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ABSTRACT
Elastic resource scaling lets cloud systems meet application service
level objectives (SLOs) with minimum resource provisioning costs.
In this paper, we present CloudScale, a system that automates fine-
grained elastic resource scaling for multi-tenant cloud computing
infrastructures. CloudScale employs online resource demand pre-
diction and prediction error handling to achieve adaptive resource
allocation without assuming any prior knowledge about the appli-
cations running inside the cloud. CloudScale can resolve scaling
conflicts between applications using migration, and integrates dy-
namic CPU voltage/frequency scaling to achieve energy savings
with minimal effect on application SLOs. We have implemented
CloudScale on top of Xen and conducted extensive experiments
using a set of CPU and memory intensive applications (RUBiS,
Hadoop, IBM System S). The results show that CloudScale can
achieve significantly higher SLO conformance than other alterna-
tives with low resource and energy cost. CloudScale is non-intrusive
and light-weight, and imposes negligible overhead (< 2% CPUin
Domain 0) to the virtualized computing cluster.

Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performance—Modeling and predic-
tion, Monitors; C.4 [Performance of Systems]: Modeling tech-
niques

General Terms
Measurement, Performance

Keywords
Cloud Computing, Resource Scaling, Energy-efficient Computing

1. INTRODUCTION
Most Infrastructure as a Service (IaaS) providers [1, 6] usevir-

tualization technologies [10, 7, 3] to encapsulate applications and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOCC’11,October 27–28, 2011, Cascais, Portugal.
Copyright 2011 ACM 978-1-4503-0976-9/11/10 ...$10.00.

0 8 16 24 32 40
0

50

100

Under-estimation error

         correction

Padding

Conflict

Under-estimation error

 

R
es

o
u

rc
e 

(%
)

Time (s)

 Demand

 Prediction

 Cap

Figure 1: Problems and solutions of prediction-driven resource
scaling.

provide isolation among uncooperative users. However, statically
partitioning the physical resource into virtual machines (VMs) ac-
cording to the applications’ peak demands will lead to poor re-
source utilization. Overbooking [39] is used to improve theoverall
resource utilization, and resource capping is applied to achieve per-
formance isolation among co-located applications by guaranteeing
that no application can consume more resources than those allo-
cated to it. However, application resource demand is rarelystatic,
varying as a result of changes in overall workload, the workload
mix, and internal application phases and changes. If the resource
cap is too low, the application will experience SLO violations. If
the resource cap is too high, the cloud service provider has to pay
for the wasted resources. To avoid both situations, multi-tenant
cloud systems need anelastic resource scalingsystem to adjust the
resource cap dynamically based on application resource demands.

In this paper we present CloudScale, a prediction-driven elas-
tic resource scaling system for multi-tenant cloud computing. The
goal of our research is to develop an automatic system that can meet
the SLO requirements of the applications running inside thecloud
with minimum resource and energy cost. In [24], we describedour
application-agnostic, light-weight online resource demand predic-
tor and showed that it can achieve good prediction accuracy for
a range of real world applications. When applying the predictor
to the resource scaling system, we found that the resource scaling
system needs to address a set of new problems in order to reduce
SLO violations, illustrated by Figure 1. First, online resource de-
mand prediction frequently makes over- and under-estimation er-
rors. Over-estimations are wasteful, but can be corrected by the on-
line resource demand prediction model after it is updated with true
application resource demand data. Under-estimations are much



worse since they prevent the system from knowing the true appli-
cation resource demand and may cause significant SLO violations.
Second, co-located applications will conflict when the available re-
sources are insufficient to accommodate all scale-up requirements.

CloudScale provides two complementary under-estimation error
handling schemes: 1) online adaptive padding and 2) reactive error
correction. Our approach is based on the observation that reac-
tive error correction alone is often insufficient. When an under-
estimation error is detected, an SLO violation has probablyalready
happened. Moreover, there is some delay before the scaling sys-
tem can figure out the right resource cap. Thus, it is worthwhile to
perform proactive padding to avoid under-estimation errors.

When a scaling conflict happens, we can either reject some scale-
up requirements or migrate some applications [14] out of theover-
loaded host. Migration is often disruptive, so if the conflict is tran-
sient, it is not cost-effective to do this. Moreover, it is often too
late to trigger the migration on a conflict since the migration might
take a long time to finish when the host is already overloaded.Our
approach achievespredictive migration, which can start the migra-
tion before the conflict happens to minimize the impact of migra-
tion to both migrated and non-migrating applications. CloudScale
uses conflict prediction and resolution inference to decidewhether
a migration should be triggered, which application(s) should be mi-
grated, and when the migration should be triggered.

We make the following contributions in this paper:

• We introduce a set of intelligent schemes to reduce SLO vi-
olations in a prediction-driven resource scaling system.

• We show how using both adaptive padding and fast under-
estimation error correction minimizes the impact of under-
estimation errors with low resource waste.

• We evaluate how well predictive migration resolves scaling
conflicts with minimum SLO impact.

• We demonstrate how combining resource scaling with CPU
voltage and frequency scaling can save energy without af-
fecting application SLOs.

The rest of the paper is organized as follows. Section 2 presents
the system design of CloudScale. Section 3 presents the experi-
mental results. Section 4 compares our work with related work.
Section 5 discusses the limitations and future work. Finally, the
paper concludes in Section 6.

2. CLOUDSCALE DESIGN
In this section, we present the design of CloudScale. First,we

provide an overview of our approach. Then, we introduce the sin-
gle VM scaling algorithms that can efficiently handle runtime pre-
diction errors. Next, we describe how to resolve scaling conflicts.
Finally, we describe the integrated VM resource scaling andCPU
frequency and voltage scaling for energy saving.

2.1 Overview
CloudScale runs within each host in the cloud system, and is

complementary to the resource allocation scheme that handles coarse-
grained replicated server capacity scaling [30, 38, 9]. CloudScale
is built on top of the Xen virtualization platform. Figure 2 shows
the overall architecture of the CloudScale System.

CloudScale useslibxenstatto monitor guest VM’s resource us-
age from domain 0. The monitored resource metrics include CPU
consumption, memory allocation, network traffic, and disk I/O stat-
ics. CloudScale also uses a small memory monitoring daemon

Figure 2: The CloudScale system achitecture.

within each VM to get memory usage statistics (through the/proc
interface in Linux). Measurements are taken every 1 second.We
use external application SLO monitoring tools [11] to keep track of
whether the application SLO is violated. CloudScale currently sup-
ports CPU and memory resource scaling. The CPU resource scal-
ing is done by adjusting the CPU cap using the Xen credit sched-
uler [8] that runs in the non-work-conserving mode (i.e., a domain
cannot use more than its share of CPU). The memory resource scal-
ing is done using Xen’ssetMemoryTargetAPI.

The resource usage time series are fed into an online resource de-
mand prediction model to predict the short-term resource demands.
CloudScale uses the online resource demand prediction model de-
veloped in our previous work [24]. It uses a hybrid approach that
employs signature-driven and state-driven prediction algorithms to
achieve both high accuracy and low overhead. The model first em-
ploys a fast Fourier transform (FFT) to identify repeating patterns
called signatures. If a signature is discovered, the prediction model
uses it to estimate future resource demands. Otherwise, thepre-
diction model employs a discrete-time Markov chain to predict the
resource demand in the near future.

The prediction error correctionmodule performsonline adap-
tive paddingthat adds a dynamically determined cushion value to
the predicted resource demand in order to avoid under-estimation
errors. Thereactive error correctioncomponent detects and cor-
rects under-estimation errors that are not prevented by thepadding
scheme. The result is an initial resource cap for each application
VM.

The resource usage time series are also fed into ascaling conflict
predictioncomponent. CloudScale decides to trigger VM migra-
tions or resolve scaling conflicts locally in theconflict resolution
component. Thelocal conflict handlingcomponent adjusts the ini-
tial resource caps for different VMs according to their priorities
when the sum of the initial resource caps exceed the capacityof the
host. Themigration-based conflict handlingcomponent decides
when to trigger VM migration and which VM to migrate.

The predictive frequency and voltage scalingmodule takes the
resource cap information to derive the minimum CPU frequency
and voltage that can support all the VMs running on the host. The
cap adjustmentcomponent then calculates the final resource cap
values based on the ratio between the new CPU frequency and the
old CPU frequency.

In the rest of this section, we will provide details about each
major system module.

2.2 Prediction Error Correction
CloudScale incorporates both proactive and reactive approaches

to handle under-estimation errors. In this section, we present the
online adaptive padding and under-estimation correction schemes.
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Figure 3: Padding values decided according to the extracted
burst pattern.

2.2.1 Online Adaptive Padding
CloudScale uses an online adaptive padding scheme to avoid

under-estimation errors by adding a small extra value to thepre-
dicted resource demand. If we pad too little, we might still en-
counter under-estimation errors; if we pad too much, we might
have unnecessary resource waste. Our approach is based on the ob-
servation that under-estimation errors are often caused byresource
usage bursts. Thus, we choose the padding value based on the re-
cent burstiness of application resource usage and recent prediction
errors.

Burst-based padding. We employ signal processing techniques
to extract theburst patternand use it to calculate the padding value,
illustrated by Figure 3. Suppose we want to decide the padding
value for timet. We examine a window of recent resource us-
age time seriesL = {lt−Wa , ..., lt−1} (e.g.,Wa=100). We use a fast
Fourier transform (FFT) algorithm to determine the coefficients
that represent the amplitude of each frequency component. We con-
sider the topk (e.g., 80%) frequencies in the frequency spectrum as
high frequencies. We then apply reverse FFT over the high fre-
quency components to synthesize the burst pattern. Since the goal
of padding is to avoid under-estimation errors, we only consider the
positive values.

Next, we calculate aburst densitymetric, which is the number of
positive values in the extracted burst pattern. The burst density re-
flects how often bursts appear in recent application resource usage.
If the burst density is high (e.g., larger than 50%), CloudScale uses
the maximum of all burst values as the padding value. Otherwise,
CloudScale uses a smaller burst value (e.g., 80th percentile of the
burst values) as the padding value to avoid over-padding. Figure 3
shows the padding values decided according to the extractedburst
pattern, withWa = 100 seconds. The padding values are higher
when the application’s CPU usage is bursty, and are smaller when
the usage becomes stable.

Remedial padding. With padding, the scaling system can ob-
serve when the real resource demand is higher than the unpadded
predicted value. We can learn from recent prediction errorsto avoid
under-estimation errors in the future. Lete1, ...,ek denote a set of
recent prediction errors. We calculateei asxi −x′i , wherexi andx′i
denote the predicted value and the observed resource demandre-
spectively andxi < x′i . Since the goal of the remedial padding is
to make up for recent resource under-provisioning, we only con-
sider under-estimation errors, i.e.ei < 0. Thus, we setei = 0 if
ei > 0. We then calculate a weighted moving average (WMA) of
those prediction errorsWMA(e1, ...ek). The scaling system com-

pares|WMA(e1, ...ek)| with the padding value calculated from the
burst pattern, and picks the larger one as the padding value.

2.2.2 Fast Under-estimation Correction
We wish to detect and correct under-estimation errors as soon

as possible since the application will suffer SLO violationduring
resource under-provisioning. The key problem is that the real re-
source demand is unknown during under-provisioning: we only
have a lower bound. Thus, we have to guess the right resource
allocation.

One simple solution is to immediately raise the resource cap
to the maximum possible value (i.e., all residual resourceson the
host). This will cause excessive resource waste, and a lot ofscal-
ing conflicts when we perform concurrent scaling for multiple co-
located applications. Instead, CloudScale raises the resource cap
by multiplying the current resource cap by a ratioα > 1 until the
under-estimation error is corrected. CloudScale divides time into
steps. The length of each step is 1 second. If the resource cap for
the current step isx, the resource cap afterk steps will bex×αk.
It is possible that this scheme will cause some over-provisioning.
However, since CloudScale is driven by a prediction model, the re-
source cap will be corrected when the prediction model catches up
and learns the real demand of the application.

The value ofα denotes the tradeoff between the under-estimation
correction speed and the resource waste. When we use a largerα,
the system raises the cap faster but may over-provision resources
by a larger margin and reduce the resources that are available to
other collocated applications. Thus, CloudScale dynamically de-
cides the scale-up ratio by mapping the resource pressure and ap-
plication SLO feedback toα according to the severity of the under-
estimation error. The resource pressureP (0≤ P≤ 1) denotes the
ratio of resource usage to the resource cap. The SLO feedbackis
the feedback from the applications about the SLO conformance.

We defineαmin andαmax as the minimum and maximum scale-
up ratios we want to use in the system, which can be tuned by the
cloud provider. For example, we setαmin = 1.2 andαmax= 2 for
CPU scaling, andαmin = 1.1 andαmax= 1.5 for memory scaling.
αmin is the minimum scale-up granularity we want to achieve dur-
ing the under-estimation correction.αmax is tuned so that we can
scale up to the maximum resource cap in two or three steps. We
use smallerαmin andαmax for memory scaling, because the appli-
cation reacts to the memory scale-up slower than CPU, and scaling
up memory too quickly will cause resource waste. LetP denote the
current resource pressure. We will trigger under-estimation han-
dling whenP exceeds a certain thresholdPunder (e.g.,Punder= 0.9).
We calculateα as:

α =
P−Punder

1−Punder
· (αmax−αmin)+αmin (1)

CloudScale currently uses a static pre-defined resource pressure
threshold (90% or 75%). According to [45], the threshold actually
varies with different workloads and different SLO requirements. A
more intelligent way to determine the resource pressure threshold is
to learn from the application workload type and the SLO feedback,
which is part of our on-going work.

The mapping from application SLO feedback toα can be ap-
plication specific. For example, when the SLO feedback is the
request-response time, we can calculateα as:

α = 1+Nvio/N (2)

Nvio denotes the number of requests that have a response time
larger than the SLO violation threshold, andN denotes the total



number of requests during the previous sampling period (e.g., 1
second). For Hadoop applications, the SLO feedback can be job
progress scores. We calculateα as 1+(Pre f −P)/Pre f , wherePre f
denotes the desired progress score derived from the target comple-
tion time of the job, andP denotes the current progress score.

When both resource pressure and SLO feedback are available,
CloudScale chooses the larger one as the finalα.

2.3 Scaling Conflict Handling
In this section, we describe how we handle concurrent resource

scaling for multiple co-located applications. The key issue is to
deal with scaling conflicts when the available resources areinsuffi-
cient to accommodate all scale-up requirements on a host. Wefirst
describe how to predict the conflict. Then we introduce the local
conflict handling and migration-based conflict handling schemes.
Finally we describe the policy of choosing different conflict han-
dling approaches.

2.3.1 Conflict Prediction
We can resolve a scaling conflict by either rejecting some ap-

plications’ scale-up requirements or employing VM migration to
mitigate the conflict. Both approaches will probably cause SLO vi-
olations, but we try to minimize these. We use a conflict prediction
model to estimate 1) when the conflict will happen, 2) how serious
the conflict will be, and 3) how long the conflict will last.

We leverage our resource demand prediction schemes for con-
flict prediction, looking further into the future. The scaling system
maintains a long-term resource demand prediction model foreach
VM. Different with the prediction model used by the resourcescal-
ing system, which uses 1-second prediction interval, the long-term
prediction model uses 10-second prediction interval in order to pre-
dict further into the future. We useWb to denote the length of the
look-ahead window of the long-term prediction model (e.g.,Wb =
100 seconds). Suppose a host runs K application VMs:m1,...,mK.
Let {r i,t+1, ...r i,t+Wb} denote predicted future resource demands on
the mi from time t + 1 to t +Wb. We can then derive the total re-

source demand time series on the host as{
K
∑

i=1
r i,t+1, ...

K
∑

i=1
r i,t+Wb}.

By comparing this total resource demand time series with thehost
resource capacityC, we can estimate when a conflict will happen

(i.e.,
K
∑

i=1
r i,t1 >C, t1 denotes the conflict start time), how serious the

conflict will be (i.e., theconflict degree:
K
∑

i=1
r i,t1 −C), and how long

the conflict will last.

2.3.2 Local conflict handling
If the conflict duration is short and the conflict degree is small,

we resolve the scaling conflict locally without invoking expensive
migration operations. We defineSLO penaltyas the financial loss
for the cloud provider when applications experience SLO viola-
tions, and we useRPi (Resource under-provisioning Penalty) to de-
note the SLO penalty for the application VMmi caused by one unit
resource under-provisioning.

Using local conflict handling, we need to consider how to dis-
tribute the resource under-provisioning impact among different ap-
plications. CloudScale supports both uniform and differentiated
local conflict handling. In the uniform scheme, we set the resource
cap for each application in proportion to its resource demand. Sup-
pose the predicted resource demand for the application VMmi is

r i . We set the resource cap formi as (r i/
K
∑

i=1
r i) ·C, whereC de-

notes the total resource capacity on the host. In the differentiated

scheme, CloudScale allocates resources based on application pri-
orities or resource under-provisioning penalties (RPi) of different
applications in order to minimize the total penalty. For example,
when the VMs have different priorities, CloudScale strivesfirst to
satisfy the resource requirements of high-priority applications and
only share the under-provisioning impact among low priority appli-
cations. CloudScale first ranks all applications accordingto their
priorities, and decides the resource caps of different applications
based on the priority rank. If the application’s resource demand
can be satisfied by the residual resource, CloudScale will allocate
the required resource to the application. Otherwise, CloudScale al-
locates the residual resources to all the remaining applications in
proportion to their resource demands. We can apply a similardif-
ferentiated allocation scheme whenRPi is used to rank different
applications.

We estimate the total SLO penalty formi based on the conflict

prediction results as
t2
∑

k=t1
RPi ·ei,t+k, wheret1 andt2 denote the con-

flict start and end time, andei,t+k denotes the under-estimation er-
ror at timet +k. We aggregate the SLO penalties of all application
VMs to calculate the total resource under-provisioning penalty QRP
using the local conflict handling scheme.

2.3.3 Migration-based conflict handling
If we decide to resolve the scaling conflict using VM migra-

tion, we first need to decide when to trigger the migration. We
observe that Xen live migration is CPU intensive. Without proper
isolation, the migration will cause significant SLO impact to both
migrated and non-migrating applications on both source anddes-
tination hosts. Furthermore, without sufficient CPU, the migration
will take a long time to finish, which will lead to a long service
degradation time. It is often too late to trigger the migration after
the conflict already happened and the host is already overloaded.
To address the problem, we usepredictive migration, which lever-
ages the conflict prediction to trigger migration before theconflict
happens. If we want to trigger migrationI (e.g., I = 70s) before
the conflict happens, the migration-based conflict handlingmod-
ule will check whether any conflict that needs to be resolved using
migration will happen after timet + I , wheret denotes the current
time. If positive, the module will trigger the migration nowat time
t rather than wait until the conflict happens later after timet + I .

To avoid triggering unnecessary migrations for mis-predicted or
transient conflicts, the migration will be triggered only ifthe con-
flict is predicted to last continuously for at leastK seconds. The
value of K denotes the tradeoff between correct predictions and
false alarms, and can be tuned by the cloud provider. Typically we
setK = 30s, which corresponds to three consecutive predicted con-
flicts using a 10-second prediction interval. As a future work, we
will make K a function of the migration lead timeI and the VM
migration time. We may use largerK for longer migration lead
time since it will be more likely to have false alarms given a longer
migration lead time. For VMs that have longer migration time, we
want to avoid unnecessary migrations by using a largerK for lower
false alarm rate.

Next, we need to decide which application VMs should be mi-
grated. Since modern data centers usually have high speed net-
works, the network cost for migration typically is not the major
concern. Instead, our scheme focuses on i) migrating as few VMs
as possible, and 2) minimizing SLO penalty caused by migrations.
Similar to previous work [41], we consider a normalized SLO penalty
metric:Zi = MPi ·Ti/(w1 ·cpui +w2 ·memi), whereMPi (Migration
Penalty) denotes the unit SLO penalty for the application VMmi



during the migration1; Ti denotes the total migration time formi ;
cpui andmemi denote the normalized CPU and memory utilization
of the application VMmi compared to the capacity of the host. The
weightsw1 andw2 denote the importance of the CPU resource or
the memory resource in our decision-making. We can give a higher
weight to the bottleneck resource that has lower availability. For
example, if the host is CPU-overloaded but has plentiful memory,
w1 can be much larger thanw2 so that we will choose a VM with
high CPU consumptions to release sufficient CPU resource. In-
tuitively, if the application has low SLO penalty during migration
and high resource demands, we want to migrate this application
first since the migration imposes low SLO penalty to the migrated
application and can release a large amount of resources to resolve
conflicts. We sort all application VMs using the normalized SLO
penalty metric, and start to migrate the application VMs from the
one with the smallest SLO penalty until sufficient resourcesare re-
leased to resolve the conflicts.

Finally, we need to decide which host the selected VM should be
migrated to. CloudScale relies on a centralized controllerto select
the destination host for the migrated application. For example, we
can use a greedy algorithm to migrate the VMs to the least loaded
host that can accommodate the VM [41], or we can find a suitable
host by matching the resource demand signature of the VM with
the residual resource signature of the host [23].

We calculate the SLO penalty for migratingmi asMPi ·Ti . In
our current implementation, we estimate the migration timeusing
a linear function of average memory footprint. The functionis de-
rived from a few measurement samples using linear regression. We
can then aggregate the SLO penalties of all migrated VMs to derive
the total migration penaltyQM using the migration-based conflict
handling scheme.

2.3.4 Conflict Resolution Inference
CloudScale currently decides whether to trigger migrationby

comparingQRP andQM . If QRP ≥ QM , CloudScale will not mi-
grate any application VM and resolve the scaling conflict using the
local conflict handling scheme. Otherwise, CloudScale migrates
selected VMs out until sufficient resources are released to resolve
the conflict. As a future work, we can also adopt a hybrid ap-
proach that combines both local conflict handling and migration-
based conflict handling to minimize the total SLO penaltyQRP+
QM . We can estimate the total SLO penaltyQRP+ QM of migrat-
ing different subsets of VMs, and choose the migrated subsetthat
minimizes the total SLO penalty.

The unit SLO penalty valuesRPi and MPi are application de-
pendent. We assume that these are provided to CloudScale by
the user. Typically, batch processing applications (e.g.,long run-
ning MapReduce jobs) are more tolerant of short periods of ser-
vice degradation than time-sensitive interactive applications such
as Web transactions.

2.4 Predictive Frequency/Voltage Scaling
CloudScale integrates VM resource scaling with dynamic volt-

age and frequency scaling (DVFS) to transform unused resources
into energy savings without affecting application SLOs. For ex-
ample, if the resource demand prediction models indicate that the
total CPU resource demand on a host is 50%, we can then half
the CPU frequency and double the resource caps of all application
VMs. Thus, we can reduce energy consumption since the CPU runs
at a slower speed but the application’s SLO is unaffected. Another

1Although Xen live migration shortens the VM downtime, the ap-
plication may experience a period of high SLO violations dueto
the memory copy.

way of saving energy is to let the application run as fast as possible
and then shutdown the machine. However, the host in the multi-
tenant cloud system often runs some interactive foregroundjobs
that are expected to operate 24x7. Thus, we believe that slowing
down the CPU is a more practical solution in this case.

Modern processors often can run at a range of frequencies and
voltages and support dynamic frequency/voltage scaling. Suppose
the host processor can operate atk different frequencies:f1 < ... <
fk and the current frequency isfi . For example, the processor in our
experimental testbed supports 11 different frequencies. We want to
slow down the CPU based on the current resource cap information
to ensure that application performance is not affected. LetC′ and
C denote the total CPU demand by all the application VMs and
the CPU capacity of the host, respectively. We can then derive
the current CPU utilization asC′/C. If the current host does not
have a full utilization (i.e.,C′/C < 1) and the current frequency
fi is not the lowest, CloudScale picks the lowest frequencyf j that
meets the condition:f j ≥ C′/C · fi. If f j < fi , we scale down the
CPU frequency tof j . We then multiply the resource caps for all
application VMs by fi/ f j to maintain the application SLOs. To
maintain the accuracy of the resource demand prediction, wealso
need to scale up the stored resource demand training data byfi/ f j
to match the new CPU frequency.

If the processor is not running at the highest frequency, we can
increase the CPU speed to try to resolve scaling conflicts. For ex-
ample, if the future CPU demand is predicted to beC′,C′ > C and
the current frequency isfi , we will scale up the CPU frequency to
the slowest onef j among fi+1, ... fk such thatf j/ fi > C′/C. After
we set the CPU frequency tof j , we will scale down the resource
capr i for each application VM tor i · ( fi/ f j ) to match the new CPU
frequency. After we reach the highest frequency, we will resort to
either local conflict handling or migration-based conflict handling,
as described in the previous section.

3. EXPERIMENTAL EVALUATION
We implemented CloudScale on top of the Xen virtualization

platform and conducted extensive evaluation studies usingthe RU-
BiS [4] online auction benchmark (PhP version), Hadoop MapRe-
duce systems [2, 15], and IBM System S data stream processing
system [21]. This section describes our results.

3.1 Experiment setup
Most of our experiments were conducted in the NCSU’s Virtual

Computing Lab (VCL) [6]. Each VCL host has a dual-core Xeon
3.00GHz CPU, 4GB memory and 100Mbps network bandwidth,
and runs CentOS 5.2 64bit with Xen 3.0.3. The guest VMs also
run CentOS 5.2 64bit and have one virtual CPU core (the small-
est scheduling unit in Xen hypervisor, similar to the task inLinux
kernel).

The integrated VM scaling and DVFS experiments were con-
ducted on the Hybrid Green Cloud Computing (HGCC) cluster in
our department since VCL hosts are not equipped with power me-
ters. Each HGCC node has a quad-core Xeon 2.53GHz processor,
8GB memory and 1Gbps network bandwidth, and runs CentOS 5.5
64 bit with Xen 3.4.3. The processor supports 11 frequency steps
between 2.53 and 1.19Ghz. We used Watts Up power meters to get
real time power readings from HGCC hosts. The guest VM OS is
the same with the VCL host. We use Intel SpeedStep technologyto
perform DVFS. We run our systems on DVFS enabled Linux 2.6.18
kernel and control the CPU frequency from the host OS using the
Linux CPUfreq subsystem.

In all of our experiments, we pin down Domain 0 to one core and
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Figure 4: The real uncapped CPU demand of the RUBiS web-
server under two different workloads.
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Figure 5: Folded cumulative distribution of CPU resource de-
mand prediction errors for two different workloads. The lef t
half is a normal CDF using the y-axis scale on the left; the right
half, using the scale on the right, is the reflected upper halfof
the CDF.

run all guest VMs on another core. CloudScale runs within Domain
0.

CloudScale performs fine-grained monitoring by frequentlysam-
pling all resource metrics and repeatedly updates the resource de-
mand prediction model using a number of recent resource usage
samples. The resource scaling period, the sampling period,pre-
diction model update period, and training data size are all tunable
parameters. For CPU scaling, CloudScale uses a 1 second scaling
and sampling period, 10 second prediction model update period,
100 recent resource usage samples as training data for the short-
term resource demand prediction model, and 2000 recent resource
usage samples as training data for the long-term conflict prediction
model. For memory scaling, the default setup is the same as CPU
scaling except that the scaling period is 10 seconds, and thetraining
data set for short-term resource demand prediction model contains
1000 recent resource usage samples. We found that the default set-
tings work well for all of the applications used in our experiments.

A service provider can either rely on the application itselfor an
external tool [11] to keep track of whether the application SLO is
violated. In our experiments with RUBiS and IBM System S, we
adopted the latter approach, using the workload generator to track
the response time of the HTTP requests it made or the processing
day of each stream data tuple. In RUBiS, the SLO violation rate
is the fraction of requests that have response time larger than the
pre-defined SLO threshold (200 ms) during each experiment run.

Scheme
Prediction
Error Correction

Online
Adaptive Padding

Correction Resource pressure none
Dynamic padding none Dynamic
Padding-X% none Constant X%
CloudScale RP Resource pressure Dynamic

CloudScale RP + SLO
Resource pressure
+ SLO feedback Dynamic

Table 1: Configurations of different schemes.

In System S, the SLO violation rate is the fraction of data tuples
that have processing delay larger than the pre-defined SLO thresh-
old (20 ms). In Hadoop experiments, we used the progress score
provided by the Hadoop API as the SLO feedback, and transform
the target job completion time into the desired progress score. The
SLO violation rate is sampled every second in RUBiS and System
S. In Hadoop, since calling the Hadoop API to get the progress
score will take a long time (> 1 minute) to return, we try to getthe
updated progress score as fast as possible by calling the APIagain
immediately after getting the returned value.

To evaluate CloudScale under workloads with realistic timevari-
ations, we used per-minute workload intensity observed in real-
world Web traces [5] to modulate the request rate of the RUBiS
benchmark and the input data rate to the System S stream process-
ing system. We constructed two workload time series: 1) the re-
quest rate observed in each minute of the six-hour World Cup 98
web server trace starting at 1998-05-05:00.00; and 2) the request
rate observed in each minute of the six-hour EPA web server trace
starting at 1995-08-29:23.53.

For comparison, we also implemented a set of alternative schemes
and several variations of the CloudScale system, summarized in Ta-
ble 1: 1)Correction: the scaling system performs resource pressure
triggered prediction error correction only; 2)Dynamic padding:
the scaling system performs dynamic padding only; 3)Padding-
x%: the scaling system performs a constant percentage paddingby
adding x% predicted value; 4)CloudScale RP: the scaling system
performs both dynamic padding and scaling error correction, and
the scaling error correction is only triggered by resource pressure;
and 5)CloudScale RP+SLO: the scaling system performs both dy-
namic padding and scaling error correction, and the scalingerror
correction is triggered by both resource pressure and SLO feed-
back.

3.2 Results
Figure 4 shows thereal CPU demand(the CPU usage achieved

with no resource caps) for the RUBiS Web server under two test
workload patterns. Both workloads have fluctuating CPU demands.
We focus on CPU resource scaling in RUBiS experiments since it
appears to be the bottleneck in this application.

Figure 5 shows the accuracy of online resource demand pre-
diction using folded cumulative distributions. The results show
that the resource demand prediction makes less than 5% significant
under-estimation or over-estimation errors (i.e.,|e| > 10%) for the
World Cup workload and about 10% significant under-estimation
or over-estimation errors for the EPA workload.

We conducted experiments for both single VM and multiple VMs.
For single VM case, the VM hosts a RUBiS web server. For the
multi-VM case, there were two VMs running on the same physical
host, each hosting a RUBiS Web server driven by the World Cup
workload and the EPA workload respectively. The database servers
run on different physical hosts. During the multi-VM scaling ex-
periment, all the VMs have equal priority.
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Figure 6: Performance comparison for different prediction-based scaling algorithms, maintaining 90% resource pressure. The left
figure shows the mean SLO violation rate of the RUBiS system under the World Cup 98 workload, the EPA workload, and both
workloads. The middle figure shows the mean request-response time of RUBiS system under different workloads. The right figure
shows the total CPU allocation to the application VMs under different workloads.
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Figure 7: Performance comparison for CloudScale and constant padding algorithms, maintaining 90% resource pressure.The left
figure shows the mean SLO violation rate of the RUBiS system under the World Cup 98 workload, the EPA workload, and both
workloads. The middle figure shows the mean request-response time of RUBiS system under different workloads. The right figure
shows the total CPU allocation to the application VMs under different workloads.

Figure 6 and Figure 7 show the performance and total CPU al-
locations of different scaling schemes. In these experiments, the
resource pressure threshold to trigger under-estimation error cor-
rection is set at 90% and the SLO triggering threshold is set at 5%
requests experience SLO violation (i.e., response time> 200ms).
The total CPU allocation is calculated based on the resourcecap set
by different schemes. Each experiment is repeated three times and
we report both mean and standard deviations.

Figure 6 shows that CloudScale can achieve lower SLO viola-
tion rate and smaller response time than other schemes. Bothreac-
tive correction and dynamic padding when used alone can partially
alleviate the problem. But dynamic padding works better forthe
World Cup workload, while the reactive correction works better for
the EPA workload, because the EPA workload shows more fluctu-
ations and reactive correction becomes more important. We also
observe that runtime SLO feedback is helpful, but not vital,for
CloudScale to reduce SLO violations. CloudScale also achieves
better performance than other schemes in the multi-VM concurrent
scaling case.

Figure 7 shows the performance comparison between Cloud-
Scale with different constant padding schemes. The resultsshow
that if we pad too little (e.g., padding-10%), we have high SLO vi-
olations and if we pad too much (e.g., padding-50%), we have low
SLO violation rate but at high resource cost. When the resource al-
location reaches a certain threshold, more padding does notreduce
the response time and SLO violation rate much. More importantly,
it is hard to decide how much to pad in advance if we use constant
padding schemes. In contrast, CloudScale does not need to specify

the padding percentage, and is able to adjust the padding during
runtime automatically.

We learned from our experiments that the prediction-only scheme
performs poorly without under-estimation correction and padding,
which is not shown in the figures. The reason is that the prediction
model cannot get the real resource demand when under-estimation
error happens, and can only learn the distorted demand values.
Since the application cannot consume more resources than the re-
source cap, once the resource cap is pushed down, it will not be
raised anymore. In this case, the scaling system will predict and al-
locate less and less resources, and the application will suffer from
severe resource under-provisioning.

Figure 8 and Figure 9 shows the results of the same set of ex-
periments but with the resource pressure threshold set at 75%. The
SLO violation rates are consistently lower for all algorithms when
compared to the 90% resource pressure threshold cases. Notethat
CloudScale RP+SLO achieves much better performance in thiscase.
That is because CloudScale RP+SLO considers both resource pres-
sure and SLO feedback. Moreover, since the SLO triggering thresh-
old is set at 5%, and we derive the scale-up ratioα using equation
2, α derived from SLO feedback is typically very small and the
resource pressure feedback becomes the dominant factor in trig-
gering scaling error corrections. We can see that CloudScale still
achieves the best application performance with low resource cost.
The benefit of CloudScale is more significant for EPA trace, achiev-
ing much lower SLO violations and smaller response time thanthe
generous constant padding scheme “padding-50%” but with a sim-
ilar resource cost. The reason is that the EPA trace is very bursty
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Figure 8: Performance comparison for different prediction-based scaling algorithms, maintaining 75% resource pressure. The left
figure shows the mean SLO violation rate of the RUBiS system under the World Cup 98 workload, the EPA workload, and both
workloads. The middle figure shows the mean request-response time of RUBiS system under different workloads. The right figure
shows the total CPU allocation to the application VMs under different workloads.
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Figure 9: Performance comparison for CloudScale and constant padding algorithms, maintaining 75% resource pressure.The left
figure shows the mean SLO violation rate of the RUBiS system under the World Cup 98 workload, the EPA workload, and both
workloads. The middle figure shows the mean request-response time of RUBiS system under different workloads. The right figure
shows the total CPU allocation to the application VMs under different workloads.

and intelligent handling of under-estimation plays a critical role in
this case.

Figure 10 shows the energy saving effectiveness of the predic-
tive CPU scaling. We repeated the same RUBiS experiments as the
CloudScale RP+SLO scheme on the HGCC cluster, and set the re-
source pressure threshold as 90%. We ran each experiment for6
hours and measured the total energy consumption for both Cloud-
Scale without DVFS and with DVFS. Without DVFS, the CPU runs
at the maximum frequency. The idle energy consumption is mea-
sured when the host is idle and stays at its lowest power state. The
workload energy consumption is derived by subtracting the idle en-
ergy consumption from the total energy consumption. The results
show that CloudScale with DVFS enabled (CloudScale DVFS) can
save 8-10% total energy consumption, and 39-71% workload en-
ergy consumption with little impact to the application performance
and SLO conformance. We also observe that compared to the work-
load energy consumptions, the idle energy consumptions aredom-
inating in all cases. This is because all HGCC hosts are powerful
quad-core machines and each experiment run only uses two cores:
one core for the application VM and one core for Domain 0. We be-
lieve that CloudScale DVFS can achieve higher total energy saving
when more cores are utilized.

We now evaluate our conflict handling schemes. We run two
RUBiS web server VMs on the same host, and maintain a 75% re-
source pressure with dynamic padding. The local conflict handling
uses the uniform handling policy that treats the two VMs uniformly.
The memory size of VM1 is 1GB, and the memory size of VM2 is

2GB, so the migration time of VM2 is much longer than VM1. We
sample the SLO violation rate every second for both VMs, and cal-
culate the total time that the application experiences different SLO
violation rates. Figure 11(a) shows the SLO violation time under
the local conflict handling scheme. We can see that when conflict
happens, both VMs suffer from high SLO violation rates for a long
period of time. The total time that both VMs experience SLO viola-
tions adds up to 351 seconds. We then evaluate the migration-based
conflict handling schemes. We first test with the reactive migration
scheme where the scaling system triggers the live migrationto mi-
grate VM2 out after it detects a sustained scaling conflict using the
algorithm proposed in [41]. In Figure 11(b), we can see that the
migration reduces the SLO violation time significantly. Thetotal
time of having SLO violations becomes 92 seconds. However, the
live migration still takes a long time to finish when the system is
overloaded and both non-migrating and migrated VMs experience
significant SLO violations during the migration. We then enable the
CloudScale’s VM selection algorithm that selects the migrated VM
based on the normalized SLO penalty metric. In this experiment,
we used equal weights for CPU and memory. We setRP1 = RP2 = 1
andMP1 = MP2 = 8 (RP1 andRP2 denote the unit resource under-
provisioning penalties for VM1 and VM2 respectively;MP1 and
MP2 denote the unit migration penalty for VM1 and VM2 respec-
tively). We tried different ratios betweenMP andRP, and find that
settingMP/RP= 8 provides a reasonable tradeoff between local
conflict resolving and migration. The migration time is estimated
using the regression-derived function shown by Figure 14. In this
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Figure 10: Effect on energy consumption and applica-
tion performance of RUBiS application using predictive fre-
quency/voltage scaling (maintaining 90% resource pressure).

case, the system selects VM1 instead of VM2 to migrate out. From
Figure 11(c) we can see that although the total SLO violationdura-
tion is similar to the previous case (90 seconds), the SLO violation
rates are much smaller.

We then repeat the same experiment using CloudScale’s conflict
handling scheme. The predictive migration triggers the migration
of VM1 about 70 seconds before the conflict happens. From Fig-
ure 11(d) we can see that the live migration can finish in a short pe-
riod of time and both VMs experience shorter SLO violation time.
The total SLO violation duration is reduced to 60 seconds.

Figure 12 shows the cumulative percentage of continuous SLO
violation duration under different SLO violation rates. When re-
solving the conflict locally, more than 10% of the violation dura-
tions are longer than 5 seconds. Using reactive migration, less than
5% of the SLO violation durations are more than 5 seconds, but
the application can still experience up to 19 seconds of continuous
SLO violations. After enabling our VM selection algorithm,the
maximum continuous SLO violation time becomes 4 seconds. In
contrast, when using CloudScale’s conflict handling scheme, the
continuous SLO violation durations are always less than 2 seconds,
and 90% of the continuous SLO violation durations are only 1 sec-
ond.

Figure 13 shows the cumulative percentage of SLO violation
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Figure 11: Time series of SLO violation rate for different scal-
ing conflict resolving schemes.

rates using different scaling conflict schemes. When using Cloud-
Scale’s conflict handling scheme, the application does not experi-
ence any SLO violation for 94% of the time, and the SLO violation
rate is less than 20% for 99% of the time. All of the other schemes
incur higher SLO violation rates than CloudScale.

To measure the accuracy of our conflict prediction algorithms,
we used six hours of CPU demand traces for two RUBiS web
servers used in previous experiments for different scalingschemes.
We first mark the start time of all significant conflicts, then use our
conflict prediction algorithms to predict the conflict within differ-
ent time windows. By comparing predicted conflicts with truecon-
flicts, we calculate the number of true positive predictions(Ntp): the
conflicts that are predicted correctly; the number of false-negative
predictions (Nfn): the conflicts that were not predicted; the num-
ber of false-positive predictions (Nfp): the predicted conflicts that
did not happen; and the number of true-negative predictions(Ntn):
the non-conflicts that are predicted correctly. The true positive
rateAT and false alarm rateAF are defined in a standard way as
AT = Ntp/(Ntp +Nfn); AF = Nfp/(Nfp +Ntn). Figure 15 shows the
true positive and false positive rate of our conflict prediction algo-
rithms under different migration lead time requirements. As ex-
pected, the prediction accuracy decreases with a longer migration
lead time (i.e., triggering migration earlier). However, since predic-
tive migration is triggered before conflict happens, the SLOimpact
of false alarms is small. We plan to further improve the accuracy of
the conflict prediction algorithm in our future work.

We then apply the scaling system to a Hadoop MapReduce ap-
plication. Unlike RUBiS, the Hadoop application is memory in-
tensive, so we focus on memory scaling in this set of experiments.
We used the Word Count and Grep MapReduce sample applica-
tions. One VM holds all the map tasks while another VM holds
all the reduce tasks. The number of slots for map tasks or reduce
tasks is set to 2 on both nodes. Figure 16 shows the real memory
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Figure 12: CDF of continuous SLO violation duration (when
SLO violation rate is larger than 20%) comparison among dif-
ferent scaling conflict resolving schemes for the RUBiS system.
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Figure 13: CDF of SLO violation rate comparison among dif-
ferent scaling conflict resolving schemes for the RUBiS system.

demand (the memory footprint achieved with no memory cap) of
the VM hosting map tasks. We can see that the memory footprint
of the VM fluctuates a lot. The peak memory footprint of word
count is 591MB, and the peak memory footprint of grep is 579MB.
Without scaling, we have to perform memory allocation basedon
the maximum memory footprint, which will cause memory waste.
Moreover, it is hard to get the maximum memory footprint in ad-
vance. We apply predictive memory scaling on Hadoop. Figure17
shows the prediction accuracy of memory scaling. As with CPU,
CloudScale can achieve good prediction accuracy for memory.

Figure 18 shows the job completion time and average memory
caps of different scaling schemes. Since the progress scoreof map
tasks is more accurate than that of reduce tasks, we only performed
memory scaling on the map VM and the reduce VM is always given
sufficient memory. The resource pressure threshold is set as90%.
We observe that CloudScale can achieve the shortest job comple-
tion time with low memory cap. We use “mean” to denote the
static memory allocation scheme that allocates a fixed amount of
memory based on the average memory footprint in the real mem-
ory demand trace. The results show that this static scheme works
poorly, which significantly increases the job completion time: the
system spends a long time on swapping memory pages when more
memory is needed. In contrast, CloudScale does not know the exact
memory demand in advance, but still achieves better performance.
The effect of progress score feedback is not significant. As men-
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Figure 14: Migration time estimation model. The model is a
linear regression of the sample data we got by measuring the
migration time of the VMs with different memory sizes. We
also put the real data that we observed in the experiments to
show the accuracy of the model.
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Figure 15: Conflict prediction accuracy under different migra-
tion lead time requirements.

tioned before, calling the Hadoop API to get the progress score will
take a long time (10 to 60 seconds) to return, especially whenthe
node is busy with memory page swapping. When the application
is suffering from resource under-provisioning, CloudScale cannot
trigger under-estimation handling in time because it cannot get the
SLO feedback immediately.

We now evaluate CloudScale on IBM System S, a production
data stream processing system. We run one of the sample applica-
tions provided by System S. It is a tax calculation application that
takes commodity records including commodity name, seller,price,
quantity and state as the input stream tuples and calculatesthe fi-
nal price for each tuple based on the tax rates of different states.
We used the sample data provided by the System S. To emulate
dynamic data arrivals, we used the World Cup and EPA workload
to regulate the input data rate. The average input rate is about 1
million data tuples per second. The application consists of7 dis-
tributed processing elements (PEs). We run each PE within one
VM. All VMs are deployed on different hosts. Since CloudScale
focuses on resource scaling within single host, we perform CPU
scaling on one of the PEs and always give sufficient resourcesto the
other PEs. We set the resource pressure to 90%, and measure the
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Figure 16: The memory footprint trace of the Map tasks of
Hadoop MapReduce applications.

-300 -200 -100 0 100 200 300
0

10

20

30

40

50

 

C
u

m
u

la
ti

v
e 

P
er

ce
n

ta
g

e 
(%

)

Memory Usage Prediction Error (MB)

 Word Count

 Grep

100

90

80

70

60

50

Figure 17: Folded cumulative distribution of memory resource
demand prediction errors for two different Hadoop MapRe-
duce applications. The left half is a normal CDF using the y-
axis scale on the left; the right half, using the scale on the right,
is the reflected upper half of the CDF.

per-tuple processing delay. Figure 19 shows the performance and
average CPU cap achieved by different scaling algorithms. The
results show that CloudScale can achieve much lower processing
delay than other prediction-based scaling schemes with lowCPU
caps.

We now evaluate the overhead of the CloudScale system. Ta-
ble 2 shows the CPU overhead of all the key operations in Cloud-
Scale. The results show that CloudScale is light-weight forall op-
erations. In our experiment environment, running CloudScale only
consumes about 2% CPU resource in Domain 0. Thus, we believe
that CloudScale is suitable for large-scale cloud systems.

4. RELATED WORK
Existing production cloud system scaling techniques such as Ama-

zon Auto Scaling [1] is not fully automatic, which depend on the
user to define the conditions for scaling up or down resources.
However, it is often difficult for the user to figure out the proper
scaling conditions, especially when the application will be executed
on a third-party virtualized cloud computing infrastructure.

Several projects [30, 38, 9] studied coarse-grained capacity scal-
ing scheme by dynamically adding or releasing server nodes in a
particular system tier. The tier scaling schemes focus on determin-
ing how many server hosts are needed in each tier using queueing
theory [38], machine learning [9], or control theory [30], and how
to rebalance workload among replicated server instances. In com-
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Figure 18: Performance of memory scaling on two different
Hadoop MapReduce applications (maintaining 90% resource
pressure).

Operations CPU cost
Model training (100 samples) 69.7± 0.3 ms
Prediction 0.1± 0.0 ms
Dynamic padding (100 samples) 1.3± 0.1 ms
CPU resource scaling 4.0± 0.1 ms
Memory resource scaling 9.4± 0.3 ms

Table 2: Mean and standard deviation of CPU execution costs
for all core operations in CloudScale, averaged over 300 opera-
tions on Xeon 3.0GHz CPU.

parison, our work focuses on fine-grained VM-level resourcescal-
ing, which can be used on each server node to adaptively adjust
resource allocation to different VMs for reducing resourceand en-
ergy cost. Our scaling scheme is complementary to the host-level
tier scaling scheme.

Previous work [44, 29, 31, 36, 32] has extensively studied apply-
ing control theory to achieve adaptive fine-grained resource alloca-
tions based on SLO conformance feedback. However, those ap-
proaches often have parameters that need to be specified or tuned
offline, and need some time to converge to the optimal (or near-
optimal) decisions. In contrast, CloudScale does not require any
offline tuning and can achieve elastic resource allocation without
assuming any prior knowledge about applications.

Our work is closely related to trace-driven resource allocation
schemes. Rolia et al. [33] proposed a dynamic resource alloca-
tion scheme by multiplying estimated resource usage with a burst
factor that is derived offline based on different QoS levels.In con-
trast, our scheme performs online burst pattern extractionand uses
the burst pattern to dynamically decide the padding value. Chan-
dra et al. [12] proposed workload prediction using auto-regression
and histogram based methods. Gmach et al. [22] used a Fourier
transform-based scheme to perform offline extraction of long-term
cyclic workload patterns. Our previous system PRESS [24] pro-
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Figure 19: Performance of CPU scaling on IBM System S
(maintaining 90% resource pressure).

vides a hybrid resource demand prediction scheme that can achieve
both high accuracy and low overhead. In contrast, this work fo-
cuses on efficiently handling prediction errors and concurrent scal-
ing conflicts to achieve elastic resource scaling for multi-tenant
cloud systems.

Previous work has proposed model-driven resource allocation
schemes. Those approaches use statistical learning methods [34,
37, 20, 35] or queueing theory [17] to build models that allow
the system to predict the impact of different resource allocation
policies on the application performance. However, those models
need to be built with non-trivial overhead and calibrated inad-
vance. Moreover, the resource allocation system needs to assume
certain prior knowledge about the application and the running plat-
form (e.g., input data size, cache size, processor speed), which
often is impractical in the cloud system. In contrast, CloudScale
is completely application and platform agnostic, which makes it
more suitable for cloud computing infrastructures that often host
third-party applications. Other work has used offline or online
profiling [39, 40, 43, 25] to experimentally derive application re-
source requirements using benchmark or real application work-
loads. However, profiling needs extra machines and may take a
long time to derive resource requirements. Our experimentsusing
the perfect prediction scheme also show that profiling oftendoes
not work well for fine-grained resource control since a tiny shift in
time will cause significant performance impact.

Virtual machine migration [14] has been widely used for dy-
namic resource provisioning. Sandpiper [41] is a system that au-
tomates the task of monitoring and detecting hotspots, determining
a new mapping of physical to virtual resources, and initiating nec-
essary migrations. It uses both black-box and gray-box approach
to detect hotspots and determine resource provisioning. The mi-
gration is triggered in Sandpiper when a certain metric exceeds
some threshold for a sustained time and the next predicted value
also exceeds the threshold. In comparison, our work leverages
live VM migrations to resolve significant scaling conflicts.Our

scheme leverages long-term prediction to trigger migration before
conflict happens and makes migration decisions based on the im-
pact of migration to application SLOs. Entropy [27] is a resource
manager for homogeneous clusters, which performs dynamic con-
solidation based on constraint programming and takes migration
overhead into account. Entropy assumes that the resource demand
is known in advance. In contrast, our work focuses on addressing
the challenge in predicting the resource demand and the impact of
migration.

Although initial work [19, 42] on power saving focused on mo-
bile devices, it has become increasingly important to consider en-
ergy saving while managing large-scale hosting centers. Muse [13]
is one pioneering work that integrates energy management into
comprehensive resource management. It proposed an economic ap-
proach to adaptive resource provisioning and an on-power capacity
scaling system that can adaptively turn on/off some hosts based
on the workload needs. ACES [26] is an automatic controller for
energy-aware server provisioning that provisions serversto meet
workload demand while minimizing the energy, maintenance and
reliability cost. ACES tries to balance the tradeoff between en-
ergy savings and reliability impact due to on-off cycles. Ituses
regression analysis to predict workload demand in the near future,
and has a model to quantify the reliability impact in terms ofits
dollar cost. ACES focuses on using low power states (off, sleep,
hibernate) instead of DVFS. In comparison, our work focuseson
integrating fine-grained resource scaling and DVFS to achieve en-
ergy saving. Our approach is complementary to Muse and ACES
system, which can be particularly useful for multi-tenant cloud sys-
tems when host shutdown is not an option. DVFS has been shown
to be effective for reducing power consumption of large-scale com-
puter systems [28]. Previous work (e.g., [16]) focuses on OSlevel
task characterization and uses learning algorithms to estimate the
best suited voltage and frequency setting. Fan et al. [18] used
simulation to calculate the potential of power and energy saving
in large scale systems using power management techniques based
on DVFS. It considers triggering DVFS according to different CPU
utilization thresholds. In comparison, our scheme integrates DVFS
with VM scaling and leverages predicted resource caps to derive
the proper frequency/voltage setting.

5. FUTURE WORK
Although demonstrated efficient in experiments, CloudScale has

several limitations which we plan to address in our future work.
CloudScale currently uses a pre-defined resource pressure thresh-

old. Although the resource pressure maintenance and SLO feed-
back handling can work together, CloudScale currently doesnot
adjust resource pressure threshold dynamically accordingto the
workload type or SLO feedback. However, different types of appli-
cations might need varying resource pressure thresholds for trigger-
ing the under-estimation handling. For example, an interactive ap-
plication typically needs to avoid high resource pressure for main-
taining sufficient resources to serve any requests as soon asthey
arrive. In contrast, for batch jobs, we can afford to maintain a tight
resource pressure to achieve high resource utilization without sig-
nificant SLO violations. To make CloudScale more intelligent, we
can automatically tune the resource pressure threshold based on
some general knowledge about the application (e.g. interactive v.s.
batch jobs) or coarse-grained SLO feedback.

CloudScale can scale on different metrics independently, but does
not coordinate the scaling operations on them. It is a non-trivial re-
search task to efficiently handle potential interference between dif-
ferent resource scaling operations. The problem is that adjusting
the allocation of one resource type can affect the usage of another



type of resource, which might introduce more dynamics into the
system and cause more prediction errors. To address the problem,
we plan to investigate multi-metric prediction model that can pre-
dict multiple metrics together and scale them concurrently.

Similar to multi-metric scaling, it is also challenging to handle
multi-tier application scaling, in which different tiers have inter-
dependency and scaling on one tier can affect the others. We can
integrate CloudScale with host-level scaling techniques [30, 38, 9]
to handle multi-tier application scaling efficiently by predicting the
resource demand of different tiers at the same time and coordinat-
ing the scaling operation on different hosts.

CloudScale performs long-term conflict prediction by extracting
the repeating pattern in the resource usage trace. When the repeat-
ing pattern is not found, CloudScale relies on multi-step Markov
prediction algorithms for long-term predictions. However, multi-
step Markov prediction has limited prediction accuracy since the
correlation between the resource prediction model and the actual
resource demand becomes weaker as we look further into the fu-
ture. We are investigating other long-term prediction models to bet-
ter handle the case when no periodic pattern is found in the training
data.

CloudScale currently works in the capping mode, which isolates
co-located applications by ensuring that the application cannot con-
sume more resources than those allocated to it. Xen credit sched-
uler also supports a weight mode: assigning each VM a weight
which indicates the relative CPU share of the VM. CloudScalecan
be easily extended to support weight mode by adjusting the weight
of the VMs dynamically based on the resource demand prediction.
In contrast to the capping mode, VMs can consume residual CPU
resources out of their shares in weight mode. However, when re-
source contention happens, weight mode cannot provide perfor-
mance isolation, and it is impossible to know the real demandof
the collocated VMs since their resource usages are affectedby each
other. As a future work, we will leverage our conflict prediction
to dynamically switch between capping mode and weight mode.
When there is no conflict, CloudScale can work in weight mode to
improve the resource utilization. When there are conflicts,Cloud-
Scale can work in capping mode to ensure performance isolation.

6. CONCLUSION
In this paper, we presentedCloudScale, an automatic elastic re-

source scaling system for multi-tenant cloud computing infrastruc-
tures. CloudScale consists of three key components: 1) combin-
ing online resource demand prediction and efficient prediction er-
ror handling to meet application SLOs with minimum resource
cost; 2) supporting multi-VM concurrent scaling with conflict pre-
diction and predicted migration to resolve scaling conflicts with
minimum SLO impact; and 3) integrating VM resource scaling
with dynamic voltage and frequency scaling (DVFS) to save en-
ergy without affecting application SLOs. We have implemented
CloudScale on top of the Xen virtualization platform and conducted
extensive experiments using the RUBiS benchmark driven by real
Web server traces, Hadoop MapReduce systems, and a commer-
cial stream processing system. The experimental results show that
CloudScale can achieve much better SLO conformance than other
alternative schemes with low resource cost. CloudScale canre-
solve scaling conflicts with up to 83% less SLO violation timethan
other schemes. CloudScale can save 8-10% total energy consump-
tion, and 39-71% workload energy consumption with little impact
to the application performance and SLO conformance. CloudScale
is light-weight and application-agnostic, which makes it suitable
for large-scale cloud systems.

7. ACKNOWLEDGEMENT
This work was sponsored in part by NSF CNS0915567 grant,

NSF CNS0915861 grant, U.S. Army Research Office (ARO) un-
der grant W911NF-10-1-0273, and Google Research Awards. Any
opinions expressed in this paper are those of the authors anddo
not necessarily reflect the views of the NSF, ARO, or U.S. Govern-
ment. The authors thank the anonymous reviewers for their insight-
ful comments.

8. REFERENCES
[1] Amazon Elastic Compute Cloud.

http://aws.amazon.com/ec2/.
[2] Apache Hadoop System. http://hadoop.apache.org/core/.
[3] KVM (Kernel-based Virtual Machine).

http://www.linux-kvm.org/page/Main_Page.
[4] RUBiS Online Auction System. http://rubis.ow2.org/.
[5] The IRCache Project. http://www.ircache.net/.
[6] Virtual Computing Lab. http://vcl.ncsu.edu/.
[7] VMware Virtualization Technology.

http://www.vmware.com/.
[8] Xen Credit Scheduler.

http://wiki.xensource.com/xenwiki/CreditScheduler.
[9] M. Armbrust, A. Fox, D. A. Patterson, N. Lanham,

B. Trushkowsky, J. Trutna, and H. Oh. Scads:
Scale-independent storage for social computing applications.
In Proc. CIDR, 2009.

[10] P. Barham and et al. Xen and the art of virtualization. In
Proc. SOSP, 2003.

[11] D. Breitgand, M. B.-Yehuda, M. Factor, H. Kolodner,
V. Kravtsov, and D. Pelleg. NAP: a building block for
remediating performance bottlenecks via black box network
analysis. InProc. ICAC, 2009.

[12] A. Chandra, W. Gong, and P. Shenoy. Dynamic resource
allocation for shared data centers using online
measurements. InProc. IWQoS, 2004.

[13] J. Chase, D. Anderson, P. N. Thakar, and A. M. Vahdat.
Managing energy and server resources in hosting centers. In
Proc. SOSP, 2001.

[14] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration of
virtual machines. InProc. NSDI, 2005.

[15] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. Dec. 2004.

[16] G. Dhiman and T. S. Rosing. Dynamic voltage frequency
scaling for multi-tasking systems using online learning. In
Proc. ISLPED, 2007.

[17] R. Doyle, J. Chase, O. Asad, W. Jin, and A. Vahdat.
Model-based resource provisioning in a web service utility.
In Proc. USITS, 2003.

[18] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning
for a warehouse-sized computer. InProc. ISCA, 2007.

[19] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for
mobile applications. InProc. SOSP, 1999.

[20] A. Ganapathi, H. Kuno, and et al. Predicting multiple metrics
for queries: Better decisions enabled by machine learning.In
Proc. ICDE, 2009.

[21] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo.
SPADE: the System S declarative stream processing engine.
Proc. SIGMOD, 2008.

[22] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. Capacity



management and demand prediction for next generation data
centers. InProc. ICWS, 2007.

[23] Z. Gong and X. Gu. PAC: Pattern-driven Application
Consolidation for Efficient Cloud Computing. InProc.
MASCOTS, 2010.

[24] Z. Gong, X. Gu, and J. Wilkes. PRESS: PRedictive Elastic
ReSource Scaling for Cloud Systems. InProc. CNSM, 2010.

[25] S. Govindan, J. Choi, and et al. Statistical profiling-based
techniques for effective power provisioning in data centers.
In Proc. Eurosys, 2009.

[26] B. Guenter, N. Jain, and C. Williams. Managing cost,
performance, and reliability tradeoffs for energy-aware
server provisioning. InProc. INFOCOM, 2011.

[27] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and
J. Lawall. Entropy: a consolidation manager for clusters. In
Proc. VEE, 2009.

[28] C.-H. Hsu and W.-C. Feng. A power-aware run-time system
for high-performance computing. InProc. SC, 2005.

[29] E. Kalyvianaki, T. Charalambous, and S. Hand. Self-adaptive
and self-configured CPU resource provisioning for
virtualized servers using Kalman filters. InProc. ICAC,
2009.

[30] H. Lim, S. Babu, and J. Chase. Automated control for elastic
storage. InProc. ICAC, 2010.

[31] P. Padala and et al. Adaptive control of virtualized resources
in utility computing environments. InProc. Eurosys, 2007.

[32] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal,
Z. Wang, S. Singhal, and A. Merchant. Automated control of
multiple virtualized resources. InProc. Eurosys, 2009.

[33] J. Rolia, L. Cherkasova, M. Arlitt, and V. Machiraju.
Supporting application QoS in shared resource pools.
Communications of the ACM, 2006.

[34] P. Shivam, S. Babu, and J. Chase. Learning application
models for utility resource planning. InProc. USITS, 2003.

[35] P. Shivam, S. Babu, and J. Chase. Active and accelerated
learning of cost models for optimizing scientific applications.
In Proc. VLDB, 2006.

[36] S.S.Parekh, N.Gandhi, J.L.Hellerstein, D.M.Tilbury,
T. Jayram, and J. P. Bigus. Using control theory to achieve
service level objectives in performance management. InReal
Time Systems, 2002.

[37] C. Stewart, T. Kelly, A. Zhang, and K. Shen. A dollar from
15 cents: cross-platform management for internet services.
In Proc. USENIX Annual Technical Conference, 2008.

[38] B. Urgaonkar, M. S. G. Pacifici, P. J. Shenoy, and A. N.
Tantawi. An analytical model for multi-tier internet services
and its applications. InProc. SIGMETRICS, 2005.

[39] B. Urgaonkar, P. Shenoy, and et al. Resource overbooking
and application profiling in shared hosting platforms. In
Proc. OSDI, 2002.

[40] T. Wood, L. Cherkasova, and et al. Profiling and modeling
resource usage of virtualized applications. InProc.
Middleware, 2008.

[41] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif.
Black-box and gray-box strategies for virtual machine
migration. InProc. NSDI, 2007.

[42] W. Yuan and K. Nahrstedt. Energy-efficient soft real-time
CPU scheduling for mobile multimedia systems. InProc.
SOSP, 2003.

[43] W. Zheng, R. Bianchini, and et al. JustRunIt:

Experiment-based management of virtualized data centers.
In Proc. USENIX Annual Technical Conference, 2009.

[44] X. Zhu and et al. 1000 Islands: integrated capacity and
workload management for the next generation data center. In
Proc. ICAC, June 2008.

[45] X. Zhu, Z. Wang, and S. Singhal. Utility-driven workload
management using nested control design. InProc. American
Control Conference, 2006.


