Polygon Triangulation (chapter 3)

Elisha Sacks

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Polygon Triangulation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Decompose a polygon into triangles.
- Applications: calculation, drawing, camera coverage.

Existence Proof

Theorem 3.1 Every *n*-vertex polygon has a triangulation and every triangulation has n - 2 triangles. *Proof*

- A triangle (n = 3) is trivial, so consider n > 3.
- Lemma: there are vertices *u* and *w* with *uw* in the interior.
- ► This *diagonal* splits the polygon into polygons with *m* and *n* − *m* + 2 vertices.
- Triangulate them with m 2 and n m triangles.
- The union is a triangulation with n-2 triangles.
- The proof yields an $O(n^2)$ algorithm.

Proof of Lemma

- Let v be the leftmost vertex with neighbors u and w.
- ▶ If *uw* is in the interior, we are done.
- Otherwise, an edge intersects uw.
- Consequently, a vertex is inside the triangle uvw.
- Let v' be the vertex in uvw farthest from uw.
- For vv' to intersect an edge, one endpoint must be farther from uw than v', which contradicts its definition.
- ► Hence, *vv'* is a diagonal.

Convex Decomposition

- Decompose the polygon into convex polygons.
- Triangulate each convex polygon with diagonals from one vertex to the others.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Problem: convex decomposition is hard.

Monotone Decomposition

- A polygon is y-monotone if a horizontal line intersects it in a closed interval or in the empty set.
- The polygon consists of two y-monotone vertex chains that share a top and a bottom vertex.
- We decompose the input polygon into y-monotone polygons in O(n log n) time then triangulate them in O(n) time.

Types of Vertices

- Start: maximum left turn (interior below).
- End: minimum left turn (interior above).
- Split: maximum right turn (the interior above).
- Merge: minimum right turn (interior below).
- Regular: increasing or decreasing (interior left or right).

Monotonicity Condition

Lemma 3.4 A polygon *P* is *y*-monotone iff it has no split or merge vertices.

Proof Only if is easy: a horizontal just above a merge or just below a split intersects the polygon in at least two segments. To prove if, suppose P has no splits or merges yet is not y-monotone.

Proof of If

- There is a line l that intersects P in multiple segments.
- Let pq be the leftmost segment.
- Follow the boundary from q with the interior on the left.
- Let r be the next intersection point with ℓ .
- (a) If $p \neq r$, the highest vertex between q and r is a split.
- (b) if p = r, follow the boundary in the other direction to r'.
- Since there are multiple components, p ≠ r' and the lowest vertex between q and r' is a merge.

Decomposition Strategy

Insert a diagonal from each split/merge to a vertex above/below.

The merges and splits are monotone in the sub-polygons because the diagonals go in the opposite direction to their edges.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Algorithm

Sweep the polygon from top to bottom with a horizontal line.

(日) (四) (日) (日) (日)

- The events are the vertices.
- Add an upward diagonal from each split vertex.
- Add a downward diagonal from each merge vertex.

Split Vertices

The *helper* of an edge e is the lowest vertex v above the sweep line such that the horizontal segment from v to e is in the polygon.

イロト 不得 と 不良 と 不良 とう

- A split vertex v_i connects to the helper of its left edge e_i .
- This occurs at the v_i event.

Merge Vertices

reaches v_m

A merge vertex v_i connects to the highest vertex below v_i that is a helper of its left edge e_i.

- The v_i event sets the helper of e_j to v_i.
- \triangleright v_m is the next helper of e_j or its lower endpoint.

Diagonals

Every diagonal goes up from a vertex v_i to the helper of its left edge e_i.

イロト 不同 トイヨト イヨト

3

- Either v_i is a split vertex or the helper is a merge vertex.
- Both cases can occur together.

Algorithm Details

- The edges with the interior on the right that intersect the sweep line are stored in a tree T in left to right order.
- The tree and the helpers of its edges are updated at events.

Start Vertex

<ロ> (日) (日) (日) (日) (日)

æ

1. Insert e_i in T and set $helper(e_i)$ to v_i . Example v_5 : insert e_5 .

End Vertex

- 1. If $helper(e_{i-1})$ is a merge, add a diagonal from v_i to it.
- 2. Delete e_{i-1} from T.

Example v_{15} : $helper(e_{14}) = v_{14}$, which is not a merge.

Split Vertex

- 1. Use T to find the edge e_j left of v_i .
- 2. Add a diagonal from v_i to $helper(e_i)$.
- 3. Set $helper(e_j)$ to v_i .
- 4. Insert e_i in T and set $helper(e_i)$ to v_i .

Example v_{14} : e_9 is the left edge with helper v_8 . Add a diagonal from v_{14} to v_8 .

(日) (四) (日) (日) (日)

Merge Vertex

- 1. if $helper(e_{i-1})$ is a merge, add a diagonal from v_i to it.
- 2. Delete e_{i-1} from T.
- 3. Use T to find the edge e_i left of v_i .
- 4. If $helper(e_i)$ is a merge vertex, insert a diagonal from v_i to it.
- 5. Set $helper(e_j)$ to v_i .

Example v_8 : the helper v_2 of e_7 is a merge, so add a diagonal from v_8 to v_2 ; the edge to the left is e_9 and its helper v_9 is a start vertex.

Regular Vertex

HANDLEREGULARVERTEX (v_i)

- 1. **if** the interior of \mathcal{P} lies to the right of v_i
- 2. **then if** $helper(e_{i-1})$ is a merge vertex
- 3. **then** Insert the diagonal connecting v_i to $helper(e_{i-1})$ in \mathcal{D} .
- 4. Delete e_{i-1} from \mathcal{T} .
- 5. Insert e_i in \mathcal{T} and set $helper(e_i)$ to v_i .
- 6. **else** Search in \mathcal{T} to find the edge e_j directly left of v_i .
- 7. **if** $helper(e_i)$ is a merge vertex
- 8. **then** Insert the diagonal connecting v_i to $helper(e_j)$ in \mathcal{D} .

9. $helper(e_j) \leftarrow v_i$

Example: v_6 has the interior to the right: add a diagonal to v_4 .

Correctness

Lemma 3.5 The diagonals do not intersect each other or P. *Proof* We will discuss a split vertex v_i ; the other cases are similar.

- e_j and e_k are the closest edges left and right of v_i
- v_m is the helper of e_j, so the diagonal is v_iv_m.
- ▶ The rectangle *Q* contains no vertices.
- An edge of P that intersects v_iv_m must intersect the horizontal that connects v_i to e_j or that connects v_m to e_j.
- ▶ This is impossible because e_i is directly left of v_i and v_m .
- Prior diagonals cannot intersect v_iv_m because they are above v_i and cannot have an endpoint in Q.

Complexity

• The running time is $O(n \log n)$ for y sorting and T insertion.

• The space complexity is O(n).

Monotone Polygon Triangulation

A monotone polygon is triangulated with a greedy algorithm that processes the vertices in decreasing y order.

The algorithm employs a stack of vertices in decreasing *y*-order with the lowest vertex at the top. Example: *abcde*.

The bottom vertex is from one side of the polygon and the rest of the stack is a portion of the other side that is concave upward.

Monotone Polygon Triangulation

The vertices of the stack form a polygonal chain, comprised of polygon edges and of diagonals, above which the polygon has already been triangulated.

The chain and the downward edge from the bottom vertex form a funnel.

The triangulation is extended by inserting diagonals from the vertex below the stack to the stack vertices wherever possible.

Algorithm

- 1. Place the vertices in decreasing y order v_1, \ldots, v_n .
- 2. Initialize the stack to (v_1, v_2) .
- 3. For j = 3 to n 1
 - Case 1: v_i on the opposite chain from the stack top.
 - Case 2: v_J on the same chain as the stack top.
- 4. Insert a diagonal from v_n to each stack vertex, except for the first and last.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Why is the last vertex a special case?

The vertex v_j is on the opposite chain from the stack top.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Generate triangles from v_j and the stack edges.
- ▶ The new stack is the old top then v_i .

- The vertex v_i is on the same side as the stack top.
- Generate triangles from v_i and the stack edges that it sees.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The new stack is the other stack edges then v_i.

- The vertex v_i is on the same side as the stack top.
- Generate triangles from v_i and the stack edges that it sees.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 \blacktriangleright The new stack is the other stack edges then v_i .

When does v_j see stack edge ab with $a_y < b_y$?

- The vertex v_i is on the same side as the stack top.
- Generate triangles from v_j and the stack edges that it sees.
- \blacktriangleright The new stack is the other stack edges then v_i .

When does v_j see stack edge ab with $a_y < b_y$? abv_j is a left/right turn for ab a left/right edge.

Degeneracy

- Vertices $a_1 = (x_1, y)$ and $a_2 = (x_2, y)$ are degenerate.
- The book specifies that a_1 is below a_2 if $x_1 > x_2$.
- This handles the degeneracies in the sweep algorithm.
- The greedy algorithm is degenerate when three consecutive vertices are collinear.
- The lowest vertex does not see the edge formed by the upper two vertices.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Generalizations

polygon with holes

subdivision

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Art Gallery Problem

Compute a minimal set of points inside a polygon from which every point in the polygon is visible.

イロト 不得 トイヨト イヨト

э

Solution Using Triangulation

- 1. Triangulate the polygon.
- 2. Compute a vertex 3-coloring of the triangulation.
- 3. Select the smallest color class.
- Conclusion: $\lfloor n/3 \rfloor$ of the *n* vertices suffice.
- The book shows a polygon for which this bound is tight.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Computing the 3-coloring

- The dual graph has a node for each triangle and an edge between triangles that share a diagonal.
- It is acyclic because every diagonal splits the polygon.
- Traverse the dual graph in depth-first order.
- Color the vertices of the first triangle.
- When crossing an edge into a triangle, color its third vertex differently from the edge vertices.