
Polygon Triangulation (chapter 3)

Elisha Sacks



Polygon Triangulation

I Decompose a polygon into triangles.

I Applications: calculation, drawing, camera coverage.



Existence Proof

v

w

u

Theorem 3.1 Every n-vertex polygon has a triangulation and
every triangulation has n − 2 triangles.
Proof

I A triangle (n = 3) is trivial, so consider n > 3.

I Lemma: there are vertices u and w with uw in the interior.

I This diagonal splits the polygon into polygons with m and
n −m + 2 vertices.

I Triangulate them with m − 2 and n −m triangles.

I The union is a triangulation with n − 2 triangles.

I The proof yields an O(n2) algorithm.



Proof of Lemma

v

w

u

v

w

u

v
′

I Let v be the leftmost vertex with neighbors u and w .

I If uw is in the interior, we are done.

I Otherwise, an edge intersects uw .

I Consequently, a vertex is inside the triangle uvw .

I Let v ′ be the vertex in uvw farthest from uw .

I For vv ′ to intersect an edge, one endpoint must be farther
from uw than v ′, which contradicts its definition.

I Hence, vv ′ is a diagonal.



Convex Decomposition

I Decompose the polygon into convex polygons.

I Triangulate each convex polygon with diagonals from one
vertex to the others.

I Problem: convex decomposition is hard.



Monotone Decomposition

y-axis

I A polygon is y -monotone if a horizontal line intersects it in a
closed interval or in the empty set.

I The polygon consists of two y -monotone vertex chains that
share a top and a bottom vertex.

I We decompose the input polygon into y -monotone polygons
in O(n log n) time then triangulate them in O(n) time.



Types of Vertices

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14
v15

e1

e2

e3e4e5

e6

e7
e8

e9

e10

e11

e13

e14

e15

e12

= merge vertex

= regular vertex

= end vertex

= start vertex

= split vertex

I Start: maximum left turn (interior below).

I End: minimum left turn (interior above).

I Split: maximum right turn (the interior above).

I Merge: minimum right turn (interior below).

I Regular: increasing or decreasing (interior left or right).



Monotonicity Condition

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14
v15

e1

e2

e3e4e5

e6

e7
e8

e9

e10

e11

e13

e14

e15

e12

= merge vertex

= regular vertex

= end vertex

= start vertex

= split vertex

Lemma 3.4 A polygon P is y -monotone iff it has no split or
merge vertices.
Proof Only if is easy: a horizontal just above a merge or just
below a split intersects the polygon in at least two segments. To
prove if, suppose P has no splits or merges yet is not y -monotone.



Proof of If

ℓp q r ℓ

P

merge vertex

p = r q r
′

split vertex(a) (b)

P

P

I There is a line ` that intersects P in multiple segments.

I Let pq be the leftmost segment.

I Follow the boundary from q with the interior on the left.

I Let r be the next intersection point with `.

I (a) If p 6= r , the highest vertex between q and r is a split.

I (b) if p = r , follow the boundary in the other direction to r ′.

I Since there are multiple components, p 6= r ′ and the lowest
vertex between q and r ′ is a merge.



Decomposition Strategy

v

Insert a diagonal from each split/merge to a vertex above/below.

The merges and splits are monotone in the sub-polygons because
the diagonals go in the opposite direction to their edges.



Algorithm

e j ek

vi

ℓ

ei−1 ei

helper(e j)

I Sweep the polygon from top to bottom with a horizontal line.

I The events are the vertices.

I Add an upward diagonal from each split vertex.

I Add a downward diagonal from each merge vertex.



Split Vertices

e j ek

vi

ℓ

ei−1 ei

helper(e j)

The helper of an edge e is the lowest vertex v above the sweep line
such that the horizontal segment from v to e is in the polygon.

I A split vertex vi connects to the helper of its left edge ej .

I This occurs at the vi event.



Merge Vertices

e j

vi ek

vm

diagonal will be added

when the sweep line

reaches vm

I A merge vertex vi connects to the highest vertex below vi that
is a helper of its left edge ej .

I The vi event sets the helper of ej to vi .

I vm is the next helper of ej or its lower endpoint.



Diagonals

e j ek

vi

ℓ

ei−1 ei

helper(e j)

I Every diagonal goes up from a vertex vi to the helper of its
left edge ej .

I Either vi is a split vertex or the helper is a merge vertex.

I Both cases can occur together.



Algorithm Details

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

e1

e2

e3
e4e5

e6

e7

e8

e9

e10

e11

e13

e14

e15

e12

I The edges with the interior on the right that intersect the
sweep line are stored in a tree T in left to right order.

I The tree and the helpers of its edges are updated at events.



Start Vertex

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

e1

e2

e3
e4e5

e6

e7

e8

e9

e10

e11

e13

e14

e15

e12

1. Insert ei in T and set helper(ei ) to vi .

Example v5: insert e5.



End Vertex

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

e1

e2

e3
e4e5

e6

e7

e8

e9

e10

e11

e13

e14

e15

e12

1. If helper(ei−1) is a merge, add a diagonal from vi to it.

2. Delete ei−1 from T .

Example v15: helper(e14) = v14, which is not a merge.



Split Vertex
v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

e1

e2

e3
e4e5

e6

e7

e8

e9

e10

e11

e13

e14

e15

e12

1. Use T to find the edge ej left of vi .

2. Add a diagonal from vi to helper(ej).

3. Set helper(ej) to vi .

4. Insert ei in T and set helper(ei ) to vi .

Example v14: e9 is the left edge with helper v8. Add a diagonal
from v14 to v8.



Merge Vertex

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

e1

e2

e3
e4e5

e6

e7

e8

e9

e10

e11

e13

e14

e15

e121. if helper(ei−1) is a merge, add a diagonal from vi to it.

2. Delete ei−1 from T .

3. Use T to find the edge ej left of vi .

4. If helper(ej) is a merge vertex, insert a diagonal from vi to it.

5. Set helper(ej) to vi .

Example v8: the helper v2 of e7 is a merge, so add a diagonal from
v8 to v2; the edge to the left is e9 and its helper v9 is a start vertex.



Regular Vertex

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

e1

e2

e3
e4e5

e6

e7

e8

e9

e10

e11

e13

e14

e15

e12

HANDLEREGULARVERTEX(vi)
1. if the interior of P lies to the right of vi
2. then if helper(ei−1) is a merge vertex
3. then Insert the diagonal connecting vi to helper(ei−1) in D.
4. Delete ei−1 from T.
5. Insert ei in T and set helper(ei) to vi.
6. else Search in T to find the edge e j directly left of vi.
7. if helper(e j) is a merge vertex
8. then Insert the diagonal connecting vi to helper(e j) in D.
9. helper(e j) ← vi

12

Example: v6 has the interior to the right: add a diagonal to v4.



Correctness

e j

vm

vi

Q

ek

Lemma 3.5 The diagonals do not intersect each other or P.
Proof We will discuss a split vertex vi ; the other cases are similar.

I ej and ek are the closest edges left and right of vi
I vm is the helper of ej , so the diagonal is vivm.

I The rectangle Q contains no vertices.

I An edge of P that intersects vivm must intersect the
horizontal that connects vi to ej or that connects vm to ej .

I This is impossible because ej is directly left of vi and vm.

I Prior diagonals cannot intersect vivm because they are above
vi and cannot have an endpoint in Q.



Complexity

I The running time is O(n log n) for y sorting and T insertion.

I The space complexity is O(n).



Monotone Polygon Triangulation

b

d
e

c

a

funnel

A monotone polygon is triangulated with a greedy algorithm that
processes the vertices in decreasing y order.

The algorithm employs a stack of vertices in decreasing y -order
with the lowest vertex at the top. Example: abcde.

The bottom vertex is from one side of the polygon and the rest of
the stack is a portion of the other side that is concave upward.



Monotone Polygon Triangulation

b

d
e

c

a

funnel

The vertices of the stack form a polygonal chain, comprised of
polygon edges and of diagonals, above which the polygon has
already been triangulated.

The chain and the downward edge from the bottom vertex form a
funnel.

The triangulation is extended by inserting diagonals from the
vertex below the stack to the stack vertices wherever possible.



Algorithm

1. Place the vertices in decreasing y order v1, . . . , vn.

2. Initialize the stack to (v1, v2).

3. For j = 3 to n − 1
I Case 1: vj on the opposite chain from the stack top.
I Case 2: vJ on the same chain as the stack top.

4. Insert a diagonal from vn to each stack vertex, except for the
first and last.

Why is the last vertex a special case?



Case 1

v j

popped

pushed

popped and

pushed

e

I The vertex vj is on the opposite chain from the stack top.

I Generate triangles from vj and the stack edges.

I The new stack is the old top then vj .



Case 2

pushed

v j

popped

pushed

v j

popped and

pushed

popped and

pushed

I The vertex vj is on the same side as the stack top.

I Generate triangles from vj and the stack edges that it sees.

I The new stack is the other stack edges then vj .

When does vj see stack edge ab with ay < by?
abvj is a left/right turn for ab a left/right edge.



Case 2

pushed

v j

popped

pushed

v j

popped and

pushed

popped and

pushed

I The vertex vj is on the same side as the stack top.

I Generate triangles from vj and the stack edges that it sees.

I The new stack is the other stack edges then vj .

When does vj see stack edge ab with ay < by?

abvj is a left/right turn for ab a left/right edge.



Case 2

pushed

v j

popped

pushed

v j

popped and

pushed

popped and

pushed

I The vertex vj is on the same side as the stack top.

I Generate triangles from vj and the stack edges that it sees.

I The new stack is the other stack edges then vj .

When does vj see stack edge ab with ay < by?
abvj is a left/right turn for ab a left/right edge.



Degeneracy

I Vertices a1 = (x1, y) and a2 = (x2, y) are degenerate.

I The book specifies that a1 is below a2 if x1 > x2.

I This handles the degeneracies in the sweep algorithm.

I The greedy algorithm is degenerate when three consecutive
vertices are collinear.

I The lowest vertex does not see the edge formed by the upper
two vertices.



Generalizations

polygon with holes

subdivision



Art Gallery Problem

Compute a minimal set of points inside a polygon from which
every point in the polygon is visible.



Solution Using Triangulation

1. Triangulate the polygon.

2. Compute a vertex 3-coloring of the triangulation.

3. Select the smallest color class.

I Conclusion: bn/3c of the n vertices suffice.

I The book shows a polygon for which this bound is tight.



Computing the 3-coloring

?

µ

ν

I The dual graph has a node for each triangle and an edge
between triangles that share a diagonal.

I It is acyclic because every diagonal splits the polygon.

I Traverse the dual graph in depth-first order.

I Color the vertices of the first triangle.

I When crossing an edge into a triangle, color its third vertex
differently from the edge vertices.


