Polygon Triangulation (chapter 3)

Elisha Sacks

Polygon Triangulation

- Decompose a polygon into triangles.
- Applications: calculation, drawing, camera coverage.

Existence Proof

Theorem 3.1 Every n-vertex polygon has a triangulation and every triangulation has $n-2$ triangles.
Proof

- A triangle $(n=3)$ is trivial, so consider $n>3$.
- Lemma: there are vertices u and w with $u w$ in the interior.
- This diagonal splits the polygon into polygons with m and $n-m+2$ vertices.
- Triangulate them with $m-2$ and $n-m$ triangles.
- The union is a triangulation with $n-2$ triangles.
- The proof yields an $O\left(n^{2}\right)$ algorithm.

Proof of Lemma

- Let v be the leftmost vertex with neighbors u and w.
- If $u w$ is in the interior, we are done.
- Otherwise, an edge intersects uw.
- Consequently, a vertex is inside the triangle $u v w$.
- Let v^{\prime} be the vertex in $u v w$ farthest from $u w$.
- For $v v^{\prime}$ to intersect an edge, one endpoint must be farther from $u w$ than v^{\prime}, which contradicts its definition.
- Hence, $v v^{\prime}$ is a diagonal.

Convex Decomposition

- Decompose the polygon into convex polygons.
- Triangulate each convex polygon with diagonals from one vertex to the others.
- Problem: convex decomposition is hard.

Monotone Decomposition

- A polygon is y-monotone if a horizontal line intersects it in a closed interval or in the empty set.
- The polygon consists of two y-monotone vertex chains that share a top and a bottom vertex.
- We decompose the input polygon into y-monotone polygons in $O(n \log n)$ time then triangulate them in $O(n)$ time.

Types of Vertices

- Start: maximum left turn (interior below).
- End: minimum left turn (interior above).
- Split: maximum right turn (the interior above).
- Merge: minimum right turn (interior below).
- Regular: increasing or decreasing (interior left or right).

Monotonicity Condition

Lemma 3.4 A polygon P is y-monotone iff it has no split or merge vertices.
Proof Only if is easy: a horizontal just above a merge or just below a split intersects the polygon in at least two segments. To prove if, suppose P has no splits or merges yet is not y-monotone.

Proof of If

- There is a line ℓ that intersects P in multiple segments.
- Let $p q$ be the leftmost segment.
- Follow the boundary from q with the interior on the left.
- Let r be the next intersection point with ℓ.
- (a) If $p \neq r$, the highest vertex between q and r is a split.
- (b) if $p=r$, follow the boundary in the other direction to r^{\prime}.
- Since there are multiple components, $p \neq r^{\prime}$ and the lowest vertex between q and r^{\prime} is a merge.

Decomposition Strategy

Insert a diagonal from each split/merge to a vertex above/below.
The merges and splits are monotone in the sub-polygons because the diagonals go in the opposite direction to their edges.

Algorithm

- Sweep the polygon from top to bottom with a horizontal line.
- The events are the vertices.
- Add an upward diagonal from each split vertex.
- Add a downward diagonal from each merge vertex.

Split Vertices

The helper of an edge e is the lowest vertex v above the sweep line such that the horizontal segment from v to e is in the polygon.

- A split vertex v_{i} connects to the helper of its left edge e_{j}.
- This occurs at the v_{i} event.

Merge Vertices

- A merge vertex v_{i} connects to the highest vertex below v_{i} that is a helper of its left edge e_{j}.
- The v_{i} event sets the helper of e_{j} to v_{i}.
- v_{m} is the next helper of e_{j} or its lower endpoint.

Diagonals

- Every diagonal goes up from a vertex v_{i} to the helper of its left edge e_{j}.
- Either v_{i} is a split vertex or the helper is a merge vertex.
- Both cases can occur together.

Algorithm Details

- The edges with the interior on the right that intersect the sweep line are stored in a tree T in left to right order.
- The tree and the helpers of its edges are updated at events.

Start Vertex

1. Insert e_{i} in T and set helper $\left(e_{i}\right)$ to v_{i}.

Example v_{5} : insert e_{5}.

End Vertex

1. If helper $\left(e_{i-1}\right)$ is a merge, add a diagonal from v_{i} to it.
2. Delete e_{i-1} from T.

Example v_{15} : helper $\left(e_{14}\right)=v_{14}$, which is not a merge.

Split Vertex

1. Use T to find the edge e_{j} left of v_{i}.
2. Add a diagonal from v_{i} to helper $\left(e_{j}\right)$.
3. Set helper $\left(e_{j}\right)$ to v_{i}.
4. Insert e_{i} in T and set helper $\left(e_{i}\right)$ to v_{i}.

Example v_{14} : e_{9} is the left edge with helper v_{8}. Add a diagonal from v_{14} to v_{8}.

Merge Vertex

1. if helper $\left(e_{i-1}\right)$ is a merge, add a diagonal from v_{i} to it.
2. Delete e_{i-1} from T.
3. Use T to find the edge e_{j} left of v_{i}.
4. If helper $\left(e_{j}\right)$ is a merge vertex, insert a diagonal from v_{i} to it.
5. Set helper $\left(e_{j}\right)$ to v_{i}.

Example v_{8} : the helper v_{2} of e_{7} is a merge, so add a diagonal from v_{8} to v_{2}; the edge to the left is e_{9} and its helper v_{9} is a start vertex.

Regular Vertex

HandleRegularVertex $\left(v_{i}\right)$

1. if the interior of \mathcal{P} lies to the right of v_{i}
2. then if $\operatorname{helper}\left(e_{i-1}\right)$ is a merge vertex
3. then Insert the diagonal connecting v_{i} to helper $\left(e_{i-1}\right)$ in \mathcal{D}.
4. Delete e_{i-1} from \mathcal{T}.
5. \quad Insert e_{i} in \mathcal{T} and set helper $\left(e_{i}\right)$ to v_{i}.
6. else Search in \mathcal{T} to find the edge e_{j} directly left of v_{i}.
7. if helper $\left(e_{j}\right)$ is a merge vertex
8.
9.

then Insert the diagonal connecting v_{i} to helper $\left(e_{j}\right)$ in \mathcal{D}.
helper $\left(e_{j}\right) \leftarrow v_{i}$
Example: v_{6} has the interior to the right: add a diagonal to v_{4}.

Correctness

Lemma 3.5 The diagonals do not intersect each other or P.
Proof We will discuss a split vertex v_{i}; the other cases are similar.

- e_{j} and e_{k} are the closest edges left and right of v_{i}
- v_{m} is the helper of e_{j}, so the diagonal is $v_{i} v_{m}$.
- The rectangle Q contains no vertices.
- An edge of P that intersects $v_{i} v_{m}$ must intersect the horizontal that connects v_{i} to e_{j} or that connects v_{m} to e_{j}.
- This is impossible because e_{j} is directly left of v_{i} and v_{m}.
- Prior diagonals cannot intersect $v_{i} v_{m}$ because they are above v_{i} and cannot have an endpoint in Q.

Complexity

- The running time is $O(n \log n)$ for y sorting and T insertion.
- The space complexity is $O(n)$.

Monotone Polygon Triangulation

A monotone polygon is triangulated with a greedy algorithm that processes the vertices in decreasing y order.

The algorithm employs a stack of vertices in decreasing y-order with the lowest vertex at the top. Example: abcde.

The bottom vertex is from one side of the polygon and the rest of the stack is a portion of the other side that is concave upward.

Monotone Polygon Triangulation

The vertices of the stack form a polygonal chain, comprised of polygon edges and of diagonals, above which the polygon has already been triangulated.

The chain and the downward edge from the bottom vertex form a funnel.

The triangulation is extended by inserting diagonals from the vertex below the stack to the stack vertices wherever possible.

Algorithm

1. Place the vertices in decreasing y order v_{1}, \ldots, v_{n}.
2. Initialize the stack to $\left(v_{1}, v_{2}\right)$.
3. For $j=3$ to $n-1$

- Case 1: v_{j} on the opposite chain from the stack top.
- Case 2: v_{J} on the same chain as the stack top.

4. Insert a diagonal from v_{n} to each stack vertex, except for the first and last.
Why is the last vertex a special case?

Case 1

- The vertex v_{j} is on the opposite chain from the stack top.
- Generate triangles from v_{j} and the stack edges.
- The new stack is the old top then v_{j}.

Case 2

- The vertex v_{j} is on the same side as the stack top.
- Generate triangles from v_{j} and the stack edges that it sees.
- The new stack is the other stack edges then v_{j}.

Case 2

- The vertex v_{j} is on the same side as the stack top.
- Generate triangles from v_{j} and the stack edges that it sees.
- The new stack is the other stack edges then v_{j}.

When does v_{j} see stack edge $a b$ with $a_{y}<b_{y}$?

Case 2

- The vertex v_{j} is on the same side as the stack top.
- Generate triangles from v_{j} and the stack edges that it sees.
- The new stack is the other stack edges then v_{j}.

When does v_{j} see stack edge $a b$ with $a_{y}<b_{y}$? $a b v_{j}$ is a left/right turn for $a b$ a left/right edge.

Degeneracy

- Vertices $a_{1}=\left(x_{1}, y\right)$ and $a_{2}=\left(x_{2}, y\right)$ are degenerate.
- The book specifies that a_{1} is below a_{2} if $x_{1}>x_{2}$.
- This handles the degeneracies in the sweep algorithm.
- The greedy algorithm is degenerate when three consecutive vertices are collinear.
- The lowest vertex does not see the edge formed by the upper two vertices.

Generalizations

polygon with holes

subdivision

Art Gallery Problem

Compute a minimal set of points inside a polygon from which every point in the polygon is visible.

Solution Using Triangulation

1. Triangulate the polygon.
2. Compute a vertex 3-coloring of the triangulation.
3. Select the smallest color class.

- Conclusion: $\lfloor n / 3\rfloor$ of the n vertices suffice.
- The book shows a polygon for which this bound is tight.

Computing the 3-coloring

- The dual graph has a node for each triangle and an edge between triangles that share a diagonal.
- It is acyclic because every diagonal splits the polygon.
- Traverse the dual graph in depth-first order.
- Color the vertices of the first triangle.
- When crossing an edge into a triangle, color its third vertex differently from the edge vertices.

