Voronoi Diagrams (chapter 7)

Elisha Sacks

Voronoi Diagram

The Voronoi diagram of sites p_{1}, \ldots, p_{n} is the subdivision in which each p_{i} has a cell $V\left(p_{i}\right)$ containing the points that are closer to it than to any other site.

Bisector

- Voronoi diagrams are defined in terms of bisectors.
- The bisector of a and b is the line through the midpoint $p=(a+b) / 2$ of $a b$ and with direction $u=\left(b_{y}-a_{y}, a_{x}-b_{x}\right)$ perpendicular to $b-a$.
- The points on the bisector are equidistant from a and b.
- The points on the a side are closer to a than to b.
- They form the open half space $h(a, b)$.

Structure

- The cell $V\left(p_{i}\right)$ is $\cap_{p_{j} \neq p_{i}} h\left(p_{i}, p_{j}\right)$, hence is convex.
- An edge $e_{i j}$ consists of the points that are equidistant from p_{i} and p_{j} and are farther from every other site.
- A vertex $v_{i j k}$ is the intersection point of $e_{i j}, e_{j k}, e_{i k}$. It is equidistant from p_{i}, p_{j}, p_{k} and is not closer to any other site.
- Four edges can meet at a vertex, but this is degenerate.

Connectedness

Theorem 7.2 The Voronoi diagram is connected unless the points are collinear in which case it consists of parallel lines.
Proof

- If the Voronoi diagram were disconnected, it would have a cell bounded by two parallel bisectors, since cells are convex.
- Suppose $e=e_{i j}$ is such an edge.
- Let p_{k} be a site that is not collinear with p_{i} and p_{j}.
- The bisector of p_{j} and p_{k} intersects e.
- The part of e in $h\left(p_{k}, p_{j}\right)$ is closer to p_{k} than to p_{j}.
- This contradicts e being a Voronoi edge.
- The second part of the proof is easy.

Cell Complexity

- The complexity of a cell can be linear in the number of sites.
- The sites need not lie on a circle.

Voronoi Diagram Complexity

Theorem 7.3 The Voronoi diagram of n sites has at most $2 n-5$ vertices and $3 n-6$ edges.
Proof We can assume $n \geq 3$ because the bounds are negative otherwise. Add a vertex v_{∞} above the others. Deform and shorten the unbounded edges to make them incident on this vertex without intersecting each other. Wrap the edges that point left clockwise and the ones that point right counterclockwise.

Voronoi Diagram Complexity (continued)

- Let n_{v} and n_{e} be the numbers of Voronoi vertices and edges.
- Every vertex is incident on at least three edges (why v_{∞} ?) and every edge is incident on two vertices, so $2 n_{e} \geq 3\left(n_{v}+1\right)$.
- The Euler equation yields

$$
2=n_{v}+1-n_{e}+n \leq 2 n_{e} / 3-n_{e}+n, \text { so } n_{e} \leq 3 n-6 .
$$

- The Euler equation then yields

$$
n_{v}=n_{e}+1-n \leq 3 n-6+1-n=2 n-5 .
$$

Largest Empty Circle

- The largest empty circle $C_{P}(q)$ is the largest circle centered at q whose interior contains no points of P.
- A point q is a Voronoi vertex iff the boundary of $C_{P}(q)$ contains 3 or more sites.
- The bisector of p_{i} and p_{j} defines a Voronoi edge iff it has a point q such that the boundary of $C_{P}(q)$ contains p_{i} and p_{j}, but no other sites.

Fortune's Algorithm

- Sweep a horizontal line ℓ downwards.
- The points equidistant to a site p_{i} and ℓ form a parabola.
- The lower envelope of the parabolas, called the beach line, consists of arcs whose meeting points are called breakpoints.
- The portion of the Voronoi diagram above the beach line is independent of the sites below ℓ.

Fortune's Algorithm (continued)

- The algorithm tracks the evolution of the beach line.
- The breakpoints trace the Voronoi edges.
- They enter and exit the sweep at sites and at Voronoi vertices.
- Breakpoints that never exit define unbounded edges.

Evolving Breakpoints

- Consider sites p_{i} and p_{j}.
- The breakpoints p_{i} / p_{j} and p_{j} / p_{i} trace the edge $e_{i j}$.
- The breakpoint p_{i} / p_{j} has p_{i} to its right and p_{j} to its left.
- Its tangent is 90° clockwise from $p_{j}-p_{i}$.

Site Event

- The p_{i} site event occurs when ℓ crosses p_{i}.
- Split the arc above p_{i} at the x coordinate of p_{i}.
- Insert a p_{i} arc between the resulting two arcs.
- Insert $\left(p_{j} / p_{i}, p_{i} / p_{j}\right)$ into the beach line.
- p_{j} / p_{i} moves left and p_{i} / p_{j} moves right because $p_{i y}<p_{j y}$.

Circle Event

- A p_{j} circle event occurs when its arc α^{\prime} leaves the beach line.
- The breakpoints p_{i} / p_{j} and p_{j} / p_{k} are replaced by p_{i} / p_{k}.
- The p_{i} arc α and the p_{k} arc $\alpha^{\prime \prime}$ meet at p_{i} / p_{k}.
- The edges $e_{i j}, e_{j k}, e_{i k}$ meet at $q=v_{i j k}$.
- The sweep line is tangent from below to $C_{P}(q)$.

Circle Event Detection

- Breakpoints p_{i} / p_{j} and p_{j} / p_{k} become adjacent.
- The center and radius of the p_{i}, p_{j}, p_{k} circle are q and r.
- If $\operatorname{LT}\left(p_{i}, p_{j}, p_{k}\right)<0$, the breakpoints converge to q.
- A candidate circle event is posted at $q_{y}-r$.
- If $C_{P}(q)$ contains a site, p_{i} / p_{j} or p_{j} / p_{k} no longer exists at $q_{y}-r$, so the candidate is rejected.

No Other Events

interior point entry

breakpoint entry

Lemma 7.6 A site event is the only way an arc enters the beach line.

Proof An arc might enter the beach line at an interior point of a prior arc or at a breakpoint of two prior arcs. We will rule both out.

No Interior Point Entry

- Let β_{i} and β_{j} be the parabolas of p_{i} and p_{j}.
- Suppose β_{i} and β_{j} are tangent for some ℓ.
- $\beta_{i}(x)=\beta_{j}(x)$ and $\beta_{i}^{\prime}(x)=\beta_{j}^{\prime}(x)$
- $\beta_{i}(x)=\frac{\left(x-x_{i}\right)^{2}}{2\left(y_{i}-l\right)}+\frac{y_{i}+l}{2}$
- $\beta_{i}^{\prime}(x)=\frac{x-x_{i}}{y_{i}-l}$
- $\beta_{i}^{\prime}(x)=\beta_{j}^{\prime}(x)$ implies $x-x_{j}=\frac{x-x_{i}}{y_{i}-I}\left(y_{j}-I\right)$
- $\beta_{i}(x)=\beta_{j}(x)$ implies $\frac{\left(x-x_{i}\right)^{2}}{\left(y_{i}-I\right)^{2}}\left(y_{i}-y_{j}\right)=y_{j}-y_{i}$
- This implies $y_{i}=y_{j}$, so $\beta_{i}^{\prime}(x)=\beta_{j}^{\prime}(x)$ implies $x_{i}=x_{j}$.

No Breakpoint Entry

- Suppose q is an entry point of β_{j} on the β_{i} / β_{k} breakpoint.
- There is a circle C clockwise through p_{i}, p_{j}, p_{k} tangent to ℓ.
- One vertex, say p_{k}, is closer than p_{j} to ℓ.
- This remains true as ℓ moves down (solid line and circle).
- The vertex p_{k} is closer than p_{j} to ℓ.

All Vertices Found

Lemma 7.8 Every Voronoi vertex is found by a circle event.
Proof Let sites p_{i}, p_{j}, and p_{k} be in clockwise order around the empty circle $C\left(p_{i}, p_{j}, p_{k}\right)$. Assume that no other sites are on C; the degenerate case is trickier.
Just before the sweepline reaches the bottom of C, it is tangent to an empty circle through p_{i} and p_{j}. The center of this circle is a p_{i} / p_{j} breakpoint. A p_{j} / p_{k} breakpoint exists by the same reasoning. These breakpoints are adjacent, so the circle C event occurs.

Algorithm Complexity

The complexity of Fortune's algorithm is $O(n \log n)$.

- There are $O(n)$ events by Theorem 7.3.
- There are $O(1)$ rejected circle candidates per event.
- Rejected candidates do not generate events or candidates.
- Handling an event is $O(\log n)$ for beach line updating.

Degenerate Cases

- The algorithm extends to the degenerate cases.
- Degenerate vertices lead to zero-length edges.
- Sites with equal y coordinates are usually harmless.
- Special logic is needed if they are the highest sites.
- A site below a breakpoint also leads to zero-length edges.

Implementation

1. Construct the subdivision vertices and edges.

- Each breakpoint moves along an edge from tail to head.
- Site event for p_{i} below p_{j}
- Create p_{i} / p_{j} and p_{j} / p_{i} edges with null tails.
- Circle event for p_{i} / p_{j} and p_{j} / p_{k}
- Create the vertex $v_{i j k}$,
- Set the tails of p_{j} / p_{i} and p_{k} / p_{j} to $v_{i j k}$,
- Create the p_{i} / p_{k} edge with tail $v_{i j k}$, and
- Create the p_{k} / p_{i} edge with a null tail.

2. Construct a bounding box for the vertices and the sites.
3. End the unbounded rays at the bounding box and refine it.
4. Construct the subdivision faces.

Beach Line

- The beach line is represented with a binary tree.
- The breakpoints are the internal nodes.
- The arcs are the leaf nodes.
- A p_{i} site event replaces a leaf with two internal nodes and three leafs.
- The only comparison is between $p_{i x}$ and a breakpoint x.
- A circle event replaces two internal nodes and three leafs with one internal node and two leafs.
- No comparisons are performed.

Beach Line Order

- The book does not say how to compute the x order of a site c with respect to a breakpoint a / b or b / a.
- If $\operatorname{LT}(a, b, c)>0, c$ and a / b project to opposite sides $a b$.
- For b / a, let o be the center of the a, b, c circle.
$-c$ projects to the same side of b / a and o (cases c_{1} and c_{2}).

Voronoi Diagram of Line Segments

- Line segments cannot share endpoints.
- Bisectors consist of line segments and parabolic arcs.
- Fortune's algorithm generalizes; the book omits the details.

