
Cloud-Native Database Systems at Alibaba: Opportunities
and Challenges

Feifei Li
Alibaba Group

lifeifei@alibaba-inc.com

ABSTRACT
Cloud-native databases become increasingly important for
the era of cloud computing, due to the needs for elasticity
and on-demand usage by various applications. These chal-
lenges from cloud applications present new opportunities
for cloud-native databases that cannot be fully addressed
by traditional on-premise enterprise database systems. A
cloud-native database leverages software-hardware co-design
to explore accelerations offered by new hardware such as
RDMA, NVM, kernel bypassing protocols such as DPDK.
Meanwhile, new design architectures, such as shared stor-
age, enable a cloud-native database to decouple computa-
tion from storage and provide excellent elasticity. For highly
concurrent workloads that require horizontal scalability, a
cloud-native database can leverage a shared-nothing layer to
provide distributed query and transaction processing. Ap-
plications also require cloud-native databases to offer high
availability through distributed consensus protocols.

At Alibaba, we have explored a suite of technologies to de-
sign cloud-native database systems. Our storage engine, X-
Engine and PolarFS, improves both write and read through-
puts by using a LSM-tree design and self-adapted sepa-
ration of hot and cold data records. Based on these ef-
forts, we have designed and implemented POLARDB and
its distributed version POLARDB-X, which has successfully
supported the extreme transaction workloads during the
2018 Global Shopping Festival on November 11, 2018, and
achieved commercial success on Alibaba Cloud. We have
also designed an OLAP system called AnalyticDB (ADB in
short) for enabling real-time interactive data analytics for
big data. We have explored a self-driving database platform
to achieve autoscaling and intelligent database management.
We will report key technologies and lessons learned to high-
light the technical challenges and opportunities for cloud-
native database systems at Alibaba.

PVLDB Reference Format:
Feifei Li. Cloud-Native Database Systems at Alibaba: Opportu-
nities and Challenges. PVLDB, 12(12): 2263 - 2272, 2019.
DOI: https://doi.org/10.14778/3352063.3352141

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352141

23:30 23:40 23:50 00:00 00:10 00:20 00:30
Time

0

0.25

0.50

0.75

1.00

1.25

R
es

p
on

se
ti

m
e

(m
s)

0

25

50

75

100

125

N
or

m
al

iz
ed

T
P

SResponse time

Normalized TPS

Figure 1: More than 100× increase in TPS along
with stable response time observed during Alibaba’s
Singles’ Day Shopping Festival in 2018.

1. INTRODUCTION
With more and more applications and systems moving to

the cloud, cloud-native database systems start to gain wide
support and popularity. Cloud database services provided
by cloud service vendors, such as AWS, Microsoft Azure,
Alibaba Cloud, and Google Cloud have contributed to the
development of cloud-native databases. As a result, in re-
cent years the market share of cloud databases has been
growing rapidly. More and more enterprises and organiza-
tions have migrated their businesses from on-premise data
centers to the cloud. The cloud platforms provide high elas-
ticity, stringent service-level agreement (SLA) to ensure re-
liability, and easy manageability with reduced operational
cost. The cloud databases play a key role in supporting
cloud-based businesses. It becomes the central hub that
connects underlying resources (IaaS) to various applications
(SaaS), making it a key system for the cloud.

At the Alibaba group, database systems need to support
a rich and complex business ecosystem that spans over en-
tertainment and digital media, e-commerce and e-payment,
and various new retail and o2o (offline to online) business
operations. During the 2018 Singles’ Day Global Shopping
Festival (Nov. 11, 2018), Alibaba’s databases process up to
491,000 sales transactions per second, which translates to
more than 70 million transactions per second. The tradi-
tional on-premise deployment of databases are not able to
catch up with the complexity of such business operations,
due to the needs for elasticity, scalability, and manageability.
For example, as shown in Figure 1, the TPS is suddenly in-
creased in the first second of Singles’ Day Shopping Festival,
which is about 122 times higher than that of the previous
second. When we simply deploy a MySQL or PostgreSQL on
a cloud instance store with a local SSD and a high I/O VM,
the resulting database instance has limited capacity that is

not suitable for providing scalable database services. It can-
not survive underlying disk drive failures; and the database
instance has to manage data replication for reliability. In ad-
dition, the instance uses a general-purpose file system, such
as ext4 or XFS. When using low I/O latency hardware like
RDMA or PCIe SSD, the message-passing cost between ker-
nel space and user space may quickly saturate the through-
put. In contrast, databases with a cloud-native design (such
as decouple of computation and storage, autoscaling) are
more appealing, which are able to provision more compute
and storage capacity, and provide faster recovery and lower
cost [30, 7].

There are also other essential capacities that are of criti-
cal importance for cloud-native databases: multi-model that
supports heterogeneous data sources and diverse query in-
terfaces; autonomy and intelligence that automatically man-
ages and tunes database instances to reduce the cost of
manual operations; software-hardware co-design that lever-
ages the advantages of high-performance hardware; and high
availability that meets stringent SLA needs (e.g., RPO=0
with very small RTO). With these designs in mind, cloud-
native databases have gained rapid growth for cloud-based
deployment.

In this paper, we report the recent progress in build-
ing cloud-native enterprise databases on Alibaba Cloud [1],
which also support the entire business operations within the
Alibaba group from its various business units (from enter-
tainment to e-commerce to logistics). To cover a wide va-
riety of application needs, we have provided a broad spec-
trum of database systems and tools as shown in Figure 3. In
particular, we have developed POLARDB, a shared-storage
OLTP database that provisions 100TB of storage capacity
and 1 million QPS per processing node. To further scale
out the capacity, we have developed POLARDB-X, a dis-
tributed OLTP database that integrates shared-nothing and
shared-storage designs. We have also developed Analyt-
icDB, an OLAP database as a next-generation data ware-
house for high-concurrency, low-latency, and real-time ana-
lytical queries at PB scale. To manage numerous database
instances hosted on our cloud, we have built SDDP, an au-
tonomous database operation platform that automatically
manages instances and tunes performance with minimal DBA
involvement. There are nearly half a million database in-
stances running on Alibaba Cloud (from both our cloud
customers and various business units within Alibaba group).
Both POLARDB and AnalyticDB have gained rapid growth
in usage from a broad range of business sectors, including
e-commerce, finance, media and entertainment, education,
new retail, and others. These cloud database systems and
technologies have successfully served both the complex busi-
ness ecosystem within the Alibaba group and many external
enterprise customers.

2. ARCHITECTURES FOR DATABASE SYS-
TEMS AT ALIBABA

Depending on what is being shared, there are three popu-
lar architectures that we have explored at Alibaba for build-
ing our database systems, as illustrated in Figure 2. The first
category is single instance, which is the most common ar-
chitecture used by mainstream databases. In this model, all
processes in a database share processor cores, main memory
space and local disks (i.e., on a single machine). Such an ar-

三种不同架构

Scale up Scale out

Shared storage
Disk

DB DB

DiskDisk

DB DB DB DB DB

Disk

DB

Local disk

Network Network Network

Single
Instance

Shared Everything Shared Nothing

Figure 2: Different database system architectures.

chitecture facilitates and eases intra-system communication
and coordination.

With the rapid growth in both amounts of data and peak
workloads of those encountered by giant Internet enterprises,
such as that in Google, Amazon, Microsoft and Alibaba,
it has been observed that the single-instance architecture
has inherent limitations. The capacity of a single machine
fails to meet ever-increasing business demands. Therefore,
the shared storage architecture was proposed, represented
by AWS Aurora [30] and Alibaba POLARDB [5]. In this
model, the underlying storage layer (usually consists of mul-
tiple nodes) is decoupled and each data record in storage
can be accessed by any upper database kernels running on
any node. By exploiting a fast network such as RDMA, a
database can interact with the shared distributed storage
layer the same way as with a single (shared) local disk. On
top of this shared storage, we can easily launch multiple
compute nodes to create replicas of a single database, hav-
ing the identical view on the same data. Therefore, requests
can be distributed to different (read-only) nodes for parallel
processing. However, to avoid write conflicts and to avoid
the complexity of dealing with distributed transaction pro-
cessing and distributed commits, there is usually a single
node that processes all write requests (e.g., INSERT, UPDATE,
DELETE) to a database. This architecture enables dynamic
adjustment of query capacity on demand by changing the
number of read-only nodes. It is also feasible to enable
writes to multiple nodes (i.e., multi-master) to expand write
capacity, but usually requires complex concurrency control
mechanisms and consensus protocols [6, 12, 16, 17, 23, 34].

The shared-storage architecture also has its own limita-
tions. First, low-latency data transmission cannot be always
guaranteed between compute and storage nodes. For those
messages transmitted cross switches, data centers or even re-
gions, the transmission time will be significantly amplified,
especially when local RDMA network is used. Second, the
number of read-only nodes supported for a single database is
limited. When the number of nodes reaches a certain scale,
massive requests will be blocked, making accesses to remote
storage prohibitively expensive and unaffordable. There-
fore, a practical limit is to have roughly up to a dozen of
read-only nodes. To address this issue, we need a shared
nothing architecture. In this model, a logical database is
divided into multiple shards, each of which is assigned to a
node. These nodes can be placed and replicated in different
data centers and regions. A representative implementation
of this architecture is Google Spanner [7], which uses GPS
and atomic clocks to achieve replica consistency and trans-
actional consistency across regions. On Alibaba Cloud, we
build POLARDB-X that extends POLARDB and explores
the benefits of building a shared-nothing system on top of

multiple databases each with a shared distributed storage.
Note that this hybrid of shared-nothing and share-storage

architectures brings some particular benefits. We can ap-
ply sharding at the top level, but assign many nodes to a
shard (instead of one node per shard). Beneath this shard, a
shared storage can be accessed by these nodes. The benefit
of this hybrid architecture is that it mitigates the draw-
backs of having too many small shards. In particular, it
helps to ease the procedure of shard re-balancing, and re-
duces the probability of cross-shard transactions (and re-
duce the amount of expensive distributed commits). Mean-
while, it enables excellent horizontal scalability. This hybrid
architecture that takes advantage of both shared nothing
and shared storage is a promising direction explored by our
database design in POLARDB-X.

3. OTHER KEY FEATURES OF ALIBABA
DATABASE SYSTEMS

In addition to exploring different system architectures,
there are other key features, driven by Alibaba’s complex
business applications, that have been taken into considera-
tion during the design of Alibaba’s database systems.

3.1 Multi-Model Analysis
An important application scenario at Alibaba is to sup-

port multi-model analysis, which consists of two aspects:
southbound and northbound multi-model access. The south-
bound multi-model access indicates that the underlying stor-
age supports different data formats and data sources. The
stored data can be either structured or non-structured, e.g.,
graph, vector and document storage. The database then
provides a unified query interface, such as a SQL or SQL-
like interface, to query and access various types of data
sources and formats, forming a data lake service. The north-
bound multi-model access indicates that a single data model
and format (e.g., key-value model in most cases) is used to
store all structured, semi-structured and unstructured data
in a single database. On top of this single storage model,
the database then supports multiple query interfaces, such
as SQL, SPARQL and GQL depending on the application
needs. Microsoft CosmosDB [9] is a representative system
of this kind.

In addition to addressing our internal business operation
needs, being able to support multi-model analysis is also
an essential requirement for cloud database services. Many
cloud applications require to collect large-volumes of data
from heterogeneous sources, and conduct federated analysis
to link different sources and reveal business insights (i.e.,
south-bound multi-model access). On the other hand, a
cloud database (e.g., a large KV store such as HBase) is
often a central data repository accessed by multiple appli-
cations with various application needs. They may prefer to
use different query interfaces due to usability and efficiency,
where northbound multi-model analysis is needed.

3.2 Autonomy and Intelligence
Given the large number of database instances to be man-

aged and the complex workloads that are faced by the database
systems at Alibaba, making the database operation platform
more autonomous and intelligent is an essential requirement.
With more than hundreds of thousands of live database in-
stances running on our platform, it is infeasible to reply

on conventional DBA-based manual operation, tuning, and
maintenance in a per-instance manner. There exists many
opportunities for supporting autonomous operations [8, 18,
19, 21, 24, 26, 29] from the perspective of both database ker-
nels and the underlying operation platform. With that in
mind, we are committed to building a self-driving database
platform (SDDP) with capabilities of self-detection, self-
decision, self-recovery and self-optimization. Consider self-
optimization as an example, various modules in a database
kernel (e.g., indexing, query optimizer, and buffer pool man-
agement) are to be enhanced by adopting machine learning
techniques, so that these modules can adaptively optimize
for dynamic workloads. However, making them both effec-
tive and efficient inside a database kernel is a challenging
task, due to the high cost of training and inference of ma-
chine learning models. On the other hand, self-detection,
self-decision and self-recovery target at improving the ef-
ficiency and effectiveness of database operation platform.
There are several key challenges such as how to automat-
ically inspect instance status and detect abnormal behav-
iors; and how to make a correct decision to repair the errors
within a short reaction time, once it is detected.

3.3 Software-Hardware Co-Design
Another key subject of innovation for Alibaba’s database

systems is to explore and take advantage of the fast de-
velopment and innovation in the hardware space. As with
any other systems, our goal is to design and implement our
database systems that are able to use limited system hard-
ware resources in a safe and efficient manner. This objective
means that the systems must pay attention to the constant
change and improvement in hardware properties so that they
can leverage the advantages of innovative new hardware fea-
tures. As a performance-critical system, a database system
needs to fully utilize available resources to execute queries
and transactions robustly and efficiently. As new hardware
properties are constantly improving, it is unwise to simply
follow existing database designs and expect that they will
maximize performance on new hardwares. For example, the
performance of a sophisticated databases like MySQL run-
ning directly on RDMA-enabled distributed storage is signif-
icantly worse than those on local PCIe SSDs with the same
CPU and memory configurations, which requires a careful
re-design [5]. Hence, the opportunities brought by new hard-
ware are of important considerations in designing Alibaba’s
database systems. For example, we have extensively ex-
plored and integrated new hardware technologies such as
RDMA, NVM, GPU/FPGA, and NVMe SSD.

3.4 High Availability
High availability is one of the fundamental requirements

for database systems at Alibaba to ensure zero-downtime for
our business operations and our cloud customers, as most
enterprise customers are intolerant to the interruption of
their businesses. One canonical solution for high availabil-
ity is replication, which can be done at the granularity of
database instance, table or table shard. The widely used
primary-backup and three-way replications are competent
in most scenarios. For banking and finance sectors that
needs higher availability, four or more replicas might be en-
forced, which are usually placed at different data centers
(available zones) and regions in order to survive large-area
failures (such as network failures and data center outages).

DTS

data transmission service,

inter-replica synchronization

DMS

data management service,

DevOps, R&D efficiency/safety

DBS

database backup

service

HDM

hybrid-cloud database

management

DBAdvisor

database autonomous

diagnosis/optimization

POLARDB-X

distributed relational database, auto scale-out, cross-

datacenter availability, high concurrency
GraphDB

graph database

MongoDB

document

database

HBase + X-Pack

distributed wide-column

database, multi-model

analytics

Cloud Database Operation Platform

Redis

cache service

Storage Infrastructure PANGU/PolarStore virtualized block store

OLAP

Alibaba Proprietary Open-source and Third-party

OLTP NoSQL

P
la

tf
o

rm
D

a
ta

b
a

s
e

 E
n

g
in

e
U

ti
li

ty

企业级数据库云服务

DBFS/PolarFS high-performance distributed file system

End-to-End Monitoring and Analysis

POLARDB

cloud-native relational database, shared-storage,

hardware consciousness, dynamic elasticity

MySQL/PG/MSSQL/MariaDB/PPAS

open-source and third-party databases

AnalyticDB

analytical database service, PB scale, real time

analytics, high concurrency

Data Lake Analytics

federated data analytical service, serverless, real time

analytics

TSDB

time-series and spatial-temporal database

ADAM

databases and database

applications migration

Figure 3: Database systems and services at Alibaba and Alibaba Cloud.

In the adoption of replications, the data consistency between
replicas must be carefully handled. The CAP theorem con-
cludes that only two out of three properties can be satisfied
among consistency, availability and partition tolerance. At
Alibaba, we design and implement our database systems
with ‘C’ (consistency) and ‘P’ (partition tolerance) in mind,
and ensure high availability with a customized parallel paxos
protocol called X-Paxos, which ensures that we can still de-
liver an extremely high level of availability that is up to
99.999%. X-Paxos implements and optimizes sophisticated
replication techniques and consensus protocols, and ensures
data consistency and availability via logs.

4. ALIBABA CLOUD-NATIVE DATABASES
In this section, we share our recent progress in build-

ing cloud-native database systems at Alibaba. A complete
overview of database systems and products at Alibaba and
on Alibaba cloud is summarized in Figure 3. We focus on the
discussion of POLARDB (a shared-storage OLTP database)
and its distributed version POLARDB-X (a sharded shared-
nothing OLTP database built on top of POLARDB), Ana-
lyticDB (a real-time interactive OLAP database), and SDDP
(an autonomous database operation platform).

4.1 POLARDB: cloud-native OLTP database
POLARDB is a relational database system built based on

AliSQL (a fork of MySQL/InnoDB) [2], and is available as
a database service on Alibaba Cloud. POLARDB follows a
cloud-native architecture that provides high elasticity, high
volume and high concurrency. In addition, POLARDB is
fully compatible with MySQL and PostgreSQL, which helps
customers to conduct transparent and smooth business ap-
plication migrations.

4.1.1 System Design
POLARDB follows the shared-storage architecture, as shown

in Figure 4. It consists of three layers: a PolarProxy acting
as a unified access portal, a multi-node database cluster, and
a distributed shared file system PolarFS. PolarProxy is a dis-
tributed stateless proxy cluster with self-adaptive capacity.

2019/5/30 POLARDB产品架构图.svg

file:///Users/hejun/Teamfile/阿里云2019年5月13日前/Apsara云数据库/POLARDB/用户产品文档和介绍/POLARDB产品架构图.svg 1/1

Scale
Out/In

RDMA

Parallel-Raft Protocol & Storage Serverless

DB Server
(Primary)

User Space
File System

Data Router
& Cache

数据Chunk

A b c a B c a b C

Data Chunk
Server

DB Server
(Replica)

User Space
File System

Data Router
& Cache

DB Server
(Replica)

User Space
File System

Data Router
& Cache

R/W Read Only Read Only

Data Chunk
Server

Data Chunk
Server

Read/Write Splitter
with Load Balancing

Scale
Up/Down

Application
Cloud Server

(ECS)

Failover

Application
Cloud Server

(ECS)

Application
Cloud Server

(ECS)

Write Read Read

Figure 4: Architecture of POLARDB.

It integrates the resources of multiple computation nodes
and provides a unified portal for applications to access. Its
dynamic scale-out capability enables agile increase/decrease
of nodes. The database nodes in POLARDB are divided
into two types, i.e., a primary node and many read-only
(RO) nodes. The primary node can handle both read and
write queries, while RO nodes only process read queries.
Both primary and RO nodes share redo log files and data
files, which are managed by PolarFS (Section 4.1.2), a dis-
tributed file system with ultra-low latency, high throughput
and high availability.

Such an architecture has several distinctive advantages.
First, the compute and storage resources are decoupled.
Compute and storage nodes can use different types of server
hardware and can be customized separately. For example,

the compute nodes need no longer to consider the ratio
of memory size to disk capacity, which is highly depen-
dent on the application scenario and hard to predict. Sec-
ond, it breaks the limitations in single-node databases (e.g.,
MySQL, PostgreSQL). Disks on storage nodes form a single
storage pool, which reduces the risk of fragmentation, usage
imbalance, and space wastage. The capacity and throughput
of a storage cluster can scale out transparently. POLARDB
is able to provision 100TB of storage capacity and achieve 1
millions QPS per node. Third, since data are all stored on
the storage cluster, there is no local persistent state on com-
pute nodes, making it easier and faster to perform database
migration. Data reliability can also be improved because
of the data replication and other high availability features
provided by PolarFS.

Apart from POLARDB, other cloud database services can
also benefit from this architecture. First, databases can
build on a more secure and easily scalable environment based
on virtualization techniques, such as Xen [3], KVM [13] or
Docker [20]. Second, some key features of databases, such
as multiple read-only instances and checkpoints, could be
easily achieved since back-end storage clusters provide fast
I/O, data sharing, and snapshot.

4.1.2 PolarFS and PolarStore
Data storage technology continues to change at a rapid

pace, and current cloud platforms have trouble taking full
advantage of the emerging hardware standards such as RDMA
and NVMe SSD. For instance, some widely used open-source
distributed file systems, such as HDFS [4] and Ceph [31], are
found to have much higher latency than local disks. When
the latest PCIe SSDs are used, the performance gap could
even reach orders of magnitude. The performance of re-
lational databases like MySQL running directly on these
distributed storage is significantly worse than that on local
PCIe SSDs with the same CPU and memory configurations.

To this end, we build PolarFS [5] as the shared storage
layer for POLARDB. It is a distributed file system built
on top of PolarStore (a shared distributed storage based on
RDMA network), offering ultra-low latency, high through-
put and high availability via following mechanisms. First,
PolarFS takes full advantage of emerging hardware such as
RDMA and NVMe SSD, and implements a lightweight net-
work stack and I/O stack in user space to avoid trapping
into kernel and dealing with kernel locks. Second, PolarFS
provides a POSIX-like file system API, which is intended to
be compiled into the database process and replace the file
system interfaces provided by operating system, so that the
whole I/O path can be kept in user space. Third, the I/O
model of the PolarFS’s data plane is also designed to elim-
inate locks and avoid context switches on the critical data
path. All unnecessary memory copies are eliminated, while
RDMA is heavily utilized to transfer data between main
memory and RDMA NIC/NVMe disks. With all these fea-
tures, the end-to-end latency of PolarFS has been reduced
drastically, being quite close to that of local file system on
SSD.

As node failures in a large POLARDB cluster are com-
mon, a consensus protocol is needed to ensure that all com-
mitted modifications will not get lost in corner cases. Repli-
cas should always reach agreement and become bitwise iden-
tical. In PolarFS, we first used Raft [23], a variant of Paxos
family [17, 16], which is easier to implement and widely used

X-SQL

PolarFS

PolarStore

SQL(DML/DDL/DCL)

X-SQL

SQL Parser SQL Optimizer

Distributed Relational Database Service

Transaction

Manager
SQL Router

POLARDB

Plan Executor

Transaction

Service

X-Engine

POLARDB

Plan Executor

Transaction

Service

X-Engine

POLARDB

Plan Executor

Transaction

Service

X-Engine

Figure 5: Architecture of POLARDB-X.

by many distributed systems. However, when Raft was ap-
plied, we found that it seriously impedes the I/O scalability
of PolarFS where low-latency NVMe SSD and RDMA are
used (whose latency are on the order of tens of microsec-
onds). Therefore, we developed ParallelRaft, an enhanced
consensus protocol based on Raft, which allows out-of-order
log acknowledging, committing and applying, while letting
PolarFS comply with traditional I/O semantics. With this
protocol, parallel I/O concurrency has been significantly im-
proved.

In summary, PolarFS supports POLARDB with follow-
ing features: (1) PolarFS can synchronize the modification
of file metadata (e.g. file truncation or expansion, file cre-
ation or deletion) from primary nodes to RO nodes, so that
all changes are visible for RO nodes. (2) PolarFS ensures
that concurrent modifications to file metadata are serialized,
so that the file system itself is consistent across all database
nodes. (3) In case of a network partition, two or more nodes
might act as primary nodes writing shared files concurrently.
PolarFS can ensure that only the real primary node is served
successfully, preventing data corruption. More technical de-
tails can be found in [5].

4.2 POLARDB-X: distributed OLTP database
POLARDB scales well for up to tens of nodes (due to the

limitation of the underlying RDMA network), but this is not
sufficient for support highly concurrent workloads over mas-
sive amounts of data and transactions, such as that found
on the Single’s Day Shopping Festival. Hence, we have ex-
tended POLARDB and built POLARDB-X, a distributed
shared-nothing OLTP database to enable horizontal scale-
out, which combines shared-storage and shared-nothing ar-
chitectures. The benefit of this design, as compared to a
standard shared-nothing architecture using a single-node in-
stance on each shard, is that each shard can now afford
to store and process much more data and transactions due
to the scale-up capability introduced by the shared-storage
architecture. As a result, for the same amount of data
and/or transaction processing needs, the hybrid architecture
needs much less number of shards compared to a standard
shared-nothing system; this in turns reduces the chances of
dealing with complex and expensive distributed transaction
processing and distributed commits. As a result, it sup-
ports highly concurrent transactions over massive data, and
ensures cross-AZ and cross-region transaction consistency

through the parallel paxos protocol X-Paxos.

4.2.1 System Design
Figure 5 shows the architecture of POLARDB-X, in which

relational data is partitioned into multiple POLARDB in-
stances, and managed by a distributed relational database
service (DRDS). DRDS takes in SQL queries or transac-
tions, parses and optimizes their plans, and finally routes
them to corresponding POLARDB instances for execution.
As discussed previously, each POLARDB instance consists
of one primary node and multiple read-only nodes. Each
read node serves as a replica of the primary node, sharing
the same storage residing on the PolarFS, which in turn
sits on PolarStore, Alibaba’s block storage system. Inside a
POLARDB node, there is a plan executor for query plans
pushed from the DRDS, a transaction service for transac-
tion processing, and an X-Engine, Alibaba’s LSM-tree based
OLTP storage engine.

4.2.2 X-Engine
We find that, when handling such transactions at Alibaba

and our big enterprise customers, three key challenges have
to be addressed: (1) The tsunami problem - there are dras-
tic increase in transactions with the kickoff of major sales
and promotional events (e.g., there was a 122-time spike on
Alibaba Singles’ Day Global Shopping Festival), which puts
tremendous pressure to the underlying database. (2) The
flood discharge problem - large amount of hot records can
easily overwhelm system buffers, which blocks subsequent
transactions if buffers cannot be fast flushed. (3) The fast
moving current problem - due to large numbers of promo-
tion events that last over short time periods, quick shifts
of record “temperatures” (i.e., hot, warm, cold) occurs fre-
quently, which drastically lowers cache hit ratio.

We build X-Engine [10] to tackle above challenges faced by
Alibaba’s e-commerce platform, because a significant part
of transaction processing performance boils down to how
efficiently data can be made durable and retrieved from
the storage. X-Engine processes most requests in the main
memory by exploiting the thread-level parallelism (TLP) in
multi-core processors, decouples writes from transactions to
make them asynchronous, and decomposes a long write path
into multiple stages in a pipeline in order to increase the
overall throughput. To address the flood discharge prob-
lem, X-Engine exploits a tiered storage approach to move
records among different tiers, taking advantage of a refined
LSM-tree structure [22, 25] and optimized compaction al-
gorithms. We also apply FPGA offloading on compactions.
Finally, to address the fast-moving current problem, we in-
troduce a multi-version metadata index which is updated in
a copy-on-write fashion to accelerate point lookups in the
tiered storage regardless of data temperatures.

Figure 6 shows the architecture of X-Engine. X-Engine
partitions each table into multiple sub-tables, and main-
tains an LSM-tree, the associated metasnapshots and in-
dexes for each sub-table. X-Engine contains one redo log
per database instance. Each LSM-tree consists of a hot data
tier residing in main memory and a warm/cold data tier
residing in NVM/SSD/HDD (that are further partitioned
into different levels), where the term hot, warm, and cold
refers to data temperatures, representing the ideal access
frequencies of data that should be placed in the correspond-
ing tier. The hot data tier contains an active memtable and

																																												

																																												

Active	Memtable
SwitchRedo	Logs

Caches

Extent Extent

Data	Files

ExtentExtent Extent Extent

Extent Extent Extent Extent

Warm	data	on
NVM/SSD

Cold	data	on
SSD/HDD

Cold	data	on
SSD/HDD

Hot	Data	Tier

Warm/cold	Data	Tier

FPGA-
accelerated
Compactions

Indexes
Flush

Writes

Reads

Immutable
Memtable

Figure 6: Architecture of X-Engine.

Coordinator

JDBC/ODBC

Read
Node #1

Read
Node # 2

Read
Node #3Write

Node #1
Write

Node #2

SELECT

INSERT /DELETE Fuxi

SSD Cache SSD Cache SSD Cache
Write

Node #3

AnalyticDB

Pangu Distributed Storage System

MemCPU

MemCPU

MemCPU

MemCPU

MemCPU

MemCPU

MemCPU

MemCPU

MemCPU

Coordinator Coordinator Coordinator

MemCPU

MemCPU

Figure 7: Architecture of AnalyticDB

multiple immutable memtables, which are skiplists storing
recently inserted records, and caches to buffer hot records.
The warm/cold data tier organizes data in a tree-like struc-
ture, with each level of the tree storing a sorted sequence
of extents. An extent packages blocks of records as well as
their associated filters and indexes.

X-Engine exploits redo logs, metasnapshots, and indexes
to support Multi-version Concurrency Control (MVCC) for
transaction processing. Each metasnapshot has a metadata
index that tracks all memtables, and extents in all levels of
the tree in the snapshot. One or multiple neighboring levels
of the tree forms a tier to be stored on NVM, SSD, and HDD,
respectively. Each sub-table in X-Engine has its own hot,
warm and cold data tiers (i.e., LSM-trees), storing records in
a row-oriented format. We design a multi-version memtables
to store records with different versions to support MVCC.
On the disks, the metadata indexes track all the versions
of records stored in extents. More technical details can be
found in [10].

4.3 AnalyticDB: realtime OLAP datawarehouse
AnalyticDB is a real-time OLAP database system de-

signed for high-concurrency, low-latency, and real-time an-
alytical queries at PB scale. It has been running on from
as little as 3 nodes to up to 2000+ physical machines and is
provided as a database service on Alibaba Cloud. It serves
enterprise customers from a wide range of business sectors,
including e-commerce, fintech, logistics, public transit, me-
teorological analysis, entertainment, etc., as well as internal
business operations within Alibaba Group.

Recent works [28, 14, 15, 32, 11] have summarized the
main challenges of designing an OLAP system as achiev-
ing low query latency, data freshness, flexibility, low cost,
high scalability, and availability. Compared to these works,
large-scale analytical workloads from our application scenar-
ios elevate AnalyticDB to an even larger scale: 10PB+ data,
hundred thousands of tables and trillions of rows, which
presents significant challenges to the design and implementa-
tion of AnalyticDB: 1) Today’s users face more complicated
analytics scenarios than ever before, but still have high ex-
pectation for low query latency. Though queries from dif-
ferent applications are diverse and complex, they often do
not tolerate queries that spend a long time. 2) Emerging
complex analysis tends to combine different types of queries
and data. More than half of our users’ data has a complex
data type, such as text, JSON string, or vector. A practical
database should be able to efficiently support queries on het-
erogeneous data with complex types. 3) While processing
real-time queries with low latency, the system also needs to
handle tens of millions of online write requests per second.
Traditional designs that read and write data in the same
process path are no longer well-suited for this case. Careful
designs to balance among query latency, write throughput
and data visibility should be taken into consideration.

To address these challenges, we build AnalyticDB with
several novel designs. First, AnalyticDB embeds an efficient
and effective index engine. In this engine, indexes are built
on all columns in each table for significant performance gain
on ad-hoc complex queries. We further propose a runtime
filter-ratio-based index path selection mechanism to avoid
performance slow-down from index abuse. Since it is pro-
hibitively expensive to update large indexes in the critical
path, indexes are asynchronously built during off-peak pe-
riods. We also maintain a lightweight sorted-index to mini-
mize the impact of asynchronous index building on queries
involving incremental data (i.e., data written after the cur-
rent round of index building has started).

Second, we design the underlying storage layout to sup-
port hybrid row-column storage for structured data and
other data with complex types. In particular, we utilize fast
sequential disk IOs, so that its overhead is acceptable under
either OLAP-style or point-lookup workloads. We further
incorporate complex data types in the storage (including in-
dexes) to provide the capability of searching resources (i.e.,
JSON, vector, text) together with structured data.

Third, in order to support both high-throughput writes
and low-latency queries, our system follows an architecture
that decouples reads and writes, i.e., they are served by
write nodes and read nodes respectively. These two types
of nodes are isolated from each other and hence can scale
independently. In particular, write nodes persist write re-
quests to Pangu (a reliable distributed storage on Alibaba
Cloud). To ensure data freshness when serving queries, a
version verification mechanism is applied on read nodes, so
that previous writes processed on write nodes are visible.

Forth, to further improve query latency and concurrency,
we enhance the optimizer and execution engine in Analyt-
icDB to fully utilize the advantages of our storage and in-
dexes. Specifically, we propose a storage-aware SQL opti-
mization mechanism that generates optimal execution plans
according to the storage characteristics, and an efficient real-
time sampling technique for cardinality estimation in cost
based optimizer. Besides, we design a high-performance

DBMS

Status detection

Controller

Resource scheduling

Auto recovery A/B testing

SDDP: Self-Driving Database Platform

Hybrid Cloud Database Management

TSDB

DBMS DBMS

Parameter tuning

SQL throttling

SQL collection

Metric collection

DBMSDBMS

Hot/cold identification

Cache prefetch

Model Training Platform

Anomaly detection

Tuning model Auto sharding

ML optimizer Common
Library

SQL storage Job scheduling

Metric storage Result collection

Figure 8: Architecture of SDDP.

vectorized execution engine for the hybrid storage that im-
proves the efficiency of computationally intensive analytical
queries.

Figure 7 shows the system architecture. There are mainly
three types of nodes in AnalyticDB, i.e., coordinator, write
node and read node. The coordinator collects requests (both
writes and queries) from client connections, and dispatches
them to corresponding write and read nodes. The write
nodes are responsible for processing writes (such as INSERT,
DELETE, UPDATE), and flush SQL statements into Pangu for
persistence. Read nodes are responsible for handling queries
(such as SELECT). In this manner, Write and read nodes are
decoupled from each other. Fuxi (a resource manager and
job scheduler on Alibaba Cloud) utilizes available resources
in all these nodes to provide computation workers for asyn-
chronous task execution. In addition, AnalyticDB provides
a general-purpose and pipeline-mode execution engine that
runs on computation workers. Data flows through the sys-
tem in units of column blocks from the storage to the client.
All data processes are in memory and are pipelined between
different stages across the network. This pipeline workflow
enables AnalyticDB to serve users’ complex queries with
high throughput and low latency. More technical details
can be found in [33].

4.4 SDDP: Self-Driving Database Platform
To manage numerous database instances on Alibaba Cloud,

we have built an autonomous database management plat-
form, called SDDP (Self-Driving Database Platform). This
platform collects real-time statistics from all running database
instances, and uses machine learning and statistical methods
to tune instances and provision resources.

4.4.1 System Design
Figure 8 shows the architecture of SDDP. The Hybrid

Cloud Database Management (HDM) layer collects SQLs
and metrics from database instances and stores them in
a time-series database (TSDB). Meanwhile, HDM detects
database status and synchronizes Controller with these in-
formation. Database status is normally changed by DDL op-
erations. For example, we can use ALTER TABLE t1 HOTCOLD

= ‘SMART’ to set a table to SMART mode and separate hot/cold
data automatically (Section 4.4.3). HDM also assigns Con-
troller to drive machine learning tasks, such as parameter
tuning (Section 4.4.2), resource scheduling and anomaly de-
tection. Controller schedules these tasks to Model Training

Figure 9: Workflow and overall architecture of iBTune.

Platform (MTP). MTP retrieves data, including SQL and
metrics, from TSDB and uses different modules to complete
the corresponding jobs. The result will be transferred back
to HDM by Controller and applied to database instances.

4.4.2 Buffer Size Tuning
Buffer pool is a critical resource for an OLTP database,

serving as a data caching space to guarantee desirable sys-
tem performance. Empirical studies on Alibaba’s OLTP
database clusters with more than 10, 000 instances show that
the buffer pool consumes on average 98% of the memory
space on each instance. Existing buffer pool configurations
are almost unanimously based on database administrators
(DBAs)’ experiences and often take a fixed number of rec-
ommended values. This manual process is neither efficient
nor effective, and even not feasible for large cloud clusters,
especially when the workload may dynamically change on
individual database instances.

To this end, we build iBTune [27], individualized buffer
tuning, to automatically reduce buffer size for any individ-
ual database instance while still maintaining the quality of
service for its response time, without relying on DBA to
set forth a pre-defined level. We utilize the relationship be-
tween miss ratios and buffer pool sizes to optimize the mem-
ory allocation. Our models leverage the information from
similar instances. Meanwhile, we design a novel pairwise
deep neural network that uses the features from measure-
ments on pairs of instances to predict the upper bounds of
the response times. Till now, iBTune has been deployed on
SDDP and applied to more than 10,000 database instances.
We have successfully reduced the memory consumption by
more than 17% (≥ 27TB) while still satisfying the required
quality of service for our diverse business applications.

Figure 9 presents an overview of iBTune’s architecture
and workflow. There are four key components: data collec-
tion, data processing, decision making, and execution. The
iBTune workflow forms a closed cycle, since data is first col-
lected from DBMS kernel, processed and used for training,
and then resulting models are applied to the DBMS again.
In data collection, we use customized agents to collect vari-
ous database metrics and logs from DBMS. More than 1,000
metrics are collected. The agent sits outside DBMS to avoid
unnecessary performance overhead to the DBMS kernel. All
metrics and logs are collected in one second granularity and
fed into a message queue. In data processing, a stream pro-
cessing system reads data from the message queue and per-
forms certain data manipulation/standardization operations

such as normalization, aggregation and log transformation.
After that, the processed metrics and logs are stored in a
distributed data store for analysis and model training. In
decision making, we propose a novel method to predict RT
and compute the new BP (buffer pool) size. If the predicted
RT meets the requirement, the computed new BP size is
sent to the execution component, which contains an plan-
ner and a scheduler. To process a large number of database
instances, action planner aims to make a globally efficient
and non-conflicting execution plan for tens of thousands of
actions. It includes priority settings among different action
categories, action merging for the same instance, action con-
flict detection and resolution, canary executing strategy and
so on. It finally outputs several action sequences to action
scheduler. More technical details can be found in [27].

4.4.3 Other Autonomous Scenarios
Besides buffer size tuning, we have explored other au-

tonomous designs as well, e.g., slow-SQL optimization, space
reduction, hot/cold separation, ML optimizer, failure detec-
tion and recovery. Taking hot/cold separation as an exam-
ple, the levels in X-Engine (Section 4.2.2) are differentiated
by the temperature of data (extent). An extent’s tempera-
ture is calculated by its access frequency in a recent window.
When a compaction is performed, X-Engine selects the cold-
est extents with the number specified by a threshold, say 500
extents, and pushes these extents to the deeper level to do
compaction. By doing so, X-Engine keeps the warm extents
in upper levels and cold extents in deeper levels. But this
method cannot handle dynamic workloads well. For exam-
ple, when the current access frequency of an extent is low,
this algorithm will treat the extent as cold data but it might
become hot in near future. To this end, we have investigated
machine learning based algorithms to identify the proper
temperature of an extent. The intuition is that, in addition
to extent, we also use row level (record) as a granularity to
infer temperature (warm/cold). If a record has never been
accessed in a recent window, it is identified as being cold.
Otherwise, it is considered warm. As a result, temperature
identification is translated into a binary classification prob-
lem and can be solved using a classification model, such as
using random forest or a neural network based approach.

5. APPLICATIONS AND OPERATIONS
There have been nearly half a million database instances

running on Alibaba Cloud, supporting both internal busi-
ness operations within Alibaba group and external customers

business applications. By leveraging our cloud-native database
systems, we have successfully served a large number of com-
plex application scenarios.

POLARDB. POLARDB has obtained a rapid growth of
population on Alibaba Cloud. It serves many leading com-
panies in different business sectors, such as fintech, gaming
and entertainment, education and multimedia. Many appli-
cations choose to migrate to POLARDB due to the limited
transaction processing rate supported by their self-deployed
databases. For example, an application experiences 5× la-
tency increases and frequent transaction failures in MySQL
instances during peak hours. POLARDB helps to keep all
transaction latency in 1 second and improve peak through-
put by 3×. In addition, one POLARDB instance is able to
sustain the same query performance against a 5-node repli-
cated MySQL cluster, and reduces the work needed by ex-
perienced DBAs. In most cases, it reduces the total cost of
ownership (TCO) on databases by 50-80%.

POLARDB-X. POLARDB-X has been applied to serve
many performance-critical and cost-sensitive businesses at
Alibaba. For example, on the start of the Singles’ Day
Global Shopping Festival in 2018, we handled a 122× in-
crease of transactions, processing up to 491,000 sales trans-
actions per second which translate to more than 70 million
database transactions per second. To this end, more than
2,000 nodes of POLARDB-X have been deployed online.
The fast-rising cost of administrating OLTP databases and
maintaining underlying servers has been a major challenge
for Alibaba as the GMV (Gross Merchandise Volume) grows
rapidly. To reduce such cost, we have replaced MySQL
with POLARDB-X for many of Alibaba’s businesses, which
leveraged downgraded hardware (e.g., with less CPU cores
and storage volumes) while sustaining the same level of
QPS/TPS. In many cases, we have managed to reduce the
total cost of ownership on databases by up to 50%.

AnalyticDB. AnalyticDB has been running on more than
2,000 nodes on Alibaba Cloud. It serves applications from a
wide range of business sectors, such as e-commerce, fintech,
logistics, public transit, and entertainment. Based on Ana-
lyticDB, we have extended an end-to-end solution that cov-
ers the entire analysis pipeline from data acquisition to data
visualization. Our customers are able to build their online
analytic services seamlessly while reducing total cost com-
pared against other solutions. AnalyticDB helps applica-
tions to better utilize their data: instant multi-dimensional
analysis and business exploration for tera-scale data can be
completed in milliseconds; users can define and launch their
analytic tasks by invoking built-in functions and modules;
the end-to-end latency for visualizing newly acquired data
is reduced to less than one minute in many cases; and no
manual operations from customers are required to maintain
the service.

SDDP. SDDP has been used to manage over tens of
thousands of database instances at Alibaba. We have suc-
cessfully saved large amounts of cluster resources from the
use of many autonomous and intelligent modules: SQL op-
timization module has detected and optimized 27.4 mil-
lion inefficient SQL requests; space optimization module has
freed 2.26PB storage space (e.g., by de-fragmentation and
removal of useless indexes/tables); iBTune module has saved
27TB memory space while sustaining the service quality;
and global workload scheduling module has increased disk
utilization ratio from 46% to 63%.

6. CONCLUSION
Cloud-native database system is an increasingly impor-

tant subject of research and development. It introduces nu-
merous new technical challenges and opens many new op-
portunities to the database community and industry. In
this paper, we have shared experiences and lessons learned
at Alibaba in advancing cloud-native database techniques
and building cloud-native database systems that have sup-
ported the complex and rich business operations both within
and external to Alibaba group based on the Alibaba cloud.
Given the rapid growth of moving to the cloud, cloud-native
database systems will be even more critical in the road ahead
and open new and exciting research directions and engineer-
ing challenges to support the next-generation cloud applica-
tions.

7. ACKNOWLEDGMENT
This work and the systems and techniques presented in

the paper are the collective efforts and contributions from
the entire Alibaba Cloud database team (officially known
as the database products business unit under the Alibaba
cloud intelligence group), as well as the database and stor-
age lab under the DAMO academy (a research institute at
Alibaba).

8. REFERENCES
[1] Alibaba Group. Alibaba Cloud.

https://www.alibabacloud.com.

[2] Alibaba Group. AliSQL.
https://github.com/alibaba/AliSQL.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
ACM SIGOPS operating systems review, volume 37,
pages 164–177. ACM, 2003.

[4] D. Borthakur et al. Hdfs architecture guide. Hadoop
Apache Project, 53, 2008.

[5] W. Cao, Z. Liu, P. Wang, S. Chen, C. Zhu, S. Zheng,
Y. Wang, and G. Ma. PolarFS: an ultra-low latency
and failure resilient distributed file system for shared
storage cloud database. PVLDB, 11(12):1849–1862,
2018.

[6] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos
made live: an engineering perspective. In Proceedings
of the twenty-sixth annual ACM symposium on
Principles of distributed computing, pages 398–407.
ACM, 2007.

[7] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, et al. Spanner: Google’s globally
distributed database. ACM Transactions on Computer
Systems (TOCS), 31(3):8, 2013.

[8] S. Das, F. Li, V. R. Narasayya, and A. C. König.
Automated demand-driven resource scaling in
relational database-as-a-service. In Proceedings of the
2016 International Conference on Management of
Data, SIGMOD ’16, pages 1923–1934, New York, NY,
USA, 2016. ACM.

[9] J. R. Guay Paz. Introduction to Azure Cosmos DB,
pages 1–23. Apress, Berkeley, CA, 2018.

[10] G. Huang, X. Cheng, J. Wang, Y. Wang, D. He,
T. Zhang, F. Li, S. Wang, W. Cao, and Q. Li.

X-Engine: An optimized storage engine for large-scale
e-commerce transaction processing. In SIGMOD.
ACM, 2019.

[11] J.-F. Im, K. Gopalakrishna, S. Subramaniam,
M. Shrivastava, A. Tumbde, X. Jiang, J. Dai, S. Lee,
N. Pawar, J. Li, et al. Pinot: Realtime olap for 530
million users. In SIGMOD, pages 583–594. ACM,
2018.

[12] J. Kirsch and Y. Amir. Paxos for system builders: An
overview. In Proceedings of the 2nd Workshop on
Large-Scale Distributed Systems and Middleware,
page 3. ACM, 2008.

[13] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori. kvm: the linux virtual machine monitor.
In Proceedings of the Linux symposium, volume 1,
pages 225–230, 2007.

[14] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky,
C. Ching, A. Choi, J. Erickson, M. Grund, D. Hecht,
M. Jacobs, et al. Impala: A modern, open-source sql
engine for hadoop. In CIDR, volume 1, page 9, 2015.

[15] A. Lamb, M. Fuller, R. Varadarajan, N. Tran,
B. Vandiver, L. Doshi, and C. Bear. The vertica
analytic database: C-store 7 years later. PVLDB,
5(12):1790–1801, 2012.

[16] L. Lamport. The part-time parliament. ACM
Transactions on Computer Systems (TOCS),
16(2):133–169, 1998.

[17] L. Lamport et al. Paxos made simple. ACM Sigact
News, 32(4):18–25, 2001.

[18] Z. L. Li, M. C.-J. Liang, W. He, L. Zhu, W. Dai,
J. Jiang, and G. Sun. Metis: Robustly tuning tail
latencies of cloud systems. In ATC (USENIX Annual
Technical Conference), July 2018.

[19] L. Ma, D. Van Aken, A. Hefny, G. Mezerhane,
A. Pavlo, and G. J. Gordon. Query-based workload
forecasting for self-driving database management
systems. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD ’18,
pages 631–645, New York, NY, USA, 2018. ACM.

[20] D. Merkel. Docker: lightweight linux containers for
consistent development and deployment. Linux
Journal, 2014(239):2, 2014.

[21] D. Narayanan, E. Thereska, and A. Ailamaki.
Continuous resource monitoring for self-predicting
dbms. In 13th IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, pages 239–248, Sept
2005.

[22] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (lsm-tree). Acta
Informatica, 33(4):351–385, 1996.

[23] D. Ongaro and J. K. Ousterhout. In search of an
understandable consensus algorithm. In USENIX
Annual Technical Conference, pages 305–319, 2014.

[24] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma,

P. Menon, T. Mowry, M. Perron, I. Quah,
S. Santurkar, A. Tomasic, S. Toor, D. V. Aken,
Z. Wang, Y. Wu, R. Xian, and T. Zhang. Self-driving
database management systems. In Proceedings of the
2017 Conference on Innovative Data Systems
Research, CIDR ’17, 2017.

[25] R. Sears and R. Ramakrishnan. bLSM: A general
purpose log structured merge tree. In Proceedings of
the 2012 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’12, pages 217–228,
New York, NY, USA, 2012. ACM.

[26] R. Taft, N. El-Sayed, M. Serafini, Y. Lu,
A. Aboulnaga, M. Stonebraker, R. Mayerhofer, and
F. Andrade. P-Store: An elastic database system with
predictive provisioning. In Proceedings of the 2018
International Conference on Management of Data,
SIGMOD ’18, pages 205–219, New York, NY, USA,
2018. ACM.

[27] J. Tan, T. Zhang, F. Li, J. Chen, Q. Zheng, P. Zhang,
H. Qiao, Y. Shi, W. Cao, and R. Zhang. iBTune:
Individualized buffer tuning for largescale cloud
databases. PVLDB, 12(12):1221–1234, 2019.

[28] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive:
a warehousing solution over a map-reduce framework.
PVLDB, 2(2):1626–1629, 2009.

[29] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang.
Automatic database management system tuning
through large-scale machine learning. In Proceedings
of the 2017 ACM International Conference on
Management of Data, SIGMOD ’17, pages 1009–1024,
New York, NY, USA, 2017. ACM.

[30] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam,
K. Gupta, R. Mittal, S. Krishnamurthy, S. Maurice,
T. Kharatishvili, and X. Bao. Amazon Aurora: Design
considerations for high throughput cloud-native
relational databases. In Proceedings of the 2017 ACM
International Conference on Management of Data,
pages 1041–1052. ACM, 2017.

[31] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long,
and C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In Proceedings of the 7th
symposium on Operating systems design and
implementation, pages 307–320. USENIX Association,
2006.

[32] F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino,
and D. Ganguli. Druid: A real-time analytical data
store. In SIGMOD, pages 157–168. ACM, 2014.

[33] C. Zhan, M. Su, C. Wei, X. Peng, L. Lin, S. Wang,
Z. Chen, F. Li, Y. Pang, F. Zheng, and C. Chai.
AnalyticDB: Realtime olap database system at
alibaba cloud. PVLDB, 12(12), 2019.

[34] J. Zheng, Q. Lin, J. Xu, C. Wei, C. Zeng, P. Yang, and
Y. Zhang. PaxosStore: high-availability storage made
practical in wechat. PVLDB, 10(12):1730–1741, 2017.

