (CEK), a 32 byte AES key. A CEK is stored
within the database encrypted using a second-level key called
the column master key (CMK). A CMK is stored in a separate
key provider and SQL Server AE stores only a URI reference
to the key in the key provider, without having access to the
key material. Since all key metadata is stored in SQL Server,
except for the CMK, this ensures that the database is the
single source of truth, and that keymetadata is replicated and
backed up along with SQL Server data. The client controls
and configures the key provider(s) used in an AE instance.
We support the following key providers out of the box: Azure
Key Vault [6], Windows Certificate store, Java Key Store, and
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CREATE COLUMN MASTER KEY MyCMK WITH (
KEY_STORE_PROVIDER_NAME = N'AZURE_KEY_VAULT_PROVIDER',
KEY_PATH = N'https://vault.azure.net/...',
ENCLAVE_COMPUTATIONS (SIGNATURE = 0x6FCF...))

CREATE COLUMN ENCRYPTION KEY MyCEK
WITH VALUES (COLUMN_MASTER_KEY = MyCMK,
ALGORITHM = 'RSA_OAEP', ENCRYPTED_VALUE = 0x0170...)

CREATE TABLE T(id int,
value int ENCRYPTED WITH
(COLUMN_ENCRYPTION_KEY = MyCEK,
ENCRYPTION_TYPE = Randomized,
ALGORITHM = 'AEAD_AES_256_CBC_HMAC_SHA_256') )

Figure 1: SQL DDL to specify a column master key
(CMK), column encryption key (CEK) and column en-
cryption

Key Stores rooted in Hardware Security Modules (HSMs).
We also have an extensible interface that lets customers plug
in key providers of their choice.

Figure 1 shows the DDL statement for provisioning a CEK
and a CMK. The illustrated CMK refers to a key stored in
Azure Key Vault [6], specified using the
Key_Store_Provider_Name attribute. The Key_Path property
specifies the URI of the key. We allow enclave computa-
tions to be configured at the granularity of a CMK; it fol-
lows that all CEKs encrypted with the above CMK are per-
mitted to be sent to SQL Server’s enclave. We call a CMK
enclave-enabled if it is configured to allow enclave compu-
tations. We call a CEK enclave-enabled if its corresponding
CMK is enclave-enabled. We call non-enclave-enabled keys
as enclave-disabled. We sign the CMK metadata with the key
material in the CMK (specified in the Signature property) to
prevent SQL from tampering with it; without this protection,
SQL Server can alter the metadata to use a CEK in an enclave
even when a client disallows such use. The DDL statement
used to provision a CEK specifies the CMK used to encrypt it,
the encrypted CEK, and a signature to protect the encrypted
CEK. Our DDL syntax is designed to be extensible: for exam-
ple, while we currently only support RSA-based encryption
with OAEP padding for CEKs, we require the DDL statement
to explicitly specify the Algorithm as RSA_OAEP. This de-
sign allows potential future extensions to other encryption
algorithms.

2.3 Data Encryption
Always Encrypted is a column-level encryption feature. The
encryption configuration of a column consists of an encryp-
tion scheme, the encryption and decryption algorithms, and
a CEK used to encrypt values in the column, i.e. encryption
of data is at the cell level. Figure 1 shows an example of a

AcctID AcctBal Branch
1 100 Seattle
2 200 Seattle
3 200 Zurich

AcctID AcctBal Branch
(plaintext) (RND) (DET)
1 0xa24 0x123
2 0x3b7 0x123
3 0xdf2 0x363

Figure 2: Example Plaintext and Encrypted Database

CREATE TABLE DDL that specifies an encrypted column. Al-
ways Encrypted supports two encryption schemes discussed
below:

1. Deterministic (DET): In deterministic encryption, there
is no randomization during encryption, so there is a one-
to-one correspondence between ciphertext and plaintext.
Informally, it is AES CBC mode encryption with SHA hash
of the plaintext as the Initialization Vector (IV). We remark
that our approach is more secure than using the ECB mode
of AES. The ECB mode of AES is deterministic at the level of
plaintext blocks; if a block is repeated, then the corresponding
ciphertext blocks would be identical. On the other hand, our
implementation of deterministic encryption only preserves
equality at the level of the whole value.
Deterministic encryption allows the database engine to

evaluate an equality of values using their ciphertexts but it
weakens confidentiality since it leaks the frequency distribu-
tion of values in the column. We refer to columns encrypted
with deterministic encryption as DET columns.

2. Randomized (RND): Randomized encryption uses the stan-
dard Cipher Block Chaining (CBC) mode of AES encryp-
tion with a random Initialization Vector (IV). If the CEK is
enclave-disabled, then no operations are supported over a
RND column, so queries can reference this column only in
the SELECT clause to fetch it as part of the result. If the CEK
is enclave-enabled, then we do support equality, range and
pattern matching queries (LIKE predicate) on the column
using the enclave for computation.

Both modes of encryption also include an HMAC per en-
crypted value. While AE makes no guarantees about data in-
tegrity, we use HMACs as a usability feature; absent HMACs,
there is no way for a client to tell apart legitimate ciphertext
from garbage, which could lead to undetectable data corrup-
tion, for instance if a client erroneously inserts random byte
sequences as ciphertext.

Notice that the table creation DDL specifies an encryption
algorithm explicitly. Just like CEK encryption, our data en-
cryption algorithm is also extensible. While we only support
AES based encryption as described above today, we could
extend them to newer algorithms in the future.
Figure 2 illustrates columnar encryption for an example

instance of the Account table of the TPC-C benchmark. The
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table on the left is the plaintext, and the one on the right is the
corresponding encrypted table using a policy that specifies
that the AcctID column is stored in plaintext, the AcctBal
column is encrypted using randomized encryption, and the
Branch column is deterministically encrypted.

2.4 Functionality
AE maintains encryption end-to-end. The client issues en-
crypted queries, i.e. queries where the input parameters are
encrypted and SQL returns encrypted results (we discuss
application transparency in Section 2.5.)

2.4.1 Key Provisioning. While we provide DDL to create
key metadata, our DDL expects clients to configure the CMK
and compute the encrypted value of CEKs. In order to ease
the burden for clients, we automate the above steps in our
tools.

2.4.2 Data Encryption. To turn on encryption (initial en-
cryption) for a column using an enclave-enabled CEK, we
rely on an ALTER TABLE ALTER COLUMN DDL statement. To
encrypt columns using an enclave-disabled CEK, we need a
roundtrip to a client system, and we provide client-side tools
for this purpose.
An important operation with encryption is key rotation.

A CMK rotation does not require re-encrypting data, but
merely CEKs encrypted with it. To prevent downtime we
allow CEKs to be encrypted with two CMKs temporarily
for the duration of the CMK rotation. A CEK rotation does
require re-encrypting data. Just like initial encryption, we
use an ALTER TABLE ALTER COLUMN DDL statement when
both prior and new-CEKs are enclave-enabled; otherwise,
we rely on client-side tools to manage the client round-trip.
All operations discussed here are online, meaning the client
sees no downtime during key rotation or initial encryption.

2.4.3 Select and Update Queries. AE restricts querying
functionality for encrypted columns. For columns encrypted
with enclave-disabled keys, AE supports only equality op-
erations on DET columns, i.e. point lookups, equi-joins and
equality grouping, and no scalar operations on RND columns.
For columns with enclave enabled keys, AE uses the enclave
to support equality, range comparisons, and LIKE pattern-
matching predicates, even for RND columns.

2.4.4 Indexing. On DET columns, we support point index-
ing. On RND columns with enclave-enabled keys, we also
support range indexing using SQL Server’s B+-Trees. Range
indexing is not supported on deterministically encrypted
columns, where enclave-enabled keys can only be used for
in-place encryption and key rotation; we see determinis-
tic encryption strictly as a way to support equality based
comparisons.

2.5 Application Transparency
Always Encrypted is designed for application transparency
meaning applications do not need to be modified to use AE
functionality, modulo the functionality restrictions above
and some fine-print discussed next. In order to achieve trans-
parency, we only support parameterized queries (including
stored procedures and functions). This is not a serious func-
tional limitation since good programming practices already
recommend parameterization, and any ad hoc query can be
rewritten to be parameterized. We achieve transparency by
enhancing the SQL client drivers to be aware of AE, such that
(a) query parameters are encrypted on their way to SQL, and
(b) results are decrypted when returned to the application.
When a query requires computations in the enclave, then
the driver also transparently sends CEKs to the enclave.

2.6 Threat Model
Our goal is to ensure data confidentiality from entities with
privileged OS and database access. To characterize this threat,
we introduce the strong adversary, who has unbounded power
over the SQL Server process and can not only view the con-
tents of the server’s memory/disk at every instant, along
with all external and internal communication, but also tam-
per with it, for instance by attaching a debugger to SQL. A
strong adversary however cannot observe state or computa-
tions within the enclave because it is specifically designed
for this purpose. As an emerging technology, TEEs are un-
dergoing an arms race between side channel attacks and
the corresponding patches [34]. A similar dynamic of hard-
ware attacks has been observed in the past and continues
to be observed in the development of Hardware Security
Modules [19]. Current enclave side channel attacks are spe-
cific to the TEE implementations, not the promised secu-
rity goals. The design of AE is not dependent on a specific
TEE implementation allowing us to transition to a more
secure implementation if necessary. We therefore exclude
enclave side-channel attacks from our scope. Our adversary
is stronger than the honest-but-curious adversary assumed in
most prior work [3, 7, 15, 24, 26, 33], who can only observe,
but not tamper with the processing.

3 ARCHITECTURE
Figure 3 describes the architecture of Always Encrypted. We
show the SQL Server component shaded to illustrate that it is
untrusted. All other components—the SQL client, the enclave
and the attestation service are trusted. The keys visible in
the respective trusted components are also illustrated—the
key provider stores the CMK, and the CEKs are visible in
the client driver and the enclave. Data is stored encrypted
at column granularity within SQL Server; Figure 3 shows
encrypted data corresponding to the schema introduced in
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ID 
(plaintext)

Value 
(encrypted)

1 0x01FF…

2 0xab12…

3 0x7e4g…

Attestation 
Service

Figure 3: Architecture of SQL Server Always Encrypted

Figure 1. SQL Server also stores CEKs encrypted with the
corresponding CMKs.
Since encryption is transparent, the application issues a

parameterized query with plaintext parameters and expects
results in plaintext. The driver therefore needs to deduce
the encryption “type” information, the encryption keys to
encrypt parameters and decrypt results. Implementing this
functionality entirely within the driver is a substantial en-
gineering challenge since it involves duplicating full SQL
Server parsing in the driver. Further, this step also requires
access to metadata stored in SQL Server for “binding”, attach-
ing semantic interpretation to the parsed query. Our design
instead relies on implementing the encryption type deduc-
tion functionality within SQL Server and making it available
to the driver using a new api called sp_describe_paramet
er_encryption. The output of this call for a parameterized
query contains: the encryption type information (CEK) for
each parameter; if the evaluation of the query requires an
enclave, the output also contains the set of CEKs required
within the enclave. For each CEK above, the output contains
the encrypted CEK and the CMKmetadata. Since SQL Server
is untrusted, it could return incorrect output for the sp_
describe_parameter_encryption call and undermine se-
curity. We discuss client controls that mitigate this risk in
Section 4.1.
If the query requires enclave computations, then SQL

Server also makes a call to a trusted attestation service and re-
turns attestation information to the client, which is included
in the above output. The attestation information if returned
is used to establish a shared secret between the driver and
the enclave. Overall, in our approach, SQL Server acts as the
untrusted “man-in-the-middle” mediating communication
between the driver and the enclave.
The driver uses the output of sp_describe_paramete

r_encryption to obtain CMKs, decrypt CEKs, and issue

a query to SQL Server with encrypted parameters. If the
query evaluation requires an enclave, the driver installs the
necessary (decrypted) CEKs in the enclave using the shared-
secret based secure channel. SQL executes the query (using
the enclave if needed) and returns encrypted results to the
client, along with key metadata needed to decrypt the results.
The driver decrypts the results and presents them in the clear
to the application.
We now briefly outline how query execution inside SQL

Server uses the enclave. The SQL Server engine implemen-
tation of AE inherits many of the design elements from Ci-
pherbase [2]. Our design relies on the observation that most
components of a database engine do not directly compute
on column-granularity data values, but rather move or copy
data values between different locations (disk, buffer pool, log,
and lock table). Their functionality is unaffected whether
the values are encrypted or in plaintext. SQL Server code
localizes all computations on columnar data values to a mod-
ule called expression services (ES). Our enclave runs a subset
of ES needed to implement the functionality that we sup-
port. While we have made changes outside the enclave, those
changes are not extensive.
For example, consider the data shown in Figure 3. It in-

dicates an instance of Table T whose schema is defined in
Figure 1. Column value is encrypted using randomized en-
cryption with an enclave enabled key. Suppose that the ap-
plication issues the (parameterized) query select * from T
where value = @v; the driver encrypts the value of param-
eter @v before forwarding the query to SQL Server. Suppose
that the filter predicate is evaluated using a table scan. In
our architecture, data would be fetched from the storage
engine encrypted, into the filter operator which would, for
each row, invoke the enclave to evaluate the filter. Inside
the enclave, values are decrypted and the filter is evaluated
on the corresponding plaintext. The boolean result of the
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Figure 4: A single-column range index. Ciphertext (us-
ing RND encryption) is shown with a blue circle over
the plaintext (not visible to SQL Server). Page ids (p1-
p4) and slot ids (s1-s3) within pages are also shown.
Also shown are comparisons performed in the enclave
and their plaintext results (using > or <) while insert-
ing (encrypted) key 7. The results of comparisons en-
sure that key 7 is inserted between keys 6 and 8.

predicate is returned to SQL Server in the clear (causing in-
formation leakage that we will analyze below) using which
SQL Server continues its execution as usual. As this example
suggests, the same expression is typically invoked multiple
times. To accommodate this usage pattern, an expression
is registered once in the enclave and invoked subsequently
using the handle returned by the registration.

3.1 Indexing
AE supports equality and range indexes, which differ in terms
of supported functionality and information leakage. We do
not support clustered range indexes for reasons that we will
discuss in Section 4.5.

3.1.1 Equality indexing. An equality index is implemented
on DET columns by building a standard B+-Tree. The index
keys are ordered in the B+-Tree using ciphertext, not plain-
text values. By also looking up the index using ciphertext
based ordering, we support equality-based lookups, but not
range lookups.

3.1.2 Range indexing. Range indexing is supported on
RND columns using a B+-Tree, using the enclave for com-
parisons. Unlike equality indexes, the indexed keys are now
ordered by their plaintext values (the index still stores only
ciphertexts). When building the index or performing oper-
ations such as lookups or updates, comparisons are routed
to the enclave; the enclave decrypts its inputs and returns
the comparison result in the clear, which is used by SQL
Server for further processing as usual. Figure 4 shows a
sample range index and the comparisons performed on ci-
phertext values while inserting a new key. Note that the
vast majority of index processing, including latching/locking

Operation Leakage to strong adversary
Comparison (DET) Frequency distribution over values
Comparison (RND) Ordering over values
LIKE predicate using scans Unknown predicate over values
LIKE predicate using an index Ordering over values plus some
(i.e. prefix matches) information about proximity
DDL to encrypt data Limited access to encryption oracle

only with client authorization

Figure 5: Operation leakage in AE

for concurrency and managing page splits/merges during
updates, remains unaffected by encryption.

3.2 Data Confidentiality
Always Encrypted is designed for data confidentiality, and
other security guarantees such as data integrity and protec-
tion from denial of service are non-goals. Further, AE does
not provide metadata confidentiality and reveals table and
column names, the number of tables, the number of columns
in each table, (primary) key properties, the cardinalities of
tables and the lengths of data values.
Ideally, we desire semantic security for encrypted data

where a strong adversary does not learn anything beyond
metadata and coarse statistical properties listed above. Unfor-
tunately, semantic security is impractical since even commu-
nicating encrypted results over an untrusted network leaks
some information and breaks semantic security.
Always Encrypted is instead designed to provide opera-

tional data confidentiality where the information that an
adversary learns is a function of data operations performed
when evaluating client-authorized queries. We note that
since an adversary does not have access to the keys, it can-
not generate arbitrary queries of its choice. Operational data
confidentiality has been discussed in prior work, e.g. Ci-
pherbase [3] and CryptDB [26]. Figure 5 shows the leakage
of various operations. The leakage of DET encryption has
been studied before, so we focus on the leakage associated
with enclave based processing. Using the enclave for range
queries reveals ordering; as a special case, an index build re-
quires sorting of data that reveals the data ordering. Similar
confidentiality guarantees are offered by order preserving en-
cryption (OPE) [9]. However, existing constructions of OPE
either leak higher-order bits of plaintext values or require a
client-side component and do not guarantee encryption im-
mutability [25]. (Informally, in a mutable encryption scheme,
the encryption of a value could change when other values
are inserted.) Our range indexes do not have these limita-
tions. Evaluating LIKE predicates using an index (i.e. prefix
matches) reveals some information about the proximity of
values in addition to ordering, e.g. the fact that a subset
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of values share a prefix. However, even if we did not sup-
port LIKE predicates, a client that reduces LIKE predicates
to range predicates would reveal the same information to
an adversary that has the background knowledge that the
in-coming range queries emanate from prefix matches.

SecureCompilation ForAEDDL. Always Encrypted uses
DDL (ALTER TABLE ALTER COLUMN) statements to rotate keys
and initialize encryption. When the CEKs involved in the
operation are enclave-enabled, AE uses the enclave to avoid
a client roundtrip. In particular, initial encryption requires
the enclave to encrypt plaintext values. We seek to restrict
exposing such an encryption oracle at the enclave where
an adversary can generate ciphertexts for plaintexts of its
choosing. Accordingly, we only allow the enclave Encrypt
function to be called if the client explicitly authorizes it. We
check for client authorization by having the driver sign the
query text using the session secret; we compute a SHA256
hash of the query text and include it along with the CEKs
that are encrypted with the shared secret. The enclave seeks
a proof of client authorization when SQL Server requests
access to the Encrypt function 1. SQL Server supplies a proof
using the parse tree of the Alter Table Alter Column query
to the enclave, which uses the parse tree, the raw query text
and its SHA256 hash to validate that the client is authorizing
the type conversion needed for the DDL.

3.3 Design Alternatives
Always Encrypted uses the enclave only for expression eval-
uation. An alternate design explored in prior work [7, 8] is to
run the entire database engine inside the enclave. We decided
against the latter design due to considerations in Azure Sql
Database, the Platform-as-a-Service (PaaS) cloud offering
of SQL Server. In a PaaS setting, the cloud organization is
tasked with administrative tasks such as configuring back-
ups, replication for high-availability, and troubleshooting in
the event of failures. To perform these tasks cloud operators
need to be able to perform operations such as examining
query plans to troubleshoot performance related problems,
collecting dumps during a crash, connecting to the database
server running in production to query the system runtime,
e.g. the transaction conflict graph, and in rare scenarios, at-
taching a debugger. Supporting such operations requires full
access to the SQL Server process, and running the process
inside an enclave does not add any security.
In contrast, with the design of AE described above, all

management tasks can be carried out with full access to
the SQL Server process, but without access to the enclave
memory. Enclave memory is automatically stripped from
crash dumps, but since the amount of code running inside
1Our authorization check is generalized to all type conversions using the
enclave. We use Encrypt as an illustrative example.

the enclave is small, dump information inside the enclave
is almost never necessary. Furthermore, connecting to the
database returns only encrypted data. Since cloud admin-
istrators cannot access the CEKs, they cannot decrypt the
data. We see the above advantages as a side-effect of having
a small Trusted Computing Base (TCB). While SQL Server is
a complex system with millions of lines of code, our enclave
on which the security of AE relies, is a tiny fraction of SQL
Server’s code base. The benefits of having a small TCB are
widely recognized [2].

4 IMPLEMENTATION
This section details the implementation of the AE feature.

4.1 Client Driver
We updated recent versions of various SQL Server drivers
including ADO.Net, ODBC, and JDBC drivers to include
client-side AE functionality. As described in Section 3, when
the application issues a parameterized query to the driver,
the driver invokes a SQL Server api, sp_describe_paramet
er_encryption, to retrieve encryption type information to
encrypt query parameters and install enclave CEKs.
Example 4.1. Consider the parameterized query select *

from T where value = @v over the running example ta-
ble in Figures 1 and 3. The value column of Table T uses
RND encryption with an enclave enabled key. The output of
the call to sp_describe_parameter_encryption indicates
that: (1) parameter @v should be encrypted with randomized
encryption with CEK MyCEK, and (2) the CEK MyCEK should
be sent to the enclave for evaluating the query. It further
contains the metadata for CEK MyCEK and its correspond-
ing CMK, MyCMK shown in the DDL in Figure 1. Since the
query requires enclave computations, then SQL Server also
makes a call to the attestation service and returns attestation
information, which is included in the above output.
The driver constructs an encrypted query by encrypting

parameters and issues it to SQL for execution. If CEKs are
needed in the enclave, it first checks that the CEKs are autho-
rized to be sent to the enclave using the corresponding CMK
signature, and then encrypts them with the shared secret
and sends it to SQL Server along with the query.

In order to avoid frequent CEK decryptions, which in the
case of external key providers like Azure Key Vault could
involve a network call, the driver caches the decrypted CEKs
for a duration that can be controlled by clients. Further, the
shared secret obtained as an outcome of attestation is cached
in the driver in order to avoid frequent invocations of the
attestation protocol. All of the above caches are shared across
the entire client process. Note that the above architecture
incurs two round-trips to SQL. In order to not force every
application to incur two round trips, we add a property to the
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connection string indicating its use for AE. In the absence
of the property, the driver does not invoke the special API
described above.

The fact that SQL is the source of truth for type deduction
and key metadata introduces the following vulnerabilities in
the system. First, SQL could maliciously alter the output of s
p_describe_parameter_encryption to claim that parame-
ters corresponding to encrypted columns are not encrypted.
In order to address this issue, we allow an application to
explicitly force a parameter to be encrypted. Second, instead
of returning the key metadata for keys provisioned by the
client, SQL could return metadata corresponding to keys
provisioned maliciously. In order to prevent this attack, we
allow the application to restrict the key paths of the CMK
to a list of trusted paths. The driver checks that the CMK
metadata returned by SQL belongs to the list of trusted paths.

4.2 Attestation and Shared Secret
The goal of attestation is for the client to check the health of
the enclave before releasing keys. The attestation protocol
is invoked at query time on a signal from the client during
the call to sp_describe_parameter_encryption (and only
when needed, i.e., there is enclave computation involved.)We
build upon attestation to establish a shared secret between
the driver and the enclave.
Attestation breaks down into two portions: the health of

the enclave platform, and the health of the code running
inside the enclave. The details are specific to the enclave
platform. We describe the details for the VBS enclave. The
attestation service we support is a feature inWindows Server
known as the Host Guardian Service (HGS) [18]. HGS mea-
sures the health of a host machine using Trusted Platform
Module (TPM) measurements. TPMs measure the boot se-
quence of a host and the measurement is returned in the
form of a log called the TCG log. In an offline step, the TCG
log obtained from the machine hosting SQL is registered
with the HGS service to be included in its white-list. For
VBS enclaves, we only trust the hypervisor, but not the host
kernel. Therefore, we are only interested in the measurement
of the boot sequence until the hypervisor is loaded. In order
to attest the VBS enclave, SQL invokes Windows to send the
current TCG log to HGS, which looks up its white-list and re-
sponds with a health certificate in the event of a match in the
white-list. The health-certificate is signed by a signing key
possessed by HGS, that we refer to as the HGS signing key
and contains a signing key possessed by the host hypervisor,
which we refer to as the host signing key.

SQL then issues a call to Windows to measure the enclave.
The measurement is called an enclave report and it contains
attributes of the enclave including the author ID that refers
to the signing key used to sign the enclave binary, the hash

of the enclave binary, and version numbers of the enclave
and the host hyper-visor. Our VBS enclave creates an RSA
public/private key pair when it is loaded. In addition, the
enclave report contains a hash of the enclave’s public key.
We use Diffie-Hellman (DH) key exchange to establish a
shared secret between enclave and driver, and fold it into the
attestation protocol to save client-server roundtrips. When
the attestation protocol is invoked (as part of the call to s
p_describe_parameter_encryption), the client passes its
DH public key. As part of its attestation information, SQL
returns:
(1) The host health certificate containing the host signing

key.
(2) The enclave report signed by the host signing key.
(3) The enclave’s public key and DH public key, signed

by the enclave’s public key. Since the client sends its
DH-public key as input, at this point, it follows from
the DH protocol that the enclave already holds the
shared secret.

On receipt of the above information, the client checks the
chain of trust as follows.
(1) Check that the health certificate is signed by the HGS

signing key. It obtains the HGS signing key by query-
ing HGS (all HGS APIs are exposed using http(s)).

(2) Check that the enclave report is signed by the host
signing key embedded in the health certificate.

(3) Check that the enclave is healthy. In our current im-
plementation, we base this check on: (1) the signing
key; we build the enclave binary using a specially pro-
visioned signing key, and use it to check the enclave
health. Using the binary hash is a possibility, but would
break even with minor modifications to the enclave
code, and (2) version numbers; in the event of a secu-
rity update to our enclave, we build the enclave with
an updated version number and would release a client
that checks for the updated version number.

(4) Check that the enclave public key returned is consis-
tent with the hash embedded in the report, and that the
enclave DH public key is signed by the enclave public
key. At this point, the attestation process is complete,
and the client can derive the shared secret.

As noted above, the shared secret is used by the driver to
encrypt CEKs and is sent on the TDS stream when executing
the query. We note that one limitation of using the shared
secret as-is, is that SQL could replay the TDS stream to send
keys to the enclave. In order to address replay attacks, the
driver adds a nonce to the encrypted CEKs being sent to
the enclave. The enclave checks that the nonce is not re-
peated (for a given session, i.e. shared secret value). A simple
strawman for nonce checking is to use a counter at the dri-
ver to generate nonces. The enclave checks if a new nonce
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is greater than the most recent previous nonce. While this
strawman requiresO(1) enclave state per session, it does not
work correctly when driver-enclave communication is out
of order, which is possible since both the client application
and SQL Server are multi-threaded.

Our implementation of nonce checking is a generalization
of the above idea: the driver still uses a counter to gener-
ate nonces, however the enclave now tracks all historical
nonces. The enclave encodes all historical nonces using com-
pact ranges. For example, the contiguous set of nonce val-
ues 0, ..., 100 are encoded using a range [0, 100]. The overall
idea behind this design is that, since the driver generates
sequential nonce values, the sequence of nonce values that
the enclaves sees is still close to sequential with some local
reorderings, which translates to a very compact encoding of
historical nonces.

4.3 SQL Engine: Metadata and Type System

Randomized

Deterministic

Plaintext

Figure 6: Encryption Type Lattice

SQL stores information about encryption in its metadata.
This includes key metadata in new system tables we intro-
duce, and also encryption information associated with each
column. We enhance the SQL type system to reason about
encryption. Encryption information is incorporated as an
additional attribute of SQL types; for instance, there is an
encrypted integer, an encrypted string, an encrypted date-
time, etc. The type information of a column, parameter, or
variable includes not only the encryption type, but also the
identifier of the corresponding CEK. Type deduction on a
query consists of checking not only plaintext types (e.g. can
a string be used to lookup an integer column) but also en-
cryption types. Therefore, we introduce an additional phase
of type deduction in SQL, namely encryption type deduction.
Furthermore, unlike plaintext types that are fully declared,
owing to our transparent API, encryption types are not de-
clared in the input query. Hence, encryption type deduction
needs to operate on unknown types.

For this purpose, we use the observation that our encryp-
tion types form a lattice and we setup a constraint solving
system using the lattice to infer encryption types. For ease
of exposition, we describe the lattice structure without en-
claves in the picture. The extension to include enclaves is
straightforward. In the absence of enclaves, there are three

generalized encryption types — Plaintext, Deterministic and
Randomized — that form a lattice shown in Figure 6 (with
enclaves, there are more generalized types but still maintain
a lattice structure). Operations decrease strictly as we go
from Plaintext to Deterministic to Randomized. The arrows
in the Figure indicate lattice order. We note that the above
are generalized types since they do not refer to any specific
CEK. As we compile the query, we add constraints on the en-
cryption type of each literal (parameter/variable) and solve
for them. We illustrate with an example.

Example 4.2. Consider the data shown in Figure 3 and the
query select * from T where value = @v. Since this discus-
sion does not include enclaves, assume that column value is
encrypted with Deterministic encryption. As we compile the
query, when we encounter parameter @v, we add it to our
constraint system with an unknown encryption τ with the
constraint τ ≤ Randomized, where ≤ is a reference to the
lattice order. When we encounter the predicate value = @v,
we add two constraints: (1) τ ≤ Deterministic since equality
is not allowed on Randomized encryption (without enclaves),
and (2) τ = EncryptionType(value) since equality is only
allowed if both operands have the same encryption type (this
is also true with enclaves). Since the encryption type of the
column value is known, solving for the above system yields
the result that the encryption type of parameter @v is the
same as the encryption type of the column value.

In our implementation, we do not explicitly use a con-
straint solver. We use a Union-Find algorithm to solve the
constraints implicitly. We have equivalence classes to repre-
sent all operands with the same (potentially unknown) en-
cryption type, merging them when we encounter an equality
constraint if no constraint violation is introduced. Inequality
constraints are processed by adjusting the encryption type
of an equivalence class to account for the inequality (e.g.,
from Randomized to Deterministic in the above example),
again only if no constraint is violated in doing so. The above
encryption type deduction also tracks all CEKs needed in the
enclave for query processing. There could be cases where
we have multiple solutions to the constraint system. In such
cases, our preference is to solve using the Plaintext type.

The above type deduction is invoked during the call to sp
_describe_parameter_encryption, but it is also invoked
during query execution as part of normal type deduction.
The results of type deduction are cached in the plan cache
with the query plan, to avoid recomputing them on every
execution.

4.4 SQL Engine: Expression Services
As noted in Section 3, we run a subset of expression ser-
vices (ES) inside the enclave. In SQL, ES is implemented as a
stack machine. All expressions required for query processing
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Figure 7: Illustration of Expression Compilation

are compiled into ES objects of a class called CEsComp and
stored in the plan cache. At runtime, SQL generates an exe-
cutable version of CEsComp, called CEsExec which exposes
an Eval() method to run the stack program on provided in-
puts. All scalar operations of query operators in SQL Server
are encapsulated within CEsExec objects they own: evaluat-
ing filter predicates, computing hashes for hash join probing,
and checking join equality all translates to Eval() calls of
these objects.
When running ES in the enclave, we faced the following

challenge. Like all other components in SQL, ES does not
call the operating system (OS) directly for resource manage-
ment, and instead uses SQL’s own internal OS abstraction
called SQL OS. SQL OS itself calls the OS through a platform
abstraction layer that lets SQL run on operating systems
other than Windows. However, the enclave runtime explic-
itly excludes the OS, since the OS is untrusted. The enclave
runtime does support all the resource management that an
OS provides (memory, threading and synchronization, excep-
tion handling) but it is provided through restricted non-OS
interfaces.

Given the above challenge, we faced three options for run-
ning ES within the enclave: (1) reimplement ES, (2) port ES
with SQL OS, and (3) port ES without SQL OS. We rejected
the option of reimplementing ES (a departure from the Ci-
pherbase project); we wanted to inherit all the benefits of
ES, e.g. its handling of strings, specifically collations, NULL
values and exceptions. Since our goal is to eventually support
a larger fraction of SQL, we chose to port ES to run inside
the enclave. We also rejected the option of porting SQL OS,
since SQL OS is a large component written to support all
of SQL, whereas ES requires only a small subset of SQL OS.
Therefore, we wrote a small SQL OS layer (that we will refer
to as the enclave SQL OS to distinguish it from the host SQL
OS) that supports the SQL OS abstractions needed for ES
in addition to cryptographic operations needed within the
enclave, and is implemented on top of the enclave runtime.
The above layering also lets us easily port our enclave code
between enclave platforms; by re-implementing the enclave
SQL OS against different enclave runtimes, we let most of
the enclave code remain unchanged.

Under the above approach, we compile the source code
of ES to generate two binaries — the standard ES binary
running outside the enclave, and the enclave binary. As noted
in Section 4.2, we sign the enclave binary with a specially
provisioned key.

Expressions in SQL are compiled from their tree represen-
tation to a stack machine, specifically the CEsComp object
referred to above. We add a new instruction called TMEval
to the ES stack machine instruction set. This instruction
invokes an enclave computation. We represent the enclave
computation using another CEsComp object, one that is eval-
uated within the enclave. The expression object running in
the enclave is serialized and stored inlined in the host ob-
ject. We serialize the object as a way to implement a deep
copy. During execution, the entire CEsComp object is recon-
structed inside the enclave. We reconstruct the object since
the compile-time CEsComp object is used at execution time
as well, and having the enclave reference an object stored in
the host would introduce an attack vector where SQL could
interfere with the enclave evaluation by tampering with the
CEsComp object.
We note that the TMEval instruction is used only for en-

clave computations. Equality operations on deterministi-
cally encrypted columns are simply treated as VARBINARY or
BINARY equality operations.

Example 4.3. Consider our running example query from
Example 4.2, select * from T where value = @v. Figure 7
shows the tree representation of the comparison, and the
output of compiling it to a stack machine. We generate two
CEsComp objects, one running at the host with a stub TMEval
for the enclave call, and another running in the enclave.

4.4.1 Expression Evaluation within Enclave. The enclave ex-
poses an interface Eval(expr, inputs, outputs) to eval-
uate a scalar expressions within the enclave. The parameter
expr in the Eval call is a serialized representation which
deserializes to a CEsExec object within the enclave. The pa-
rameter inputs is an array of data values that form the input
to the expression evaluation; the parameter outputs is an
array of data value buffers for storing the outputs of the
evaluation.

The enclave Evalmethod is called fromwithin the TMEval
stack instruction with inputs popped from the stack during
host-side expression evaluation. The enclave enforces se-
curity checks that ensures for instance that encrypted and
plaintext values cannot be compared.
We now describe how encryption and decryption is han-

dled during expression evaluation within the enclave. The
ES stack instruction set contains two instructions GetData
and SetData to move data to and from the stack, respec-
tively. For enclave expression evaluations, the source of any
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GetData instruction is one of the values in the inputs param-
eter, and the destination of any SetData instruction is one
of the buffers in the outputs parameter.
These instructions are annotated with the type of data,

which includes the CEK identifier and encryption scheme
when the data is encrypted. Using this information, the
GetData instruction automatically decrypts any encrypted
data before it is placed on the stack; Similarly, the SetData
instruction automatically encrypts the data before moving
it off the stack if its type information indicates it should be
encrypted. In other words, all decryptions and encryptions
happen at ingress and egress points, and the stack program
evaluation itself is oblivious to the encryption details.
Enclave memory is stripped from dumps and not visible

in the debugger. This does not affect our supportability since
the enclave code is small. We leverage structured exception
handling to obtain coarse-grained information in the case of
hardware faults such as access violations.

4.5 Indexing
The core idea behind indexing was presented in Section 3.
One of the main challenges we encounter with indexing
is recovery. In SQL Server, redo recovery is physical, but
undo recovery of indexes is logical; for instance, aborted
inserts are undone by navigating the B+-Tree and deleting
the record. This poses a problem for indexes on encrypted
columns (henceforth referred to as encrypted indexes). En-
crypted indexes require keys in the enclave, and the client
only sends keys when running queries. Hence, we have to
consider the possibility that the client never runs any query
using the encrypted index, which could potentially block
recovery. In order to address this problem, we mark any re-
covery transaction that finds the key missing to be deferred,
leveraging a pre-existingmechanism of deferred transactions
available in SQL. When the client connects and sends keys
to the enclave, the deferred transactions are resolved. Since
deferred transactions hold locks, the above approach could
lead to large parts of the database being unavailable. For
instance, if SQL crashes during a bulk load on a table with an
encrypted index, then the deferred transactions could lock
up a large portion of the table; while clients can connect
to the database, they would be unable to perform update
operations on most of the table.

To mitigate the above problem, we leverage the constant-
time recovery (CTR) feature also available in SQL Server
2019 [1]. Briefly, CTR makes the database fully available
with all locks released in constant time in the event of a
crash. It does so by persisting versions of the data; when the
database recovers from a crash, clients only get access to
the latest committed version (with all locks released), while
uncommitted versions are cleaned in the background. In the

presence of an encrypted index, the database is fully avail-
able for clients, but the version cleaner that performs index
traversals could potentially not find keys in the enclave, in
which case it keeps retrying.When the client connects to pro-
vide keys, the version cleaner completes successfully. When
the database is configured to use CTR, then even though the
above availability issue is not eliminated (there are corner
cases where we could end up with deferred transactions),
the overall database availability is improved.

The above approach ensures database availability without
relying on the client to supply keys. However, if the client
never supplies keys, then other database administration tasks
such as log truncation are blocked. The same issue also arises
if we are restoring a database backup in a machine that has
no enclave configured. In order to address such problems, we
introduce the mechanism of forcing resolution of deferred
transactions by skipping recovery of index pages and mark-
ing the index as invalid in the metadata. If an enclave is not
configured, then index invalidation is automatic, whereas if
an enclave is configured, then index invalidation could be
initiated using explicit policies based on timeout or resource
consumption, e.g. log space consumption. Since invalidating
a clustered index can lead to data loss, we do not support
clustered indexes on encrypted data.

4.6 Performance Optimizations
Section 4.1 lists performance optimizations relevant to the
driver such as caching of CEKs. We now discuss optimiza-
tions in the SQL engine. Our optimizations focus on the use
of the enclave. Calling the enclave incurs an overhead since it
resides in a different security boundary; and since expression
evaluation constitutes the inner loop of query processing, by
moving it into the enclave, we make the inner loop expensive.
Instead of calling the enclave as a function, i.e. synchronous
execution, we spool up an enclave worker thread and pin it
to a core. Host workers submit work to the enclave using a
queue, and the enclave worker consumes and performs the
work. After completing its work, the enclave worker spins
for a fixed duration polling for work before exiting the en-
clave and going to sleep. In this way, if the system is making
heavy use of the enclave, then the expectation is that host
workers are constantly feeding the enclave work, keeping it
busy, owing to which we avoid the enclave context switch
cost. On the other hand, if the workload does not heavily
use the enclave, then the enclave goes to sleep freeing up
resources for SQL Server host.
Further, the enclave is multi-threaded and each enclave

thread processes ES requests as described in section Sec-
tion 4.4.1. To simplify synchronization issues all state changes
such as adding CEKs are handled by a single enclave thread.
The other threads only read the current state. As state changes
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are rare operations this design allows for efficient scaling of
enclave resources. Our performance optimizations are still
work in progress and we are in the process of implementing
some of the optimizations identified in [3].

5 PERFORMANCE EVALUATION
This section contains results of preliminary performance
experiments with AE using the TPC-C benchmark [32].

5.1 Hardware configuration
Our experiments were run on virtual machines on Microsoft
Azure [21]. The SQL Server AE instance was run on a stan-
dard DS15 v2 virtual machine with 20 cores and 140 GB of
main memory. The VM was equipped with two separate P30
premium SSD disks to store data and log files on separate
drives. We used VBS enclaves [35] and we allocated four
threads to run the enclave.
We used a Microsoft internal SQL Server TPC-C driver

called Benchcraft to run the benchmark. Benchcraft was run
on a standard D4 v2 virtual machine with 8 cores and 28 GB
of main memory. The Host Guardian Service (Section 4.2)
was run on a standard DC4s VM with 4 cores and 16 GB of
main memory to attest the VBS enclave.

5.2 Systems Compared
We compared the performance of three SQL Server configu-
rations described below.
1. SQL-PT : This configuration runs SQL Server on TPC-C
data with no encryption. Further, the TPC-C client driver
connects to SQL Server using a non-AE connection string.
This configuration serves as the baseline to measure various
AE-related overheads.
2. SQL-PT-AEConn: This configuration again runs SQL Server
with no data encryption. However, the client driver now con-
nects using an AE connection string. While basic transaction
processing remains unchanged, this configuration introduces
one additional client-server roundtrip for
sp_describe_parameter_encryption as described in Sec-
tion 4.1.
3. SQL-AE: This configuration runs SQL Server with data
encryption and therefore relies on Always Encrypted for
transaction processing. By default, we use RND encryption
with enclave enabled keys. We also vary the number of en-
clave threads. SQL-AE-RND-1 and SQL-AE-RND-4 specify 1
and 4 enclave threads respectively.We also consider a variant
of this configuration with DET encryption and non-enclave
enabled keys which does not use the enclave. We prefix these
variants as SQL-AE-RND-1, SQL-AE-RND-4 and SQL-AE-DET ;
SQL-AE refers to SQL-AE-RND-4 unless explicitly qualified.

5.3 Benchmark and Encryption
Configuration

We use the TPC-C benchmark [32] with some minor changes
for our performance evaluation. The benchmark consists of
nine tables and five types of transactions over these tables
that simulate the business activities of a wholesale supplier.
We encrypt the personally identifiable columns of the

benchmark which are the C_FIRST, C_LAST, C_STREET_1,
C_STREET_2, C_CITY, and C_STATE columns in the Customer
table. As noted above, we use RND encryption with enclave-
enabled keys for SQL-AE-RND configurations, and DET with
enclave-disabled keys for SQL-AE-DET. Since the column
to CEK mapping does not impact performance we choose
the simplest configuration of using the same CEK for all
encrypted columns. All other columns in the database remain
unencrypted.

We made minor changes to the TPC-C stored procedures
to reflect current functionality limitations of Always En-
crypted. We modify the Payment and Order Status transac-
tions to remove the ORDER BY on C_FIRST (since we do not,
at this point support ORDER BY using enclaves); both trans-
actions select a subset of customers using a filter predicate,
order these customers by their first names (C_FIRST) and
use this ordered list to identify the median customer. We also
create a NONCLUSTERED (non-unique) index CUSTOMER_NC1
on CUSTOMER(C_W_ID, C_D_ID, C_LAST, C_FIRST, C_ID)
deviating from the benchmark specification which requires
a unique constraint on these columns.

With this encryption configuration, the only scalar opera-
tion over encrypted data is the equality C_LAST = @c_last
of values in the C_LAST column against a provided parameter
@c_last, and this operation is used by both Payment and
Order Status transactions. Together, these two transaction
types account for around 47% of the workload; in terms of ex-
pressions evaluated, the equality predicate is invoked for 60%
of transactions of each type (the other 40% involve an equal-
ity of C_ID and not over C_LAST). In summary, around 28%
of the workload (in terms of expression evaluation) involves
computation on encrypted data.
The benchmark includes a scaling factor W representing

the number of warehouses. For our experiments, we used
W = 800; consistent with the benchmark specification, this
is the smallest scaling factor that maximized cpu usage for
SQL-PT, our baseline configuration. At W = 800 warehouses
the CUSTOMER table has 24 million rows.

5.4 Results
5.4.1 AE vs. Baselines. Figure 8 shows the relative (normal-
ized) performance of the three configurations. We varied
the number of TPC-C client driver threads (shown on the
horizontal axis) and for each setting show the normalized
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Figure 8: Normalized TPCC benchmark transaction
processing rates for the three systems compared for
different number of TPCC client driver threads. The
benchmark scaling factor was W = 800.

throughput for the three configurations. At 100 client driver
threads the throughput on all three configurations is close
to or at their respective maximums. Under this load, AE cur-
rently achieves roughly half the throughput of the baseline
plaintext SQL Server.
The SQL-PT-AEConn system that runs SQL Server with

no encryption but with an AE connection achieves 64% of
the throughput of the plaintext baseline. This suggests that
the bulk of the drop of performance happens due to the addi-
tional roundtrip introduced by the
sp_describe_parameter_encryption call to provide trans-
parency. However, we believe this overhead is not fundamen-
tal and can be reduced with client-side caching of the results
of sp_describe_parameter_encryption.

5.4.2 Enclave vs. Deterministic Encryption. Figure 9 com-
pares the performance of enclave-based processing with RND
encryption (SQL-AE-RND) against non-enclave based pro-
cessing with DET encryption for 100 client driver threads
and 800 warehouses.
The performance of SQL-AE-DET is roughly in between

those of SQL-PT-AEConn and SQL-AE-RND. With the opti-
mizations we currently support, enclave based computation
is 12.3% slower than DET encryption. We expect this gap to
narrow as we add further optimizations. Since enclaves pro-
vide further functionality, we view this result as promising
and an acceptable overhead for the additional functionality.

6 CONCLUSIONS AND FUTURE
DIRECTIONS

This paper presented Always Encrypted, a feature of Mi-
crosoft SQL Server that offers end-to-end data confidentiality
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Figure 9: Normalized TPCC benchmark transaction
processing rates comparing enclave-based Always En-
crypted processing and non-enclave-based processing
using DET with 100 client driver threads and W = 800

.

guarantees using encryption. The main challenge of comput-
ing on encrypted data is addressed by AE using property-
preserving deterministic encryption in its initial release, and
going ahead, with a trusted execution environment in the
form of an enclave running within the SQL Server process.
Our design takes a first step towards supporting richer func-
tionality on encrypted data while providing confidentiality
guarantees against a strong adversary that can compromise
SQL Server, in the process enabling complex administrative
tasks to be undertaken without access to sensitive data. The
AE system is the first of its kind in the industry.

We are still in early days of understanding and exploit-
ing the full potential of the enclave-based AE architecture.
While our initial performance improvements are promising,
we are working on further performance improvements. In
its current form, AE restricts query functionality and is not
intended as a data protection mechanism for the entire data-
base, but rather for a small subset of sensitive columns such
as personally identifiable identifiers. The main avenue for
future work is to make AE a general-purpose solution for all
data without restricting query functionality.
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