Polygon Triangulation (chapter 3)

Elisha Sacks
Polygon Triangulation

- Decompose a polygon into triangles.
- Applications: calculation, drawing, camera coverage.
Theorem 3.1 Every \(n \)-vertex polygon has a triangulation and every triangulation has \(n - 2 \) triangles.

Proof

- A triangle \((n = 3)\) is trivial, so consider \(n > 3 \).
- Lemma: there are vertices \(u \) and \(w \) with \(uw \) in the interior.
- This *diagonal* splits the polygon into polygons with \(m \) and \(n - m + 2 \) vertices.
- Triangulate them with \(m - 2 \) and \(n - m \) triangles.
- The union is a triangulation with \(n - 2 \) triangles.
- The proof yields an \(O(n^2) \) algorithm.
Proof of Lemma

Let v be the leftmost vertex with neighbors u and w.

If uw is in the interior, we are done.

Otherwise, an edge intersects uw.

Consequently, a vertex is inside the triangle uvw.

Let v' be the vertex in uvw farthest from uw.

For vv' to intersect an edge, one endpoint must be farther from uw than v', which contradicts its definition.

Hence, vv' is a diagonal.
Convex Decomposition

- Decompose the polygon into convex polygons.
- Triangulate each convex polygon with diagonals from one vertex to the others.
- Problem: convex decomposition is hard.
Monotone Decomposition

A polygon is y-monotone if a horizontal line intersects it in a closed interval or in the empty set.

The polygon consists of two y-monotone vertex chains that share a top and a bottom vertex.

We decompose the input polygon into y-monotone polygons in $O(n \log n)$ time then triangulate them in $O(n)$ time.
Types of Vertices

- **Start**: maximum left turn (interior below).
- **End**: minimum left turn (interior above).
- **Split**: maximum right turn (the interior above).
- **Merge**: minimum right turn (interior below).
- **Regular**: increasing or decreasing (interior left or right).
Lemma 3.4 A polygon P is y-monotone iff it has no split or merge vertices.

Proof Only if is easy: a horizontal just above a merge or just below a split intersects the polygon in at least two segments. To prove if, suppose P has no splits or merges yet is not y-monotone.
Proof of If

There is a line ℓ that intersects P in multiple segments.

Let pq be the leftmost segment.

Follow the boundary from q with the interior on the left.

Let r be the next intersection point with ℓ.

(a) If $p \neq r$, the highest vertex between q and r is a split.

(b) if $p = r$, follow the boundary in the other direction to r'.

Since there are multiple components, $p \neq r'$ and the lowest vertex between q and r' is a merge.
Decomposition Strategy

Insert a diagonal from each split/merge to a vertex above/below. The merges and splits are monotone in the sub-polygons because the diagonals go in the opposite direction to their edges.
Algorithm

▶ Sweep the polygon from top to bottom with a horizontal line.
▶ The events are the vertices.
▶ Add an upward diagonal from each split vertex.
▶ Add a downward diagonal from each merge vertex.
The helper of an edge e is the lowest vertex v above the sweep line such that the horizontal segment from v to e is in the polygon.

- A split vertex v_i connects to the helper of its left edge e_j.
- This occurs at the v_i event.
Merge Vertices

A merge vertex v_i connects to the highest vertex below v_i that is a helper of its left edge e_j.

The v_i event sets the helper of e_j to v_i.

v_m is the next helper of e_j or its lower endpoint.
Every diagonal goes up from a vertex v_i to the helper of its left edge e_j.

Either v_i is a split vertex or the helper is a merge vertex.

Both cases can occur together.
The edges with the interior on the right that intersect the sweep line are stored in a tree T in left to right order.

The tree and the helpers of its edges are updated at events.
1. Insert e_i in T and set $helper(e_i)$ to v_i.
Example v_5: insert e_5.

1. If \(\text{helper}(e_{i-1}) \) is a merge, add a diagonal from \(v_i \) to it.
2. Delete \(e_{i-1} \) from \(T \).

Example \(v_{15} \): \(\text{helper}(e_{14}) = v_{14} \), which is not a merge.
1. Use T to find the edge e_j left of v_i.
2. Add a diagonal from v_i to $\text{helper}(e_j)$.
3. Set $\text{helper}(e_j)$ to v_i.
4. Insert e_i in T and set $\text{helper}(e_i)$ to v_i.

Example v_{14}: e_9 is the left edge with helper v_8. Add a diagonal from v_{14} to v_8.
1. If $\text{helper}(e_{i-1})$ is a merge, add a diagonal from v_i to it.
2. Delete e_{i-1} from T.
3. Use T to find the edge e_j left of v_i.
4. If $\text{helper}(e_j)$ is a merge vertex, insert a diagonal from v_i to it.
5. Set $\text{helper}(e_j)$ to v_i.

Example v_8: the helper v_2 of e_7 is a merge, so add a diagonal from v_8 to v_2; the edge to the left is e_9 and its helper v_9 is a start vertex.
HANDLE REGULAR VERTEX (v_i)
1. if the interior of \mathcal{P} lies to the right of v_i
2. then if $\text{helper}(e_{i-1})$ is a merge vertex
3. then Insert the diagonal connecting v_i to $\text{helper}(e_{i-1})$ in \mathcal{D}.
4. Delete e_{i-1} from \mathcal{T}.
5. Insert e_i in \mathcal{T} and set $\text{helper}(e_i)$ to v_i.
6. else Search in \mathcal{T} to find the edge e_j directly left of v_i.
7. if $\text{helper}(e_j)$ is a merge vertex
8. then Insert the diagonal connecting v_i to $\text{helper}(e_j)$ in \mathcal{D}.
9. $\text{helper}(e_j) \leftarrow v_i$

Example: v_6 has the interior to the right: add a diagonal to v_4.
Correctness

Lemma 3.5 The diagonals do not intersect each other or P.

Proof We will discuss a split vertex v_i; the other cases are similar.

- e_j and e_k are the closest edges left and right of v_i.
- v_m is the helper of e_j, so the diagonal is $v_i v_m$.
- The rectangle Q contains no vertices.
- An edge of P that intersects $v_i v_m$ must intersect the horizontal that connects v_i to e_j or that connects v_m to e_j.
- This is impossible because e_j is directly left of v_i and v_m.
- Prior diagonals cannot intersect $v_i v_m$ because they are above v_i and cannot have an endpoint in Q.
Complexity

- The running time is $O(n \log n)$ for y sorting and T insertion.
- The space complexity is $O(n)$.
A monotone polygon is triangulated with a greedy algorithm that processes the vertices in decreasing y order.

The algorithm employs a stack of vertices in decreasing y-order with the lowest vertex at the top. Example: $abcde$.

The bottom vertex is from one side of the polygon and the rest of the stack is a portion of the other side that is concave upward.
The vertices of the stack form a polygonal chain, comprised of polygon edges and of diagonals, above which the polygon has already been triangulated.

The chain and the downward edge from the bottom vertex form a funnel.

The triangulation is extended by inserting diagonals from the vertex below the stack to the stack vertices wherever possible.
1. Place the vertices in decreasing y order v_1, \ldots, v_n.
2. Initialize the stack to (v_1, v_2).
3. For $j = 3$ to $n - 1$
 - Case 1: v_j on the opposite chain from the stack top.
 - Case 2: v_j on the same chain as the stack top.
4. Insert a diagonal from v_n to each stack vertex, except for the first and last.

Why is the last vertex a special case?
Case 1

- The vertex v_j is on the opposite chain from the stack top.
- Generate triangles from v_j and the stack edges.
- The new stack is the old top then v_j.
Case 2

- The vertex v_j is on the same side as the stack top.
- Generate triangles from v_j and the stack edges that it sees.
- The new stack is the other stack edges then v_j.
Case 2

▶ The vertex v_j is on the same side as the stack top.
▶ Generate triangles from v_j and the stack edges that it sees.
▶ The new stack is the other stack edges then v_j.

When does v_j see stack edge ab with $a_y < b_y$?
Case 2

- The vertex v_j is on the same side as the stack top.
- Generate triangles from v_j and the stack edges that it sees.
- The new stack is the other stack edges then v_j.

When does v_j see stack edge ab with $a_y < b_y$?

abv_j is a left/right turn for ab a left/right edge.
Degeneracy

- Vertices $a_1 = (x_1, y)$ and $a_2 = (x_2, y)$ are degenerate.
- The book specifies that a_1 is below a_2 if $x_1 > x_2$.
- This handles the degeneracies in the sweep algorithm.
- The greedy algorithm is degenerate when three consecutive vertices are collinear.
- The lowest vertex does not see the edge formed by the upper two vertices.
Generalizations

polygon with holes

subdivision
Art Gallery Problem

Compute a minimal set of points inside a polygon from which every point in the polygon is visible.
Solution Using Triangulation

1. Triangulate the polygon.
2. Compute a vertex 3-coloring of the triangulation.
3. Select the smallest color class.

▶ Conclusion: ⌊n/3⌋ of the n vertices suffice.
▶ The book shows a polygon for which this bound is tight.
Computing the 3-coloring

- The dual graph has a node for each triangle and an edge between triangles that share a diagonal.
- It is acyclic because every diagonal splits the polygon.
- Traverse the dual graph in depth-first order.
- Color the vertices of the first triangle.
- When crossing an edge into a triangle, color its third vertex differently from the edge vertices.