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Polygon Triangulation

I Decompose a polygon into triangles.

I Applications: calculation, drawing, camera coverage.



Existence Proof
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Theorem 3.1 Every n-vertex polygon has a triangulation and
every triangulation has n − 2 triangles.
Proof

I A triangle (n = 3) is trivial, so consider n > 3.

I Lemma: there are vertices u and w with uw in the interior.

I This diagonal splits the polygon into polygons with m and
n −m + 2 vertices.

I Triangulate them with m − 2 and n −m triangles.

I The union is a triangulation with n − 2 triangles.

I The proof yields an O(n2) algorithm.



Proof of Lemma

v

w

u

v

w

u

v
′

I Let v be the leftmost vertex with neighbors u and w .

I If uw is in the interior, we are done.

I Otherwise, an edge intersects uw .

I Consequently, a vertex is inside the triangle uvw .

I Let v ′ be the vertex in uvw farthest from uw .

I For vv ′ to intersect an edge, one endpoint must be farther
from uw than v ′, which contradicts its definition.

I Hence, vv ′ is a diagonal.



Convex Decomposition

I Decompose the polygon into convex polygons.

I Triangulate each convex polygon with diagonals from one
vertex to the others.

I Problem: convex decomposition is hard.



Monotone Decomposition

y-axis

I A polygon is y -monotone if a horizontal line intersects it in a
closed interval or in the empty set.

I The polygon consists of two y -monotone vertex chains that
share a top and a bottom vertex.

I We decompose the input polygon into y -monotone polygons
in O(n log n) time then triangulate them in O(n) time.



Types of Vertices
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= merge vertex

= regular vertex

= end vertex

= start vertex

= split vertex

I Start: maximum left turn (interior below).

I End: minimum left turn (interior above).

I Split: maximum right turn (the interior above).

I Merge: minimum right turn (interior below).

I Regular: increasing or decreasing (interior left or right).



Monotonicity Condition
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= merge vertex

= regular vertex

= end vertex
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Lemma 3.4 A polygon P is y -monotone iff it has no split or
merge vertices.
Proof Only if is easy: a horizontal just above a merge or just
below a split intersects the polygon in at least two segments. To
prove if, suppose P has no splits or merges yet is not y -monotone.



Proof of If
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I There is a line ` that intersects P in multiple segments.

I Let pq be the leftmost segment.

I Follow the boundary from q with the interior on the left.

I Let r be the next intersection point with `.

I (a) If p 6= r , the highest vertex between q and r is a split.

I (b) if p = r , follow the boundary in the other direction to r ′.

I Since there are multiple components, p 6= r ′ and the lowest
vertex between q and r ′ is a merge.



Decomposition Strategy
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Insert a diagonal from each split/merge to a vertex above/below.

The merges and splits are monotone in the sub-polygons because
the diagonals go in the opposite direction to their edges.



Algorithm
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I Sweep the polygon from top to bottom with a horizontal line.

I The events are the vertices.

I Add an upward diagonal from each split vertex.

I Add a downward diagonal from each merge vertex.



Split Vertices
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The helper of an edge e is the lowest vertex v above the sweep line
such that the horizontal segment from v to e is in the polygon.

I A split vertex vi connects to the helper of its left edge ej .

I This occurs at the vi event.



Merge Vertices
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I A merge vertex vi connects to the highest vertex below vi that
is a helper of its left edge ej .

I The vi event sets the helper of ej to vi .

I vm is the next helper of ej or its lower endpoint.



Diagonals
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I Every diagonal goes up from a vertex vi to the helper of its
left edge ej .

I Either vi is a split vertex or the helper is a merge vertex.

I Both cases can occur together.



Algorithm Details
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I The edges with the interior on the right that intersect the
sweep line are stored in a tree T in left to right order.

I The tree and the helpers of its edges are updated at events.



Start Vertex
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1. Insert ei in T and set helper(ei ) to vi .

Example v5: insert e5.



End Vertex
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1. If helper(ei−1) is a merge, add a diagonal from vi to it.

2. Delete ei−1 from T .

Example v15: helper(e14) = v14, which is not a merge.



Split Vertex
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1. Use T to find the edge ej left of vi .

2. Add a diagonal from vi to helper(ej).

3. Set helper(ej) to vi .

4. Insert ei in T and set helper(ei ) to vi .

Example v14: e9 is the left edge with helper v8. Add a diagonal
from v14 to v8.



Merge Vertex
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e121. if helper(ei−1) is a merge, add a diagonal from vi to it.

2. Delete ei−1 from T .

3. Use T to find the edge ej left of vi .

4. If helper(ej) is a merge vertex, insert a diagonal from vi to it.

5. Set helper(ej) to vi .

Example v8: the helper v2 of e7 is a merge, so add a diagonal from
v8 to v2; the edge to the left is e9 and its helper v9 is a start vertex.



Regular Vertex
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HANDLEREGULARVERTEX(vi)
1. if the interior of P lies to the right of vi
2. then if helper(ei−1) is a merge vertex
3. then Insert the diagonal connecting vi to helper(ei−1) in D.
4. Delete ei−1 from T.
5. Insert ei in T and set helper(ei) to vi.
6. else Search in T to find the edge e j directly left of vi.
7. if helper(e j) is a merge vertex
8. then Insert the diagonal connecting vi to helper(e j) in D.
9. helper(e j) ← vi

12

Example: v6 has the interior to the right: add a diagonal to v4.



Correctness
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Lemma 3.5 The diagonals do not intersect each other or P.
Proof We will discuss a split vertex vi ; the other cases are similar.

I ej and ek are the closest edges left and right of vi
I vm is the helper of ej , so the diagonal is vivm.

I The rectangle Q contains no vertices.

I An edge of P that intersects vivm must intersect the
horizontal that connects vi to ej or that connects vm to ej .

I This is impossible because ej is directly left of vi and vm.

I Prior diagonals cannot intersect vivm because they are above
vi and cannot have an endpoint in Q.



Complexity

I The running time is O(n log n) for y sorting and T insertion.

I The space complexity is O(n).



Monotone Polygon Triangulation
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A monotone polygon is triangulated with a greedy algorithm that
processes the vertices in decreasing y order.

The algorithm employs a stack of vertices in decreasing y -order
with the lowest vertex at the top. Example: abcde.

The bottom vertex is from one side of the polygon and the rest of
the stack is a portion of the other side that is concave upward.



Monotone Polygon Triangulation
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The vertices of the stack form a polygonal chain, comprised of
polygon edges and of diagonals, above which the polygon has
already been triangulated.

The chain and the downward edge from the bottom vertex form a
funnel.

The triangulation is extended by inserting diagonals from the
vertex below the stack to the stack vertices wherever possible.



Algorithm

1. Place the vertices in decreasing y order v1, . . . , vn.

2. Initialize the stack to (v1, v2).

3. For j = 3 to n − 1
I Case 1: vj on the opposite chain from the stack top.
I Case 2: vJ on the same chain as the stack top.

4. Insert a diagonal from vn to each stack vertex, except for the
first and last.

Why is the last vertex a special case?



Case 1
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I The vertex vj is on the opposite chain from the stack top.

I Generate triangles from vj and the stack edges.

I The new stack is the old top then vj .
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I The vertex vj is on the same side as the stack top.

I Generate triangles from vj and the stack edges that it sees.

I The new stack is the other stack edges then vj .

When does vj see stack edge ab with ay < by?
abvj is a left/right turn for ab a left/right edge.



Case 2
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I The vertex vj is on the same side as the stack top.

I Generate triangles from vj and the stack edges that it sees.

I The new stack is the other stack edges then vj .

When does vj see stack edge ab with ay < by?

abvj is a left/right turn for ab a left/right edge.
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I The vertex vj is on the same side as the stack top.

I Generate triangles from vj and the stack edges that it sees.

I The new stack is the other stack edges then vj .

When does vj see stack edge ab with ay < by?
abvj is a left/right turn for ab a left/right edge.



Degeneracy

I Vertices a1 = (x1, y) and a2 = (x2, y) are degenerate.

I The book specifies that a1 is below a2 if x1 > x2.

I This handles the degeneracies in the sweep algorithm.

I The greedy algorithm is degenerate when three consecutive
vertices are collinear.

I The lowest vertex does not see the edge formed by the upper
two vertices.



Generalizations

polygon with holes

subdivision



Art Gallery Problem

Compute a minimal set of points inside a polygon from which
every point in the polygon is visible.



Solution Using Triangulation

1. Triangulate the polygon.

2. Compute a vertex 3-coloring of the triangulation.

3. Select the smallest color class.

I Conclusion: bn/3c of the n vertices suffice.

I The book shows a polygon for which this bound is tight.



Computing the 3-coloring
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I The dual graph has a node for each triangle and an edge
between triangles that share a diagonal.

I It is acyclic because every diagonal splits the polygon.

I Traverse the dual graph in depth-first order.

I Color the vertices of the first triangle.

I When crossing an edge into a triangle, color its third vertex
differently from the edge vertices.


