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The Raid Distributed Database System 

Abstract-Raid is a robust and adaptable distributed database sys- 
tem for transaction processing. Raid is a message-passing system, with 
server processes on each site. The servers manage concurrent process- 
ing, consistent replicated copies during site failures, and atomic dis- 
tributed commitment. A high-level, layered communications package 
provides a clean, location independent interface between servers. The 
latest design of the communications package delivers messages via 
shared memory in a high-performance configuration in which several 
servers are linked into a single process. Raid provides the infrastruc- 
ture to experimentally investigate various methods for supporting re- 
liable distributed transaction processing. Measurements on transac- 
tion processing time and server CPU time are presented. Data and 
conclusions of experiments in three categories are also presented: com- 
munications software, consistent replicated copy control during site 
failures, and concurrent distributed checkpointing. A software tool for 
the evaluation of the implementation of transaction processing algo- 
rithms in an operating system kernel is proposed. 

Index Terms-Communications, database, distributed systems, re- 
liability, replication, transaction processing. 

I. INTRODUCTION 
AID stands for robust and adaptable distributed da- R tabase system. We discuss the design and implemen- 

tation of Raid. We include measurements that we have 
performed, and our ongoing experimental work. We pro- 
vide insight into the theoretical underpinnings of adapta- 
bility [lo], and discuss briefly the ways in which the Raid 
design provides an infrastructure for adaptability. We dis- 
cussed design principles and experiences with them in dif- 
ferent sections. In the last section. we present a retro- 
spection on what we have learned from our experience 
with Raid, and on the future research directions that have 
arisen from this experience. 

conclusions indicating the relevance to reliable, high per- 
formance transaction processing. 

The simulation experiments are run on subsystems 
called mini-Raid [9] and Seth [14]. These systems are 
smaller versions of Raid. Mini-Raid is a simulation en- 
vironment within which new ideas can be tested before 
they are implemented in Raid itself. Seth supports eval- 
uation of quorum consensus-based protocols. Microex- 
periments are run to measure the performance of a partic- 
ular subsystem of Raid. The performance figures for the 
Raid communications package were obtained with mi- 
croexperiments. The results of microexperiments are used 
to provide input parameter values for the simulation ex- 
periments and to predict the performance of alternative 
configurations of Raid. Macroexperiments measure the 
transaction processing performance of the Raid system in 
traditional terms, such as throughput or delay. These are 
done on the full Raid system. using both simulated trans- 
actions and transaction benchmarks [ 11, [ 121. 

Some of the topics on which experiments have already 
been performed using Raid are: replicated copy control 
during site failure and recovery. measurements and en- 
hancements of the communication facilities, and distrib- 
uted checkpointing algorithms. These experiments are de- 
scribed in Section 111. 

Another objective of our research is to experiment with 
the implementation of an adaptable system [ I O ]  that can 
reconfigure based on performance and reliability require- 
ments. Many algorithms for concurrency control. net- 
work partitioning, replication control, and commitment 
have been proposed, analyzed and evaluated in the liter- 

A .  Implementation Objectives 
Raid has been implemented to obtain measurements and 

conduct experiments that provide empirical evaluation of 
the algorithms used in distributed database systems. This 
research helps in identifying principles and design alter- 
natives that contribute towards reliable, high-perfor- 
mance transaction processing. Three classes of experi- 
ments are supported by the Raid project: simulation 
experiments, microexperiments, and macroexperiments. 
Each experiment requires four steps: design and setup, 
measurements and observations, analysis of the data, and 

ature [3]. However, a complete system requires a unique 
combination of these algorithms to satisfy a given appli- 
cation. Due to failures in a distributed system, graceful 
reconfiguration is required to continue transaction pro- 
cessing. Reconfiguration is also needed when perfor- 
mance and reliability characteristics of the current set of 
transaction processing algorithms are unacceptable for the 
current application load. To allow easy reconfiguration, 
we need to design systems that are adaptable. Adaptabil- 
ity [ 101 requires that algorithms and their respective data 
structures be designed to support switching to new con- 
figurations. 

Our approach for reconfiguration and adaptability is 

is an abstraction O f  a control COmDonent of the distributed 
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for execution. Each sequencer maintains state informa- 
tion. such as the number of votes assigned to each site, 
or the location of tokens for data items. The crucial prob- 
lem in reconfiguring or adapting between sequencers is 
preserving the correctness of the state information. We 
have three methods for adapting between sequencers 1101. 
The Global State method maintains a single representa- 
tion of the sequencer state information. All sequencer im- 
plementations can share this state information. The Con- 
verting State method is based on converting sequencer 
state information from one representation to another as 
needed. The Sujix-Suficient Stare method works by in- 
troducing an intermediate stage during which precondi- 
tions for the new algorithm are satisfied. This method has 
the advantage of being able to work with arbitrary se- 
quencers without knowledge of the internal state main- 
tained by the sequencer. More details are given in,[ 101. 

The design of Raid is flexible and modular. providing 
an infrastructure for switching algorithms. Each subsys- 
tem is implemented as a separate server. communicating 
with other servers via a clearly defined message protocol, 
so that a new implementation can be easily substituted for 
an existing implementation. Furthermore, we are modi- 
fying the concurrency controller to dynamically change 
between different methods while Raid is processing trans- 
actions. We use the suffix-sufficient state method of con- 
version. The new concurrency controller runs in parallel 
with the old concurrency controller, until the new one has 
absorbed enough state to take over serializing transac- 
tions. When the new concurrency controller takes over, 
the history information that is used for serialization is 
truncated at the point that the new concurrency controller 
was started. Uncommitted transactions that were active 
before this point must be aborted. Choosing which method 
should be running in a given situation is a complex prob- 
lem, so we have implemented a prototype expert system 
to allow Raid to be truly adaptive, in the sense that it can 
automatically change itself to conform to its environment 
[ 1 11. This expert system uses a database of rules to pro- 
duce an estimate of the optimum concurrency controller 
for a given transaction mix, along with a belief value in 
its reasoning process. 

B. Distinguishing Features 

The Raid system is implemented in 20K lines of C code, 
and can run on either Vaxen or Suns under 4.3 BSD 
UNIX. ' Raid divides the functions of transaction pro- 
cessing into software modules called servers. An operat- 
ing system process can implement the capabilities of a 
single server or of a collection of servers. The server de- 
sign has facilitated the implementation effort by providing 
for flexibility, and by explicitly defining the interfaces be- 

'VAX is a registered trademark of Digital Equipment Corporation. Sun 
is a trademark of Sun Microsystems, Incorporated. UNIX is a registered 
trademark of AT&T Bell Laboratories. 

tween servers. This provides the infrastructure for adapt- 
ability. Unless concurrency and parallelism can be pro- 
vided to keep all servers busy, such a design has 
performance problems, both because of the high cost of 
communicating between processes and because of the in- 
creased operating system overhead from context switch- 
ing between multiple processes. An alternate design for 
an operational version of Raid requires multiple servers 
to reside in the same UNIX process, and communicate via 
shared memory. The following are special features of 
Raid: 

Raid is designed as a modular, message-passing sys- 
tem to support easy extensions and modifications. Servers 
can be relocated, and new implementations of servers can 
be substituted. 

We are completing the implementation of dynamic 
adaptability for the Raid concurrency controller. The con- 
currency controller presently chooses statically between 
four concurrency control algorithms. Soon it will be able 
to dynamically switch, without suspending transaction 
processing. 

The Raid communication subsystem provides loca- 
tion transparent addressing, and supports multiple virtual 
sites on a single physical host. 

Raid has facilities for replicated copy management 
that can handle site failures. We are in the process of im- 
plementing a feature that will automatically refresh out- 
dated data copies after recovery. 

RaidTool is a window-based interface. designed to 
be a front-end to the Raid system. RaidTool permits an 
operator to configure a Raid system on multiple worksta- 
tions, and communicate reconfiguration and adaptation 
decisions to the servers. 

We have designed Push, a system with which user 
programs can safely and simply specify algorithms to be 
run within the kernel. This will allow us to evaluate the 
performance of protocols implemented as extensions of 
the operating system. 

C.  Related Projects 

Raid is similar to Camelot 1221, Argus [18], and R* 
[17] in its support for distributed transactions. Camelot 
[22] and Argus [ 181 encapsulate each data object in a sin- 
gle server process with multiple lightweight threads of 
control. Raid and R* [ 171 have a data server for each user. 
A single data server provides a performance advantage for 
transactions that access many data items, and amortizes 
session connection and authentication over several trans- 
actions. R* uses high-level communication facilities with 
significant setup time, so having a relatively long-lived 
data server is important. The principal difference between 
these systems lies in the structure of the servers that pro- 
cess transactions. Most systems that choose to use mul- 
tiple processes on each site are sacrificing the perfor- 
mance advantage of shared memory communication and 
cheap context switches for the benefits of address space 
protection and modularity. Camelot and Argus separate 
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data servers (guardians) into different processes, while 
Raid separates components of transaction processing in 
different processes. A new Raid design, described in Sec- 
tion 11, combines multiple Raid servers into a single UNIX 
process to improve communication performance. 

Camelot and Argus both use remote procedure call 
(RPC) mechanisms for communication. Camelot uses 
Mach RPC for invoking data server operations. Mach 
RPC provides high-level communication services, includ- 
ing automatically generated stub routines for converting 
arguments to and from network byte order. Mach RPC 
takes 30 ms for a simple call and return, while Internet 
Universal Datagram Protocol (UDP) roundtrips are under 
10 ms. Since RPC is so expensive, UDP is used for the 
two-phase commit protocol. Argus handler calls are built 
on top of their own low-level datagram service, which can 
send a roundtrip datagram in 3 ms. By contrast, R* uses 
a high-level error-free virtual circuit facility. Messages 
using this facility take 60 ms. R* employs datagrams for 
recovery, but these are not low-level datagrams used for 
performance reasons, but special datagrams that automat- 
ically invoke a remote process to handle recovery. Raid 
relies on datagrams for communication. The Raid com- 
munications package provides high-level services that take 
almost 15 ms for a roundtrip. The package is layered on 
UDP which takes about half that long. 

Other systems that have been developed over the years 
include SDD- 1 [2 13, Encompass [ 131, Locus/Genesis 
[20], [26], Eden [15], and Sirius-Delta [3]. They have 
been discussed in more depth in [2]. 

11. RAID ARCHITECTURE 

We designed the software that implements transaction 
processing in separate server processes to provide for 
modularity and reconfiguration. The servers communicate 
among themselves using the Raid communication pack- 
age. The current design provides for two versions of the 
Raid system. The first version runs with each server in an 
asynchronous process communicating via messages (see 
Fig. 3) .  The second version combines the servers that do 
not need to be asynchronous into a single process, thus 
reducing the communication cost (see Fig. 4). Transmit- 
ting a message between two servers takes tens of milli- 
seconds in the multiple process model, but only tens of 
microseconds in the single process model. 

The second version of Raid loads all servers which can 
be run synchronously into one program. When the pro- 
gram is started, a command-line option can be used to 
determine which of these servers will actually be active 
in the current process. (This option is useful for testing 
new versions of the servers. One process can be used for 
all the unchanged servers, while separate processes can 
be created for the servers being tested. This isolates the 
new servers and simplifies debugging.) The actual pro- 
gram differs from the first version in two areas: the struc- 
ture of the main loop, and the implementation of the com- 
munication package. In the first version, each server has 

a main program consisting of a loop that receives mes- 
sages and calls the appropriate subroutine to handle that 
message. In the second version, there is a single loop per 
process which receives messages for all the servers in that 
process. The process then uses the message header to de- 
termine which server the message was intended for and 
calls that server’s message dispatching routine. The server 
then proceeds just as if it had received the message in the 
first version. When messages are sent, the communica- 
tion package first checks whether the message is bound 
for a server within the same process or not. If the message 
is interprocess, it is sent using UDP as usual. If the mes- 
sage is intraprocess, it is put on a list of internal mes- 
sages. The message-receive routine then checks this list 
for internal messages before it checks for external ones. 
Note that this implementation makes servers within the 
same process run synchronously. 

Other implementations of Raid are also possible. One 
easy variation on the second version would be to add a 
priority ordering by message types to the communications 
package. This could give messages that might lead to a 
blocking state a low priority, for example. Another alter- 
native would be to implement lightweight processes for 
each of the servers loaded together. This would allow 
asynchronous processing of the servers but retain the 
speed advantages of communication through shared mem- 
ory rather than via UDP datagrams. We are actively in- 
vestigating the possibilities of implementing these alter- 
natives. 

A. Site Organization 
Fig. 1 depicts the organization of a Raid virtual site. 

The site is virtual since its servers can reside on one or 
more hosts (machines) and since the site is not tied to any 
particular host on the network. Each site implements fa- 
cilities for query parsing and execution as a transaction, 
access management with stable storage, concurrency con- 
trol, replicated copy management, site failure and net- 
work partitioning management, naming, etc. The follow- 
ing describes the role of each of the Raid servers in the 
system. 

The communications package design supports arbitrary 
grouping of Raid servers into physical processes. During 
testing, each of the servers is a separate process to isolate 
errors. When performance measurements are being taken, 
the following two servers can be linked into a single pro- 
cess for each user: 

User Interface (UI) is a front-end invoked by a user to 
process relational calculus queries specified in a subset of 
Que1 [24]. 

Action Driver (AD) accepts a parsed query in the form 
of a procedural intermediate language from its U1 and ex- 
ecutes the transaction, reading data from the local copy 
of the database. It formats the query as a transaction (read 
and write actions). 

The remaining servers can be linked together to form 
the transaction management process during performance 
experiments: 
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TM = Transaction Manager 

AC = Atomicity Controller 

CC = Conrurrency Controller 

AD = Action Driver 

AM = Access Manager 

RC = Replication Controller 

U1 = User Interface 

Fig. 1 .  The organization of a Raid site 

Access Manager (AM) provides write access to the local 
database, and works with AC and AD to ensure that up- 
dates are posted atomically to stable storage. 

Atomicity Controller (AC) manages two commit phases 
of transaction processing to ensure that a transaction com- 
mits or aborts globally. When AC receives a transaction, 
it set a commit-lock on each data item that was accessed 
by the transaction. The commit-locks provide a critical 
section on the data items during two-phase commit. These 
locks are short-lived, since they are only needed during 
commitment, rather than during transaction processing. 

Replication Controller (RC) is the server that maintains 
consistency of the replicated copies of the database in the 
event of site failures. A Read-One-Write-All (ROWAA) 
protocol [4] used in Raid allows transaction processing as 
long as a single copy is available. If a transaction on an 
operational site knows that a particular site is down, the 
transaction does not attempt to read a copy from or send 
an update to the failed site.* 

Concurrency Controller (CC) checks whether a trans- 
action history is serializable. After a transaction finishes 
executing, its history information is passed to all sites in 
the system, each of which validates whether the history is 
serializable with respect to previously positively validated 
transactions on that site. The CC has the facility to per- 
form the validation with one of many different implemen- 
tations. Currently implementations of simple locking, 
read/write locking, timestamping, and even serial exe- 
cution are available and the choice is made by specifying 
an option during initialization. 

B. Communications 
This section describes the services provided by the 

communications package, including the Raid name space, 
the oracle (name-server), and the available communica- 
tion services. Raid communications facilities are imple- 
mented on top of UDP/IP, the Internet Universal Data- 
gram Protocol. 

The Name Space: We can uniquely identify each server 
with the tuple (instance number, virtual site number, 
server type, server instance). To send a message to a 

'A site is up (operational) if U / /  of its servers are operational. 

server, UDP needs a (machine name, port number) pair. 
The oracle maps between server 4-tuples and UDP ad- 
dresses. The communications software at each server au- 
tomatically caches the address of servers with which it 
must communicate. Thus, the oracle is only used at sys- 
tem start-up, when a server is moved, and during failure 
and recovery. 

The Oracle: An oracle is a server process listening on 
a well-known port for requests from other servers. The 
two major functions it provides are lookup and registra- 
tion. A server can use the lookup service to determine the 
location of another server. 

A server performs the Registerself() call to permit 
other servers to locate it. Registerself takes a single ar- 
gument, called a not@er set. The notifier set is a list of 
regular expressions describing the addresses of servers 
with which the new server must communicate. Whenever 
a server changes status (e.g., moves, fails, or recovers) 
the oracle sends a notifier message to all other servers that 
have specified the changing server in their notifier set. 

The performance of the Oracle only affects the start up 
and reconfiguration delays of Raid. The Registerself (), 
FindPartner (), and FindAI10 functions each require just 
a few packet roundtrips. Findoracle0 is an order of 
magnitude more expensive, since it must check for the 
oracle on all possible hosts on the network. 

Communications Facilities: The servers communicate 
with each other using high-level operations such as 
SendACO. Fig. 2 shows the layering of the communi- 
cations package. The fragment size is an important pa- 
rameter to the LDG (Long Datagram) protocol. Normally 
we use fragments of 8000 bytes, which is the largest pos- 
sible on our Suns. Since IP gateways usually fragment 
messages into 512 byte packets we also have a version of 
LDG with 512 byte fragments. This allows us to compare 
kernel-level fragmentation in IP with user-level fragmen- 
tation in LDG. 

Table I compares UDP, LDG, and Raid roundtrip com- 
munication times for datagrams of various lengths. The 
numbers given for the Raid layer are based on LDG-8000. 
The current implementation copies the buffer several times 
while building the header. A new implementation of the 
Raid layer is expected to perform almost as well as LDG, 
because of changes that completely avoid buffer copying. 
Similar changes to LDG led to the current version in which 
LDG only requires a small constant amount of additional 
time over UDP. 

C. Transaction Processing 
Transaction processing in Raid is separated into one ex- 

ecution phase and two commit phases. In the execution 
phase the transaction executes on the site to which it was 
submitted, using only the local copy of the database. Dur- 
ing this phase no concurrency control is done, and no 
messages are exchanged. The transaction maintains 
timestamps for its reads, and writes to a copy of the data 
in volatile memory. During the first commit phase, the 
executing site communicates with other sites to determine 
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global commitment. The entire read/write set of the trans- 
action is distributed in a single round of messages. The 
sites use the read/write set to determine whether the trans- 
action should be committed or aborted. Phase 2 of com- 
mitment communicates the commit decision to all of the 
sites. 

In order that the AC can manage multiple transactions 
simultaneously it is implemented in a multithreaded man- 
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D. Transaction Execution Flow 

Fig. 3 depicts the relationships between the Raid serv- 
ers during transaction processing. Transactions are pro- 
cessed in this manner during integration testing of Raid 
modules. The measurements shown in Section 111-A are 
based on this implementation. The numeric labels in the 
figure refer to the phases in the life of a transaction from 
begin to commit as follows: 

0) U1 accepts a relational query from the user, parses 
it into a procedural intermediate language, and passes it 
on to AD. 

1) AD assigns a globally unique ID to the transaction, 
and processes the transaction. Reads are performed using 
the local copy of the database, and writes are recorded in 
a log/differential file. When using locking concurrency 
control, reads from the AD must go through the AM. 

2) AD forms a commit request and sends it to the local 
AC. This request contains the transaction ID, a list of 
identifiers of items (relational tuples) read, along with the 
time at which the read occurred, and the list of identifiers 
of items written. No timestamps are available for the 
writes since they have not yet taken place. 

3) AC sends transaction history to RC for read-set val- 

idation if AC considers this site to still be recovering (i.e., 
fail-locks are still set for copies on this site). RC checks 
for a fail-lock on each data item in transaction’s read-set. 
Copier transactions are generated for any out-of-date items 
that are found in the read-set. The implementation of the 
copier transactions is underway. 
4) RC responds to AC with indication of read-set va- 

lidity after completion of necessary copier transactions. 
5) If read-set is valid (no fail-locks), AC acquires spe- 

cial commit-locks for the items accessed by the transac- 
tion. If some commit-locks are already set, it may choose 
to wait for them to be released, in which case it uses a 
method for avoiding or breaking deadlocks. AC then sends 
the transaction history to CC and remote AC’s. If the read- 
set is invalid, the AC aborts the transaction. 

6) CC and remote AC’s reply to AC with a commit/ 
abort decision for the transaction. 

7) Once all votes are recorded from the local CC and 
the remote AC’s, AC informs AD of the commit/abort 
decision. 

8) AD sends the log/differential file to all AM’s and 
tells them to commit the transaction, if the transaction was 
deemed globally serializable by AC. 

9) AM writes all data of the committed transaction to 
the database. 

10) AM informs AC that the transaction’s data were 
successfully written. 

11) AC releases the commit-locks belonging to the 
transaction, and informs the local CC and all other AC’s. 
The remote AC’s release their commit-locks and inform 
their CC’s. The CC’s move the transaction to their com- 
mit lists. 

12) AC sends the transaction write-set to RC. RC clears 
fail-locks for items in the write-set. Fail-locks are set for 
any sites that are perceived to be down. 

13) AM tells AD that write was successful. AD in- 
forms user that the transaction has committed. 

Fig. 4 shows the communication paths between the 
servers in the second version, as discussed in Section 11, 
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TABLE I1 
EXECUTION TIME FOR TRANSACTIONS (IN SECONDS) 

transact ion 

select one tuple 

update one tuple 

Fig. 4. Transaction processing on a Raid site (second version). 

that will be used for efficient processing (still in test 
phase). The numeric labels refer to the phases in the life 
of a transaction from begin to commit as follows: 

0) U1 accepts a transaction from the user, and parses it 
as in the first version of Raid. AD interprets the parsed 
transaction, using the local database for reads, and re- 
cording updates in a log/differential file. 

1) AD forms a commit request and sends it to the TM. 
2) The TM transmits the commit request to remote 

3) The remote TM’s reply. 
4) The local TM makes a commit/abort decision and 

5 )  The AD acknowledges the commit/abort decision. 
6 )  The TM updates the database. 
7) The TM informs the remote TM’s that the transac- 

TM’s and invokes the local concurrency controller. 

returns it to the AD. 

tion is committed. 

111. EXPERIMENTS AND MEASUREMENTS IN RAID 
Raid provides a logging facility that automatically 

timestamps requested events, such as messages between 
servers. The logging facility is inexpensive and analysis 
is done offline to minimize the effects of measurement on 
performance. 

A .  Performance Measurements in Raid 
This section describes measurements of the perfor- 

mance of the transaction processing protocols in the first 
version of Raid. The following series of performance 
measurements were done on Sun 3/50’s (approximately 1 
MIPS machines) connected by a 10 megabit/second 
Ethernet3. The database for the experiment is 100 tuples 
from a truncated version of the thousand relation used in 
the benchmark described in [ 121. For example, the query 
database thousand, get thousand : thousand.ten = 8; 
can be used to select approximately 10 percent of the tu- 
ples. 

I )  Elapsed Time for  Transaction Processing: Table I1 
shows the time taken by transaction processing for several 
different database queries on Raid systems with varying 
numbers of sites. The times do not include the cost of 
interpreting the database query or the cost of translating 
the query to a transaction. 

3Ethernet is a trademark of Xerox Corporation. 

The fact that the processing time is fairly constant as 
the number of sites increase is due to the use of built-in 
multicast in the Raid layer of the communications pack- 
age [7], [8]. This lower level multicast only has to format 
the packet once regardless of the number of sites. Hence, 
the execution occurs in parallel on each site. Our estimate 
is that this time will remain constant up to around ten sites 
if we continue to use UDP as our transport mechanism. 
We have developed two kernel-level multicast mecha- 
nisms [7] that will help maintain this property for even 
larger numbers of sites. 

2) Server CPU Time: A significant fraction of the CPU 
time is spent processing messages. For instance, the CC 
spends 40 milliseconds of CPU time processing a simple 
transaction, about 10 milliseconds of which are spent in 
a single message roundtrip. The total CPU time for all of 
the servers is a small fraction of the elapsed time for each 
transaction. This suggests that multiple queries executing 
at the same time would be able to overlap significantly. 
CPU times for most of the servers are constant as the 
number of sites increases, but the AC does some addi- 
tional processing for each new site. Table I11 shows the 
CPU time taken by the AC for various numbers of sites. 
The times show a slight tendency to increase with the 
number of sites, but the variance in the measurements is 
too large to permit stronger statements. 

One main conclusion that we draw from this work is 
that the I/O and communication times dominate the pro- 
cessing time. Using the best algorithms for concurrency 
control or manipulating data structures in the best possible 
manner does not show up in the bottom line. 

B. Replicated Copy Control Experiments 
This set of experiments examines the effects of site fail- 

ures and recoveries on the consistency of replicated cop- 
ies by measuring how fast consistency can be restored and 
the overhead associated with replicated copy control al- 
gorithms. Experiments were conducted using database 
size, transaction length, and number of sites as indepen- 
dent variables [9], [5]. Here we present our results briefly. 

The experiments were run on mini-Raid [9], which uses 
the ROWAA protocol [4] and a strategy that includes con- 
cepts of session vectors and fail-locks to maintain the con- 
sistency of replicated data during site failure and recov- 
ery. Each entry of the session vector maintained at each 
site represents the number of times a particular site has 
recovered. Fail-locks maintained at an operational site are 
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transact ion 

select one tuples 

insert twenty tuples 

update one tuple 

TABLE 111 
CPU TIME USED BY ATOMICITY CONTROLLER (AC) (IN SECONDS) 

user sys user sys user sys user sys 

0.04 0.14 0.06 0.14 0.04 0.10 0.08 0.24 

0.20 0.16 0.08 0.14 0.10 0.12 0.08 0.10 

0.04 0.10 0.06 0.12 0.06 0.16 0.06 0.16 

I I 1 site I 2 sites I 3 sites I 4 sites I 

used to identify out-of-date items on a recovering site. We 
found that the overhead for a control transaction that an- 
nounces failures or recovery by manipulating the session 
vectors is comparable to the cost of a small database 
transaction. The copier transactions that refresh out-of- 
date copies (or clear fail-locks) add 50 percent overhead 
to the user transactions. To reduce this overhead one de- 
sign principle is to divide the recovery process into two 
steps. Before beginning the first step, a recovering site 
computes the percentage of the frequently referenced cop- 
ies that are fail-locked. If this percentage is greater than 
some fixed value, the recovering site enters step one. Oth- 
erwise the recovering site omits the first step and enters 
step two. In the first step copies are refreshed by normal 
transaction processing or by copier transactions induced 
when a user transaction attempts to read a fail-locked item. 
Once the percentage of fail-locked copies drops below the 
fixed value, the site starts step two. In the second step the 
recovering site begins to issue copier transactions in a 
“batch” mode for all fail-locked items. 

In another experiment, detailed in [5], we measured 
how setting the threshold level in a partially replicated 
system can affect data availability. The threshold is spec- 
ified at system configuration time. It refers to the mini- 
mum number of copies of each object to be maintained in 
the system. Availability is measured in terms of the num- 
ber of transactions aborted because of site failure and the 
resulting unavailability of data. The Mini-Raid system, 
extended for partial replication, was used for this exper- 
iment. Systems with different threshold levels were used. 
In each system, half the sites were failed and sets of trans- 
actions were processed as more failures and recoveries 
occurred. In a sample experiment, a 12 site system with 
a degree of replication of 3 was started up. The maximum 
transaction size used was set to 5 ,  and the number of fre- 
quently referenced items in the database was set to 100. 
The experiment was carried out for three different thresh- 
old levels of 1,  2, and 3 .  This experiment has shown that 
increasing the threshold level in a partially replicated sys- 
tem can improve availability. There is a knee in the 
threshold versus availability curve at a threshold of three. 
Increasing the threshold above this value yields a sub- 
stantially smaller improvement in availability. 

There are several design principles that we learned from 
these experiments. When deciding on the degree of rep- 
lication for a distributed system, two of the main concerns 
are transaction throughput and data availability. When 

comparing partially and fully replicated databases, it is 
true that partial replication requires remote access of non- 
local data, but this cost is low compared to the costs saved 
in the write operation. Namely, these savings are due to 
the reduction in message sizes, disk accesses, and the 
number of copier transactions. The other fear with having 
a low degree of replication is the nonavailability of data. 
Our experiments show [5] that maintaining the threshold 
automatically increases the availability significantly. In a 
12 site system with a degree of replication of 3 and a 
threshold of 3 ,  9 site failures caused only 5 percent of the 
transactions to be aborted. The top graph in Fig. 5 shows 
that many fail-locks get set in a fully replicated system. 
We note that if the number of failures is increased, fail- 
locks will be set on more sites causing substantial delays. 
Therefore, when designing a distributed database system, 
partial replication with automatic copy generation should 
be seriously considered. 

C. Communication Experiments 
The clock granularity on our Sun 3/50’s is 20 milli- 

seconds and the communications services in our experi- 
ments take less than 10 milliseconds. Most of our mea- 
surements are performed using a ping protocol. A single 
ping roundtrip consists of a message and a reply. We mea- 
sured the time required for several thousand round-trips, 
and averaged to determine the time for a single round- 
trip. This work was reported in full in [7]. 

I )  Ethernet Measurements: The experiments measure 
the roundtrip times for small datagram, such as those 
used for distributed commitment. The experiments were 
done using UDP and SE (Simple Ethernet), a suite oflow- 
level network services that we developed [8]. Table IV 
summarizes the costs of various components of datagram 
communication. The “Time” column gives the delay in- 
troduced by each component. 

The lesson from this study is that decreasing the device 
layering time needed to perform a kernel service is an ef- 
fective way to improve datagram speed. An alternative to 
directly decreasing the layering cost is to decrease the 
number of times the cost is incurred. For instance, mul- 
ticasting can transmit many datagrams with a single sys- 
tem call. 

2) Local IPC Measurements: One problem with using 
UNIX for building database systems is the poor perfor- 
mance of the Interprocess Communication (IPC) mecha- 
nisms [27]. We measured the performance of four IPC 
extensions to UNIX. The results of our measurements are 
shown in Table V.  Message passing using queues incurs 
f to $ the delay of UDP, depending on the size of the 
message. Shared memory with semaphores took substan- 
tially more time than message passing. This result was 
especially surprising since the shared memory approach 
only copied the data into the shared segment and not out 
of it,  while the message passing implementation copies 
data both ways. Omitting the copy from the 10 byte shared 
message experiment did not change the result, indicating 
that almost all of the elapsed time is due to the semaphore 
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TABLE V 
LOCAL COMMUNICATION COSTS (IN MILLISECONDS) 

MESSAGE SIZE 

2 Q Message Passing 
1 Q Message Passing 
Named Pipes 

UDP Communication 4.3 9.6 
Shared Memory 5.5 

operations. The high cost of semaphores is probably due 
to the complicated semaphore semantics. In particular, 
simple semaphores can be implemented more cheaply as 
message queues with one byte messages! 

3) Multicast Measurements: We sent messages to mul- 
tiple destinations according to three different approaches: 
kernel-level simulated multicast, physical multicast, and 
user-level simulated multicast. The results of the experi- 
ments are summarized in Table VI. 

The results indicate approximately a 38 percent im- 
provement in performance of the kernel-level simulated 
multicast facility when compared to the user-level simu- 
lated multicast. In both cases the time increases linearly 
with the number of destinations. However, the extra cost 
per destination for user-level multicast is 1.2 ms instead 

.of the 0.75 ms for the kernel-level case. Both the user- 
level and kernel-level multicast simulations use our SE 
protocol [8]. SE is already a stripped down protocol, per- 
forming roundtrips twice as fast as UDP. Performing the 

TABLE VI 
MULTICAST T I M I N G  F O R  V A R Y l K C i  N U M B E R  OF DESTINATIOUS 

Number 

level 

4.2 
8.0 

11.7 

experiment with UDP would add an additional 1.5 ms per 
destination for the user-level multicast, while adding only 
a constant 1 .5  ms to the kernel-level multicast. Sending 
to ten destinations, the user-level multicast would take 
2.7 * 10 = 27.0 ms, while the kernel-level multicast 
would take 2.7 + 0.75 * 9 = 9.45 ms, for a savings of 
over 50 percent. For systems like Raid, we plan to study 
how these new ideas of implementing multicasting affect 
performance. 

D. Concurrent Checkpointing Experiments 
To allow continuity of transaction processing in the 

Raid system, we must deal with the failure and restart of 
individual servers. To recover from failures, a global con- 
sistent state must be checkpointed distributively. In ad- 
dition, the restoration to a previous global state must be 
synchronized. We experiment with our algorithm [ 161 that 
allows concurrent and robust checkpointing and recovery 
in a distributed system. The experiment measures the 
elapsed time and CPU usage of a process during the exe- 
cution of the algorithm. Elapsed time denotes the delay 
in terms of the time that a process spends during the syn- 
chronization of checkpoint operations or rollback opera- 
tions with other processes. Details of these experiments 
are given in [6]. 

Checkpoint delay is the time to write the image of a 
process into the disk, while rollback delay is the time to 
read the image of a ~ C P _ S S  fro= the &st. We have ex- 
amined about 900 object files on a local UNIX system, 
some of which are system files, while others are user files. 
These cover over 90 percent of all the object files in the 
UNIX system. The size of these object files (excluding 
their text segments) ranges from 4K bytes to 48K bytes. 
The checkpoint and rollback were measured to take time 
ranging from 89 ms to 496 ms. The size of a synchroni- 
zation message is 22 bytes. 

1)  Measurements of Elapsed and CPU Times: In our 
experiments that were performed on mini-Raid, several 
server processes communicate through message queues in 
Sun UNIX. A coordinator initiates a synchronization in- 
stance, and sends request messages to some participants. 
Each experiment involves the following steps: 

1) Execute normal processes which send normal mes- 
sages to one another. 

2) Invoke a checkpoint starter or a rollback starter 
which sends a special message to designated processes. A 
process that receives this message initiates a checkpoint 
instance or a rollback instance, respectively. 
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3) Run a special command that stops the normal pro- 
cesses. 

In the experiments we measure the performance of the 
coordinator and participants separately during the execu- 
tion of the algorithm. A synchronization instance has two 
to ten processes. Fig. 6 shows elapsed time for checkpoint 
instances with respect to three different single checkpoint 
delays: 89 ms, 251 ms, 496 ms. 

In Fig. 7 we show CPU usage in the following three 
cases: a) two checkpoint instances interfere with each 
other, b) two rollback instances interfere with each other, 
and c) two checkpoint instances and two rollback in- 
stances interfere with each other. 

Elapsed time of the coordinator gives us an idea about 
the interval between checkpoint instances. If the coordi- 
nator spends t (elapsed) time to checkpoint, then the co- 
ordinator should wait for at least t time before initiating a 
second checkpoint instance. In the worst case, the mes- 
sage overhead of the coordinator can increase quadrati- 
cally as the number of participants increases. The mea- 
surements lead to the conclusion that concurrent execution 
does not reduce the message overhead or CPU usage. How- 
ever, concurrent execution can reduce the synchroniza- 
tion delay by about 100 percent if all the instances are 
initiated at about the same time and have the same partic- 
ipating processes. 

IV. FUTURE WORK A N D  CONCLUSIONS 

and performance. Instead we plan to investigate a variety 
of algorithms, evaluate their performance in our labora- 
tory, identify useful observations and design principles, 
and finally to implement them in the Raid system. The 
ultimate hope is that various experiments can be de- 
signed, performed, and analyzed to give insight to other 
builders of such systems. Currently we are limited by the 
lack of good benchmarks for transaction processing, 
models for failures, measurement tools, and by the use of 
UNIX for our environment. 

Our measurements and experiments that have been 
completed so far will provide input parameters for future 
experiments. In the process, we have developed excellent 
facilities and software for doing our future experimental 
work. We are planning the following experiments. 

1) We plan to study the implementation and perfor- 
mance of transaction processing protocols in the operating 
system kernel and measure the performance enhance- 
ments. We plan to implement the Push system described 
briefly in Section IV-A. 

2 )  We plan to evaluate the dynamic quorum algorithms 
for replicated copies. We will experiment with network 
partitioning and multiple site failures. 

3) We plan to perform measurements with the new im- 
plementation of Raid where several servers reside within 
the same process. 
4) We plan to identify the cost of dynamic reconfigur- 

ation and adaptation. What are the overheads associated 
with synchronizing multiple accesses to the state infor- 
mation? Is throughput reduced during adaptation? Under 
what conditions is adaptability beneficial? 

A .  Kernel-Level Execution of User-Dejined Protocols 

The need for the implementation of transaction pro- 
cessing protocols in the operating system kernel has been 
discussed in [25].  We have designed software called 
PUSH [7] to provide an experimental platform for mea- 
suring the benefits of such kernel support. We briefly de- 
scribe the mechanisms in terms of network services, al- 
though it is applicable to other operating systems services, 
such as process management, memory management, and 
file system buffer management. 

Our approach is to dynamically load special procedures 
into the kernel to process complete communication pro- 
tocols with a single system call. These procedures will be 
written in a simple language that can be interpreted by the 
kernel in an efficient but safe manner. The approach is 
similar to the packet filter described in [ 191, in which user 
specified code can be dynamically loaded into the kernel 
to demultiplex packets for user-level implementations of 
network protocols. Our routines would be able to collect 
multiple messages, generate response packets, and only 
return to the user once for a complex interaction. For in- 
stance, a multiphase commit protocol could be written in 
this language that would send and receive two messages - -  - 

Our plan is not limited to just building a distributed 
database system and making claims on its implementation 

for every site in the system with a single system call. 
A KUP (Kernel-level execution of User-level Proto- 
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cols) language is one in which a user can specify complex 
service requests that will be executed entirely within the 
kernel. KUP programs are invoked with special system 
calls. They can issue read and write requests using exist- 
ing network services such as UDP, IP, or SE [8]. A KUP 
language must satisfy the conflicting goals of providing 
efficiency, maintaining address space protection within the 
kernel, and preventing one process from excluding others 
from the CPU. 

We have designed a particular KUP language called 
Push. Push is a simple stack-based language which can 
be interpreted efficiently within the kernel. In [7] we de- 
scribe the language, and give two example Push pro- 
grams, one for kernel-level multicast and one for a rnul- 
tiple RPC call. In [7] we estimate the performance 
improvements expected from Push based on the commu- 
nications software measurements in [8]. We find that 
MultiRPC calls using UDP could be performed at least 25 
percent faster using Push. We also compared the cost of 
the Push implementation of simulated multicast with the 
C language implementation described in [7]. Another po- 
tential use of the Push language is for applications that 
require guaranteed response times. For instance, many 
fault-tolerance protocols require the detection of failed 
hosts or networks within a bounded time. Also, real-time 
applications require the responses arrive before a speci- 
fied time. 

In the near future, we will have answers to the follow- 
ing questions. What is the impact of a KUP implementa- 
tion on kernel size and performance? What other kernel 
support is needed for distributed processing? We want to 
implement Push and use it to experiment with other ker- 
nel-level protocols. 

B.  Conclusions 
Raid has bzen successful in  developing a software in- 

frastructure that promotes experimentation. Central to this 
capability is the server philosophy, which clearly defines 
the interfaces to the functional components of the system. 
New implementations need only match this interface to 
run correctly as Raid servers. Current performance prob- 
lems are caused both by the additional operating system 
overhead of managing multiple processes, and by the ex- 
pensive communication primitives available. To correct 
these problems we have modified the design to provide 
for a high-performance single-process version of Raid. 

We made an early decision that the communications 
system would be datagram based. This works well for 
small control messages, but for messages containing large 
amounts of data it uses excessive resources. For instance, 
the log or differential file that is transmitted to the Access 
Manager to be merged with the database must be placed 
in a single large buffer, fragmented by LDG, transmitted 
in pieces by UDP/IP, placed into a single large buffer, 
and finally passed to the AM. Our future implementation 
will transmit the log as a stream or as a series of data- 
grams, and the AM will process and discard each frag- 
ment as i t  receives i t .  

The need for concurrent execution in several server 
types has been a problem. The AD must be able to process 
several user transactions concurrently. We provide for this 
by creating a different AD for each user. This approach 
has the disadvantages that it creates many new processes 
between which UNIX must context-switch, that multiple 
copies of the code for executing transactions must be 
loaded into memory, and that database caches can only 
be kept on a per-user basis. The AC supervises distributed 
commitment for multiple transactions simultaneously. 
Currently it maintains the state for each transaction inter- 
nally, looking up the corresponding transaction for each 
message it receives. Since this approach does not provide 
for any form of preemptive scheduling, i t  is essential that 
the AC process each message quickly, so that other in- 
coming packets are not discarded. The AC implementa- 
tion would be simplified if the operating system provided 
preemptive scheduling within the AC address space. In 
addition, the CC could be modified to process multiple 
transactions simultaneously. Each of these servers would 
benefit from operating system support for multiple light- 
weight processes within the same address space. We are 
planning an empirical investigation of the implementation 
and performance advantages of lightweight process sup- 
port. 

Currently our processing times are around 400 milli- 
seconds for one to seven reads and 500 milliseconds for 
writes. Our times are slightly higher than CAMELOT 
times [23], since we deal with an action that reads or 
writes in tuple in a database relation and not just a single 
value. In addition, we use a separate server for each func- 
tion on a site for the measurements, so our timings include 
the overhead of communications among the servers. For 
more discussion see [2]. 
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